MENS*

A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing
Fill-Reducing Orderings of Sparse Matrices
Version 4.0

George Karypis and Vipin Kumar

University of Minnesota, Department of Computer Science / Army HPC Research Center
Minneapolis, MN 55455

{karypis, kumay@cs.umn.edu
September 20, 1998

Metis [MEE tis]: ‘Metis’ is the Greek word for wisdom. Metis was a titaness in Greek mythology. She was the consort
of Zeus and the mother of Athena. She presided over all wisdom and knowledge.

*METIS is copyrighted by the regents of the University of Minnesota. This work was supported by IST/BMDO through Army Research Office
contract DA/DAAH04-93-G-0080, and by Army High Performance Computing Research Center under the auspices of the Department of the Army,
Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does
not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Access to computing facilities
were provided by Minnesota Supercomputer Institute, Cray Research Inc, and by the Pittsburgh Supercomputing Center. Related papers are available

via WWW at URL: http://www.cs.umn.edu/ karypis

Contents

1 Introduction 3
2 What is METIS 4
3 Whatis New in This Version 6
4 MEIS’s Stand-Alone Programs 8
4.1 Graph Partitioning Programs... e e 8
4.2 Mesh Partitioning Programs 9
4.3 Sparse Matrix Reordering Programs 11
4.4 Auxiliary Programs e 13
4,41 MeshToGraphConversion i e e e 13
4,42 GraphChecker e e e 14
45 InputFile Formats. 15
451 GraphFile . . . 15
452 MeshFile e 16
4.6 OutputFile Formats e e 17
4.6.1 PartitionFile 17
4.6.2 OrderingFile e 17
5 MEIS’s Library Interface 18
5.1 GraphData Structure e e e 18
5.2 MeshDataStructure e e e 19
5.3 Partitioning Objectives. 19
5.4 Graph PartitioningRoutines e e 21
METIS_PartGraphRecursive e e e e e e e e e e 21
METIS PartGraphKway 22
METIS_PartGraphVKway 23
METIS.mCPartGraphRecursive 24
METIS_.mCPartGraphKway e e e 26
METIS.WPartGraphRecUISIVE e e e e e e e e e e e e 28
METIS.WPartGraphKway e e e e 30
METIS.WPartGraphVKway e e e 32
5.5 Mesh Partitioning Routines 34
METIS PartMeshNodal e 34
METIS_PartMeshDual 35
5.6 Sparse Matrix Reordering Routines. e 36
METIS.EAgeND e 36
METIS.INodeND e e 37
METIS.INODeWND e 39
5.7 Auxiliary Routines e e 40
METIS_.MeshToNodal e 40
METIS.MeshToDaul e e 41
METIS_EStimateMemory e e e 42
5.8 CandFortran SUpPpOrt. e e 43
6 System Requirements and Contact Information 44

1 Introduction

Algorithms that find a good partitioning of highly unstructured graphs are critical for developing efficient solutions for

a wide range of problems in many application areas on both serial and parallel computers. For example, large-scale
numerical simulations on parallel computers, such as those based on finite element methods, require the distribution
of the finite element mesh to the processors. This distribution must be done so that the number of elements assigned
to each processor is the same, and the number of adjacent elements assigned to different processors is minimized.
The goal of the first condition is to balance the computations among the processors. The goal of the second condition
is to minimize the communication resulting from the placement of adjacent elements to different processors. Graph
partitioning can be used to successfully satisfy these conditions by first modeling the finite element mesh by a graph,
and then partitioning it into equal parts.

Graph partitioning algorithms are also used to compute fill-reducing orderings of sparse matrices. These fill-
reducing orderings are useful when direct methods are used to solve sparse systems of linear equations. A good
ordering of a sparse matrix dramatically reduces both the amount of memory as well as the time required to solve
the system of equations. Furthermore, the fill-reducing orderings produced by graph partitioning algorithms are par-
ticularly suited for parallel direct factorization as they lead to high degree of concurrency during the factorization
phase.

Graph partitioning is also used for solving optimization problems arising in numerous areas such as design of very
large scale integrated circuits (VLSI), storing and accessing spatial databases on disks, transportation management,
and data mining.

2 Whatis MENS

METIS is a software package for partitioning large irregular graphs, partitioning large meshes, and computing fill-
reducing orderings of sparse matrices. The algorithndeRS are based on multilevel graph partitioning described
in [8, 7, 6]. Traditional graph partitioning algorithms compute a partition of a graph by operating directly on the
original graph as illustrated in Figure 1(a). These algorithms are often too slow and/or produce poor quality partitions.
Multilevel partitioning algorithms, on the other hand, take a completely different approach [5, 8, 7]. These algo-
rithms, as illustrated in Figure 1(b), reduce the size of the graph by collapsing vertices and edges, partition the smaller
graph, and then uncoarsen it to construct a partition for the original gfdghS uses novel approaches to succes-
sively reduce the size of the graph as well as to further refine the partition during the uncoarsening phase. During
coarseningMENS employs algorithms that make it easier to find a high-quality partition at the coarsest graph. During
refinementMETS focuses primarily on the portion of the graph that is close to the partition boundary. These highly
tuned algorithms allow/ETS to quickly produce high-quality partitions for a large variety of graphs.

Multilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

Traditional partitioning algorithms compute
a partition directly on the original graph! / @
15

(a) ‘

Initial Partitioning Phase

®)
Figure 1: (a) Traditional partitioning algorithms. (b) Multilevel partitioning algorithms.
The advantages &fIETlIS compared to other similar packages are the following:

O Provides high quality partitions!
Experiments on a large number of graphs arising in various domains including finite element methods, linear
programming, VLSI, and transportation show th4€TiS produces partitions that are consistently better than
those produced by other widely used algorithms. The partitions produc®Ely are consistently 10% to
50% better than those produced by spectral partitioning algorithms [1, 4].

O Itis extremely fast!
Experiments on a wide range of graphs has showrMIgaS is one to two orders of magnitude faster than other
widely used partitioning algorithms. Figure 2 shows the amount of time required to partition a variety of graphs
in 256 parts for two different architectures, an R10000-based SGI Challenge and a Pentium Pro-based personal
computer. Graphs containing up to four million vertices can be partitioned in 256 parts in well under a minute
on today’s scientific workstations. The run timeMETS is comparable to (or even smaller than) the run time
of some geometric partitioning algorithms that often produce much worse partitions.

O Provides low fill orderings!
The fill-reducing orderings produced BYETS are substantially better than those produced by other widely
used algorithms including multiple minimum degree. For many classes of problems arising in scientific compu-
tations and linear programminlIETS is able to reduce the storage and computational requirements of sparse
matrix factorization methods by up to an order of magnitude. Moreover, unlike multiple minimum degree, the
elimination trees produced WVEIS are suited for parallel direct factorization. Furthermore, as Figure 2 illus-
trates, METIS is able to compute these ordering very fast. Matrices with over two hundred thousand rows can be
reordered in just a few seconds on current generation workstations and PCs.

4

METIS's Partitioning Performance

90.45:
Mdual3) 0. 4552
|]47.34sec
. 31.11:
Big e
Mdual2 Number of Number of
Vertices Edges
Auto Mdual3 4,039,160 8,016,848
Big 295,433 7,953,453
Troll
Mdual2 1,017,253 2,015,714
Mduall Auto 448,695 3,314,611
Troll 213,453 5,885,829
144 Mduall 257,000 505,048
144 144,649 1,074,393
Ocean Ocean 143,437 409,593
Brack2 62,631 366,559
Brack2

’D MIPS R10000@200MHz M Intel PPRO@200MHz

METIS's Ordering Performance

24.43sec

Ocean []13.34sec
20.07sec
Troll [] 10.51sec
FORT17 Hsme
KEN18 Number of Number of Operation
Vertices Edges Count
PDS-20 Ocean 143,437 409,593 1.26e+08
Troll 213,453 5,885,829 5.53e+10
BCSSTK31 Fortl7 86,650 247,424 8.05e+06
Kenl8 105,127 252,072 2.85e+08
BCSSTK32 PDS-20 33,798 143,161 3.82e+09
BCSSTK31 35,588 572,914 1.16e+09
BCSSTK30 BCSSTK32 44,609 985,046 1.32e+09
BCSSTK30 28,294 1,007,284 1.17e+09
Inprol 46,949 1,117,809 1.24e+09

Inprol

|0 MIPS R10000@200MHz M Intel PPRO@200MHz |

Figure 2: The amount of time required by METS to partition various graphs in 256 parts and the amount of time required by MENS
to compute fill-reducing orderings for various sparse matrices.

The rest of this manual is organized as follows: Section 4 describes the user interface to the stand-alone programs
provided byMETS. Section 5 describes the stand-alone library that implements the various algorithms implemented
in MeTS. Finally, Section 6 describes the system requirements foviiisS package.

3 What is New in This Version

The latest version d¥IENIS contains a number of changes over the previous major release (version 3.0). Most of these
changes are concentrated on the graph and mesh partitioning routines and they marginally affect the sparse matrix re-
ordering routines. Table 1 describes which programs and routindslslib have been changed and the new routines

in MeTiSlib. In the rest of this section we briefly describe some of the major changes.

Multi-Constraint Partitioning METIS now includes partitioning routines that can be used to partition a graph in

the presence of multiple balancing constraints. The idea is that each vertex has a vector of weights assoxsated

with it, and the objective of the partitioning algorithm is to minimize the edgecut subject to the constraints that each
one of them weights is equally distributed among the domains. For example, if the first weight corresponds to the
amount of computation and the second weight corresponds to the amount of storage required for each element, then
the partitioning computed by the new algorithms will balance both the computation performed in each domain as well
as the amount of memory that it requires. Also, multi-phase (multi-physics) computations can use the new partitioning
algorithm to simultaneously balance the computations performed in each phase. The multi-constraint partitioning
algorithms and their applications are further described in [6].

The multi-constraint partitioning algorithm is implemented by tM&ETIS_mCPartGraphRecursive and
METIS_mCPartGraphKway routines that are based on the multilevel recursive bisection and the mulilevasy
partitioning paradigms, respectively. Also, thmetis and thekmetis programs have been overloaded to invoke the
multi-constraint partitioner when the input graph contains multiple vertex weights (Section 4.5.1 describes how the
format of the input graph file has been extended to allow you to specify multiple vertex weights).

Minimizing the Total Communication Volume The objective of the traditional graph partitioning problem is
to compute a balancddway partitioning such that the number of edges (or in the case of weighted graphs the sum of
their weights) that straddle different partitions is minimized. When partitioning is used to distribute a graph or a mesh
among the processors of a parallel computer, the objective of minimizing the edgecut is only an approximation of the
true communication cost resulting from the partitioning. Despite that, for a wide range of problems, by minimizing
the edgecut, the partitioning algorithms also minimize the communication cost reasonably well.

However, there are cases in which a partitioning algorithm can significantly reduce the communication cost by
directly minimizing this objective (as opposed to the edgecMEIS now provides theVIETIS_PartGraphVKway
and METIS_WPartGraphVKway routines that directly minimize the communication cost as defined by the total
communication volume resulted by the partitioning (see Section 5.3 for a precise definition of this objective function).
Note that for these routines to provide meaningful partitionings, the connectivity of the graph should reflect the true
information exchange requirements of the underlying computation.

Minimizing the Maximum Connectivity of the Subdomains The communication cost resulting fromka
way partitioning in general depends on the following factors: (i) the total communication volume, (ii) the maximum
amount of data that any particular processor needs to send and receive; and (iii) the number of messages a processor
needs to send and receive. The partitioning routines in earlier versiovgli& concentrated only on the first factor
(by minimizing the edgecut). In this releaddgelS also provides support for minimizing the third factor (which
essentially reduces the number of startups) and indirectly (up to a point) reduces the second factor. Experiments have
shown that for most graphs corresponding to finite element meshes, the new rel®SKaé able to reduce the
maximum (and total) number of adjacent subdomains considerably—especially when the graph is partitioned in a
relatively large number of partitiong.@, greater than 30). For most 3D finite elements graphs, the maximum number
of subdomains for a 50-way partition has been reduced from around 25 to around 16.

This enhancement is provided as a refinement option for both NHETIS_PartGraphKway and
METIS_PartGraphVKway routines, and is the default optionkihetis andMETIS_PartGraphKway.

Reducing the Number of Non-Contiguous Subdomains A k-way partitioning of a contiguous graph can
often lead to some subdomains being assigned non-contiguous portions of the graph. For many problems, the non-

Changes in M ETIS’s stand-alone programs

pmetis It has been over-loaded to invoke the multi-constraint partitioning algo-
rithm when the graph contains multiple vertex weights.

kmetis It has been over-loaded to invoke the multi-constraint partitioning algo-
rithm when the graph contains multiple vertex weights.
The partitioning algorithm has been modified to also minimize the con-
nectivity of the subdomains.
A pre- and post-refinement step is applied that tries to reduce the number
of non-contiguous subdomains.

partnmesh The partitioning algorithm has been modified to also minimize the con-
partdmesh nectivity of the subdomains.

Changes in M EIiSlib’s routines

METIS_PartGraphKway A new refinement algorithm has been added that also minimizes the con-
METIS_WPartGraphKway nectivity of the subdomains. This new algorithm has been made the de-
fault option.

A pre- and post-refinement step is applied that tries to reduce the number
of non-contiguous subdomains.

METIS_PartGraphVKway This is a new set of routines that comput&-avay partitioning whose
METIS_WPartGraphVKway objective is to minimize the total communication volume.

METIS_mCPartGraphRecursive This is a new set of routines that compute-way partitioning subject to
METIS_mCPartGraphKway multiple balancing constraints.

Table 1: Summary of the changes in METS and MeTSlib.

contiguity is a result of the underlying geometry and often leads to better quality partitions. Nevertheless, there are
cases in which the partitioning algorithm is fooled and breaks certain domdBBS now provides support for
eliminating such spurious non-contiguous subdomains.

This support is provided as a default option for bothMETIS_PartGraphKway andMETIS_PartGraphVKway
routines, and thkmetis program.

4 MEINS’s Stand-Alone Programs

METIS provides a variety of programs that can be used to partition graphs, partition meshes, compute fill-reducing
orderings of sparse matrices, as well as programs to convert meshes into graphs appropMis ograph parti-
tioning programs.

The rest of this section provides detailed descriptions about the functionality of these programs, how to use them,
the format of the input files required by them, and the format of the produced output files.

4.1 Graph Partitioning Programs

METIS provides two programpmetis andkmetis for partitioning an unstructured graph inkcequal size parts.
The partitioning algorithm used lymetis is based on multilevel recursive bisection described in [8], whereas the
partitioning algorithm used bimetis is based on multilevek-way partitioning described in [7]. Both of these
programs are able to produce high quality partitions. However, depending on the application, one program may be
preferable than the other. In genetahetis is preferred when it is necessary to partition graphs into more than eight
partitions. For such caseenetis is considerably faster thggmetis . On the other hangymetis is preferable
for partitioning a graph into a small number of partitions.

Bothpmetis andkmetis are invoked by providing two arguments at the command line as follows:

pmetis GraphFile Nparts
kmetis GraphFile Nparts

The first argumenGraphFile is the name of the file that stores the graph (whose format is described in Sec-
tion 4.5.1), while the second argumeparts is the number of partitions that is desired. Bpthetis andkmetis
can partition a graph into an arbitrary number of partitions. Upon successful execution, both programs display statis-
tics regarding the quality of the computed partitioning and the amount of time taken to perform the partitioning. The
actual partitioning is stored in a file nam@daphFile.part.Nparts whose format is described in Section 4.6.1.

Figure 3 shows the output gimetis andkmetis for partitioning a graph into 100 parts. From this figure we
see that both programs initially print information about the graph, such as its name, the number of réoéeseg,
the number of edge#Edge}, and also the number of desired partitio#Bdrty. Next, they print some information
regarding the quality of the partitioning. Specifically, they report the number of edges beirtgdgat-Cu) by the
partitioning, as well as the balance of the partitiodingrinally, bothpmetis andkmetis show the time taken
by the various phases of the algorithm. All times are in seconds. For this particular expmplis required a
total of 17.070 seconds, of which 13.850 seconds was taken by the partitioning algorithm itself, and the rest was to
read the graph itself. Similarlkmetis required a total of 6.790 seconds, of which 3.570 seconds was taken by the
partitioning algorithm itself. As you can see from this exampgiaetis is considerably faster thgmmetis , and it
produces a partitioning that is slightly better than that producezhibgtis .

Figure 4 shows the output pfnetis andkmetis for partitioning a graph into 16 parts subject to three balancing
constraints. Botlpmetis andkmetis have beerover-loadedo invoke the multi-constraint partitioning routines
whenever the input graph file specifies more that one set of vertex weights. Comparing the output of Figure 4 to that
of Figure 3 we see that whemmetis andkmetis operate in the multi-constraint mode they display some additional
information regarding the number of constraints and also the balance of the computed partitioning with respect to each
one of these constraints. In this exampmetis was able to balance the three constraints within 1%, 3%, and 2%,
respectively. Note that for multi-constraint partitioning, for small number of partipomstis outperformsmetis
in terms of partitioning quality. However, for larger number of partiti@anmgetis achieves better quality and is more
robust in simultaneously balancing the various constraints.

1For ak way partition of a graph with vertices, letm be the size of the largest part produced bykheay partitioning algorithm. The balance
of the partitioning is defined dan/n, and is essentially the load imbalance induced by non-equal partifiomstis produces partitions that are
perfectly balanced at each bisection level, however, some small load imbalance may result due tio theelegf recursive bisection. In general,
the load imbalance is less than 1knetis produces partitions that are not perfectly balanced, but the algorithm limits the load imbalance to 3%.

prompt% pmetis brack2.graph 100 \
METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information
Name: brack2.graph, #Vertices: 62631, #Edges: 366559, #Parts: 100

Recursive Partitioning...
100-way Edge-Cut: 37494, Balance: 1.00

Timing Information

1/0: 0.820
Partitioning: 6.110 (PMETIS time)
Total: 6.940

prompt% kmetis brack2.graph 100

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information
Name: brack2.graph, #Vertices: 62631, #Edges: 366559, #Parts: 100

K-way Partitioning...
100-way Edge-Cut: 37310, Balance: 1.03

Timing Information

1/0: 0.820
Partitioning: 1.750 (KMETIS time)
Total: 2.570

/

Figure 3: Output of pmetis and kmetis for graph brack2.graph and a 100-way partition.

4.2 Mesh Partitioning Programs

MEIS provides two programpartnmesh andpartdmesh for partitioning meshese(g, those arising in finite
element or finite volume methods) inkeequal size parts. These programs take as input the element node array of the
mesh and compute a partitioning for both its elements and its nddFES currently supports four different types of
mesh elements which are triangles, tetrahedra, hexahedra (bricks), and quadrilaterals.

These programs first convert the mesh into a graph, and thekmestgss to partition this graph. The difference
between these two programs is tipairtnmesh converts the mesh into a nodal graple.(each node of the mesh
becomes a vertex of the graph), wherpagdmesh converts the mesh into a dual grajpe.(each element becomes
a vertex of the graph). In the casegafrtnmesh , the partitioning of the nodal graph is used to derive a partitioning of
the elements. In the casemdrtdmesh , the partitioning of the dual graph is used to derive a partitioning of the nodes.
Both of these programs produce partitioning of comparable quality,pathmesh being considerably faster than
partdmesh . However, in some casegartnmesh may produce partitions that have higher load imbalance than
partdmesh

Bothpartnmesh andpartdmesh are invoked by providing two arguments at the command line as follows:

partnmesh MeshFile Nparts
partdmesh MeshFile Nparts

The first argumeri¥leshFile is the name of the file that stores the mesh (whose format is described in Section 4.5.2),
while the second argumeNparts is the number of partitions that is desired. Bptitnmesh andpartdmesh can
partition a mesh into an arbitrary number of partitions. Upon successful execution, both programs display statistics
regarding the quality of the computed partitioning and the amount of time taken to perform the partitioning. The

prompt% pmetis ml14.graph3 16 \
METIS 4.0 Copyright 1998, Regents of the University of Minnesota
Graph Information

Name: ml4.graph3, #Vertices: 214765, #Edges: 1679018, #Parts: 16
Balancing Constraints: 3

Recursive Partitioning...
16-way Edge-Cut: 74454, Balance: 1.01 1.03 1.02

Timing Information

I/O: 4.310
Partitioning: 28.410 (PMETIS time)
Total: 32.830

prompt% kmetis ml4.graph3 16

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information
Name: ml4.graph3, #Vertices: 214765, #Edges: 1679018, #Parts: 16
Balancing Constraints: 3

K-way Partitioning...
16-way Edge-Cut: 71410, Balance: 1.04 1.04 1.04

Timing Information

1/0: 4.020
Partitioning: 7.430 (KMETIS time)
Total: 11.550

/

Figure 4: Output of pmetis and kmetis for a multi-constraint graph with three constraints and a 16-way partition.

actual partitioning is stored in two files namedeshFile.npart.Npartswvhich stores the partitioning of the nodes, and
MeshFile.epart.Npartsvhich stores the partitioning of the elements. The format of the partitioning files is described
in Section 4.6.1.

Figure 5 shows the output pairtnmesh andpartdmesh for partitioning a mesh with tetrahedron elements into
100 parts. From this figure we see that both programs initially print information about the mesh, such as its name, the
number of elementgtElementy the number of node#Node$, and the type of elements.g, TET). Next, they print
some information regarding the quality of the partitioning. Specifically, they report the number of edges being cut
(Edge-Cu} by the partitioning, as well as the balance of the partitioning. For bagintnmesh andpartdmesh ,
the balance is computed with respect to the number of elements. The balance with respect to the number of nodes is
not shown, but it is in general similar to the element balance.

Finally, bothpartnmesh andpartdmesh show the time that was taken by the various phases of the algorithm.
All times are in seconds. In this particular example, it tpaktnmesh 23.370 seconds to partition the mesh into
100 parts. Note that this time includes the time required both to construct the nodal graph and to partition it. Similarly,
it took partdmesh 74.560 seconds to partition the same mesh. Again, this time includes the time required both to
construct the dual graph and to partition it. As you can see from this exapmtamesh is considerably faster
thanpartdmesh . This is because of two reasons: (i) the time required to construct the nodal graph is smaller than
the time required to construct the dual graph; (ii) the nodal graph is smaller than the dual graph.

2The edgecut that is reported pgrtnmesh is that of the nodal graph, whereas the edgecut report@aittgimesh is that of the dual graph.
These two edgecuts cannot be compared with each other, as they correspond to partitionings of two totally different graphs.

10

Note If you need to compute multiple partitionings of the same mesh, it may be preferable to first use one of
the mesh conversion programs described in Section 4.4 to first convert the mesh into a graph, and then use
kmetis to partition it. By doing this, you pay the cost of converting the mesh into a graph only once.

prompt% partnmesh 144.mesh 100 \
METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Partitioning Nodal Graph...
100-way Edge-Cut: 105207, Balance: 1.03

Timing Information
1/0: 13.210
Partitioning: 7.950

prompt% partdmesh 144.mesh 100

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Partitioning Dual Graph...
100-way Edge-Cut: 52474, Balance: 1.03

Timing Information
I/O: 11.540
Partitioning: 28.220

/

Figure 5: Output of partnmesh and partdmesh for mesh 144.mesh and a 100-way partition.

4.3 Sparse Matrix Reordering Programs

METIS provides two programeemetis andonmetis for computing fill-reducing orderings of sparse matrices.

Both of these programs use multilevel nested dissection to compute a fill-reducing ordering [8]. The nested dissection
paradigm is based on computing a vertex-separator for the the graph corresponding to the matrix. The nodes in the
separator are moved to the end of the matrix, and a similar process is applied recursively for each one of the other two
parts.

Even though both programs are based on multilevel nested dissection, they differ on how they compute the vertex
separators. Theemetis program finds a vertex separator by first computing an edge separator using a multilevel
algorithm, whereas thenmetis program uses the multilevel paradigm to directly find a vertex separator. The or-
derings produced bgnmetis generally incur less fill than those produceddgmetis . In particular, for matrices
arising in linear programming problems the orderings computeshipyetis are significantly better than those pro-
duced byoemetis . Furthermorepnmetis utilizes compression techniques to reduce the size of the graph prior to
computing the ordering. Sparse matrices arising in many application domains are such that certain rows of the matrix
have the same sparsity pattern. Such matrices can be represented by a much smaller graph in which all rows with
identical sparsity pattern are represented by just a single vertex whose weight is equal to the number of rows. Such
compression techniques can significantly reduce the size of the graph, whenever applicable, and substantially reduce
the amount of time required bynmetis . However, when there is no reduction in graph sizemetis is about
20% to 30% faster thaonmetis . Furthermore, for large matrices arising in three-dimensional problems, the quality

11

prompt% oemetis bcsstk31.graph \

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information
Name: bcsstk31.graph, #Vertices: 35588, #Edges: 572914

Edge-Based Ordering...
Nonzeros: 4693428, Operation Count: 1.4356e+09

Timing Information

I/O: 1.160

Ordering: 7.380 (OEMETIS time)
Symbolic Factorization: 0.440

Total: 8.980

prompt% onmetis bcsstk31.graph

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information
Name: bcsstk31.graph, #Vertices: 35588, #Edges: 572914

Node-Based Ordering...
Nonzeros: 4330669, Operation Count: 1.1564e+09

Timing Information

1/0: 1.080

Ordering: 4.540 (ONMETIS time)
Symbolic Factorization: 0.440

Total: 6.060

/

Figure 6: Output of oemetis and onmetis for graph besstk31.graph.

of orderings produced by the two algorithms is quite similar.
Bothoemetis andonmetis are invoked by providing one argument at the command line as follows:

oemetis GraphFile
onmetis GraphFile

The only argument of these prograf@saphFile is the name of the file that stores the sparse matrix in the graph
format described in Section 4.5.1. Upon successful execution, both programs display statistics regarding the quality
of the computed orderings and the amount of time taken to perform the ordering. The actual ordering is stored in a file
namedGraphFile.iperm whose format is described in Section 4.6.2.

Figure 6 shows the output oemetis andonmetis for computing a fill-reducing ordering of a sample matrix.

From this figure we see that both programs initially print information about the graph, such as its name, the number
of vertices #Vertice3, and the number of edgegEdge3. Next, they print some information regarding the quality of

the ordering. Specifically, they report the number of non-zeros that are required in the lower triangular matrix, and the
number of operationsJPC) required to factor the matrix using Cholesky factorization. Note that number of nonzeros
includes both the original non-zeros and the new non-zeros due to the fill. Finallypbothtis andonmetis

show the time that was taken by the various phases of the algorithm. All times are in seconds. For this particular
example,oemetis takes a total of 23.290 seconds, of which 17.760 seconds was taken by the ordering algorithm
itself. For the same examptenmetis takes a total of 17.340 seconds, of which 11.810 seconds was taken by the
partitioning algorithm itself. Note that in this casametis is faster tharoemetis , becaus®nmetis was able

to compress the matrix. Also note that the quality of the fill-reducing ordering producedbgtis is significantly

better than that produced memetis . In fact, the ordering produced lmnmetis results in 8% fewer non-zeros

12

and 20% fewer operations.

4.4 Auxiliary Programs
4.4.1 Mesh To Graph Conversion

prompt% mesh2nodal 144.mesh \

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Forming Nodal Graph...
Nodal Information: #Vertices: 144649, #Edges: 1074393

Timing Information
I/O: 15.290
Nodal Creation: 3.030

prompt% mesh2dual 144.mesh

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Forming Dual Graph...
Dual Information: #Vertices: 905410, #Edges: 1786484

Timing Information
1/O: 19.200
Dual Creation: 10.880

/

Figure 7: Output of mesh2nodal and mesh2dual for mesh 144.mesh.

METS provides two programsiesh2nodal andmesh2dual for converting a mesh into the graph format used
by METS. In particularmesh2nodal converts the element node array of a mesh into a nodal gragleach node
of the mesh corresponds to a vertex in the graph and two vertices are connected by an edge if the corresponding
nodes are connected by lines in the mesh. Similanlsh2dual converts the element node array of a mesh into
a dual graphj.e., each element of the mesh corresponds to a vertex in the graph and two vertices are connected if
the corresponding elements in the mesh share a face. These mesh-to-graph conversion programs support meshes with
triangular, tetrahedra, and hexahedra (bricks) elements.

Bothmesh2nodal andmesh2dual are invoked by providing one argument at the command line as follows:

mesh2nodal MeshFile
mesh2dual MeshFile

The only argument of these programeshFile is the name of the file that stores the mesh (whose format is
described in Section 4.5.2). Upon successful execution, both programs display information about the generated graphs,
and the amount of time taken to perform the conversion. The actual graph is stored in a file NaskeFile.ngraph
in the case ofnesh2nodal andMeshFile.dgraphin the case ofmesh2dual . The format of these graph files are
compatible withMETIS and is described in Section 4.5.1.

Figure 7 shows the output afesh2nodal andmesh2dual for generating the nodal and dual graphs of a sample
mesh. Note that the sizes of the generated graphs are different, as the dual graph is larger than the nodal graph. Also
note that generating the nodal graph is considerably faster than generating the dual graph.

13

4.4.2 Graph Checker

METS provide a program callegraphchk to check whether or not the format of a graph is appropriate for use with
METS. This program should be used whenever there is any doubt about the format of any graph file. It is invoked by

providing one argument at the command line as follows:

graphchk GraphFile

whereGraphFileis the name of the file that stores the graph.

14

4.5 Input File Formats

The various programs iMETS require as input either a file storing a graph or a file storing a mesh. The format of
these files are described in the following sections.

45.1 Graph File

The primary input of the partitioning and fill-reducing ordering programblifiS is the graph to be partitioned or
ordered. This graph is stored in a file and is supplied to the various programs as one of the command line parameters.
A graphG = (V, E) with n vertices andn edges is stored in a plain text file that contain$ 1 lines (excluding
comment lines). The first line contains information about the size and the type of the graph, while the remaining
lines contain information for each vertex@f Any line that starts with ‘%’ is a comment line and is skipped.
The first line contains either twa{ m), three , m, fmt), or four (n, m, fmt, ncon integers. The first two integers
(n, m) are the number of vertices and the number of edges, respectively. Note that in determining the number of edges
m, an edge between any pair of vertiaeandu is countedonly onceand not twice i¢e., we do not count the edge
(v, u) separately fronfu, v)). For example, the graph in Figure 8 contains 11 vertices. The third integiig used
to specify whether or not the graph has weights associated with its vertices, its edges, or both. Table 2 describes the
possible values dimt and their meaning. Note that if the graph is unweighies, (all vertices and edges have the
same weight), then thient parameter can be omitted. Finally, the fourth integmof) is used to specify the number
of weights associated with each vertex of the graph. The value of this parameter determines whethdens natl
use the multi-constraint partitioning algorithms described in Section 3. If the vertices of the graph have no weights or
only a single weight, then theconparameter can be omitted. Howevemdonis greater than 0, then the file should
contain the required vertex weights and fimtparameter should be set appropriatély. (it should be set to either 10
or11).

fmt | Meaning
0 | The graph has no weights associated with either the edges or the vertices
1 | The graph has weights associated with the edges

10 | The graph has weights associated with the vertices

11 | The graph has weights associated with both the edges & vertices

Table 2: The various possible values for the fmt parameter and their meaning.

The remaining lines store information about the actual structure of the graph. In particulathttiee (excluding
comment lines) contains information that is relevant toithevertex. Depending on the value of tirat andncon
parameters, the information stored at each line is somewhat different. In the most general forninftvherl and
ncon> 1) each line will have the following structure:

wi, w2, ... wnCOn’ V1, e17 v2, eZ’ c ooy Uk, eK
wherews, wo, ..., wncon are thenconvertex weights associated with this vertex, vo, . . ., vk are the vertices adja-
cent to this vertex, aney, e, . . ., & are the weights of these edges. In the remaining of this section we illustrate this

format by a sequence of examples. Note that the vertices are numbered starting from 1 (not from 0 as is often done in
C). Furthermore, the vertex-weights must be integers greater or equal to 0, whereas the edge-weights must be strictly
greater than 0.

The simplest format for a grapB is when the weight of all vertices and the weight of all the edges is the same.
This format is illustrated in Figure 8(a). Note, the optiofmai parameter is skipped in this case.

However, there are cases in which the edge&ihave different weights. This is accommodated as shown in
Figure 8(b). Now, the adjacency list of each vertex contains the weight of the edges in addition to the vertices that is
connected with. 1 hask vertices adjacent to it, then the line foin the graph file contains:2k numbers, each pair
of numbers stores the vertex thats connected to, and the weight of the edge. Note thafrttt@arameter is equal

15

Graph File: Graph File:

711 7111

532 513221

134 113241

5421 53422212
2367 21326275

136 113362

547 524276

64 6645

(@) Unweighted Graph (b) Weighted Graph

Weights on edges

Graph File:

Graph File:

71111
4513221 1;%?;2
2113241 022134
553422212
321326275 4115421
1113362 2232367
6524276 ;;1éi$
26645 12164

(c) Weighted Graph
Weights both on vertices and edges (d) Multi-Constraint Graph

Figure 8: Storage format for various type of graphs.

to 1, indicating the fact thab has weights on the edges.

In addition to having weights on the edges, weights on the vertices are also allowed, as illustrated in Figure 8(c). In
this case, the value dimtis equal to 11, and each line of the graph file first stores the weight of the vertex, and then
the weighted adjacency list.

Finally, Figure 8(d) illustrates the format of the input file when the vertices of the graph contain multiple weights
(3 in this example). In this case, the valuefioit is equal to 10 (we do not have weights associated with the edges),
and the value ohconis equal to 3 (since we have three sets of vertex-weights). Each line of the graph file stores the
three weights of the vertices followed by the adjacency list.

4.5.2 Mesh File

The primary input of the mesh partitioning programsMdIiS is the mesh to be partitioned. This mesh is stored in
a file in the form of the element node array. A mesh witalements is stored in a plain text file that contains 1

16

lines. The first line contains information about the size and the type of the mesh, while the remdinagcontain
the nodes that make up each element.
The first line contains two integers. The first integer is the number of elementthe mesh. The second integer
etypeis used to denote the type of elements that the mesh is madetgfiecan either take the values of 1, 2, 3, or 4,
indicating that the mesh consists of either triangles, tetrahedra, hexahedra (bricks), or quadrilaterals, respectively.
After the first line, the remaining lines store the element node array. In particular for elemdintei + 1 stores
the nodes that this element is made off. Dependingtgpe each line can either have three integers (in the case of
triangles), four integers (in the case of tetrahedra and quadrilaterals), or eight integers (in the case of hexahedra). In
the case of triangles and tetrahedra, the ordering of the nodes for each element does not matter. However, in the case
of hexahedra and quadrilaterals, the nodes for each element should be ordered according to the numbering illustrated
in Figure 9(b). Note that the node numbering starts from 1.
Figure 9 illustrates this format for a small mesh with triangular elements. Note thetyibefield of the mesh file
is set to 1 indicating that the mesh consists of triangular elements.

%

Mesh File:

51
12
2 4 :
26 (b) Ordering of nodes
45
56

Wowo w

(a) Sample Mesh File

Figure 9: (a) The file that stores the mesh. (b) The ordering of the nodes in the case of hexahedra and quadrilaterals.

4.6 Output File Formats

The output ofMETIS is either a partition or an ordering file, depending on whetiglS is used for graph/mesh
partitioning or for sparse matrix ordering. The format of these files are described in the following sections.

4.6.1 Partition File

The partition file of a graph witm vertices consists afi lines with a single number per line. Thh line of the

file contains the partition number that thi vertex belongs to. Partition numbers start from 0 up to the number of
partitions minus one.

4.6.2 Ordering File

The ordering file of a graph with vertices consists aofi lines with a single number per line. Th#h line of the

ordering file contains the new order of tith vertex of the graph. The numbering in the ordering file starts from 0.
Note that the ordering file stores what is referred to as the the inverse permutatioripectorf the ordering. Let

A be a matrix and lef’ be the reordered matrix. The inverse permutation vector map#thew (column) ofA into

theipernti] row (column) ofA'.

17

5 MEIS’s Library Interface

The various programs providedMEIS can also be directly accessed from a C or Fortran program by using the stand-
alone libraryMeTiSlib. FurthermoreMETiSlib extends the functionality provided BYETS’s stand-alone programs
in two different ways. First, it allows the user to alter the behavior of the various algorithivgli§, and second
MEeTiSlib provides additional routines that can be used to partition graphs into unequal-size partitions and compute
partitionings that directly minimize the total communication volume.

In the rest of this section we describe the interface to the routin®&Enslib by first describing the various data
structures used to pass information into and get information out of the routines, followed by a detailed description of
the calling sequence of the various routines.

5.1 Graph Data Structure

All of the graph partitioning and sparse matrix ordering routinesliiiSlib take as input the adjacency structure of
the graph and the weights of the vertices and edges (if any).

The adjacency structure of the graph is stored using the compressed storage format (CSR). The CSR format is a
widely used scheme for storing sparse graphs. In this format the adjacency structure of a graphestittes and
m edges is represented using two arragdj andadjncy . Thexadj array is of sizen + 1 whereas thadjncy
array is of size & (this is because for each edge between verticasdu we actually store botlw, u) and(u, v)).

The adjacency structure of the graph is stored as follows. Assuming that vertex numbering starts from 0 (C style),
then the adjacency list of vertéxis stored in arrayadjncy starting at indexxadj[i] and ending at (but not
including) indexxadj[i+ 1] (i.e., adjncy[xadj[i]] through and includingdjncy[xadj[i +1]-1]). That
is, for each vertex, its adjacency list is stored in consecutive locations in the aadjycy , and the arraxadj is
used to point to where it begins and where it ends. Figure 10(b) illustrates the CSR format for the 15-vertex graph
shown in Figure 10(a).

7

10011 12 13 1.

(a) A sample graph

xadj 025811131620 24 28 31 33 36 39 42 44
adjncy 150261372483906101571126812379134814511610127 111381214913

(b CSR format
Figure 10: An example of the CSR format for storing sparse graphs.

The weights of the vertices (if any) are stored in an additional array cagtl . If nconis the number of weights
associated with each vertex, the arvaygt containsn x nconelements (recall that is the number of vertices). The
weights of the th vertex are stored inconconsecutive entries starting at locatingt[i * ncon] . Note that if
each vertex has only a single weight, themgt will contain n elements, angwgt[i] will store the weight of the
i th vertex. The vertex-weights must be integers greater or equal to zero. If all the vertices of the graph have the same
weight (.e., the graph is unweighted), then thegt can be setto NULL.

The weights of the edges (if any) are stored in an additional array caljgdjt . This array containst elements,
and the weight of edgadjncy[j] is stored at locatiomdjwgt] j]. The edge-weights must be integers greater
than zero. If all the edges of the graph have the same waightthie graph is unweighted), then thdjwgt can be
set to NULL.

All of these four arraysxadj, adjncy, vwgt andadjwg? are defined inVIEIiSIib to be of of typeidxtype . By
defaultidxtype is set to be equivalent to typet (i.e., the integer datatype of C). Howevétxtype can be

18

made to be equivalent toshort int for certain architectures that use 64-bit integers by default. The conversion of
idxtype fromint toshort can be done by modifying the filab/struct.h (instructions are included there).
The samédxtype is used for the arrays that are used to store the computed partition and permutation vector.

5.2 Mesh Data Structure

All of the mesh partitioning and mesh conversion routineSliiSlib take as input the element node array of a mesh.
This element node array is stored using an array celledts . For a mesh witlm elements an#é nodes per element,
the size of theelmnts array isn x k. Note that since the supported elementMiIS are only triangles, tetrahedra,
hexahedra, and quadrilaterals, the possible valudsdoe 3, 4, 8, and 4, respectively.

The element node array of the mesh is storeelinnts as follows. Assuming that the element numbering starts
from O (C style), then thi nodes that make up elemerdre stored in arraglmnts starting at index « k and ending
(but not including) indexi + 1) x k. As it was the case with the format of the mesh file described in Section 4.5.2,
the ordering of the nodes is not important for triangle and tetrahedra elements. However, in the case of hexahedra, the
nodes for each element must be ordered according to the numbering illustrated in Figure 9(b).

The array that describes the element node array of the mesh is defiMgtiSiib to be of typeidxtype , which
by default is equivalenttmt (i.e., integers).

5.3 Partitioning Objectives

The partitioning algorithms iMETiSlib can be used to compute a balan&eday partitioning that minimizes either
the number of edges that straddle partitioedgecut or the total communication voluméogalv). In the rest of this
section we briefly describe these two objectives and provide some suggestions on when they should be used.

Minimizing the Edge-Cut Consider a grap = (V, E), and letP be a vector of siz¢V | such thatP[i] stores
the number of the partition that vertedelongs to. Thedgecubf this partitioning is defined as the number of edges
that straddle partitions. Thatis, the number of edges) for which P[v] # P[u]. If the graph has weights associated
with the edges, then the edgecut is defined as the sum of the weight of these straddling edges.

Minimizing the Total Communication Volume Consider a graps = (V, E), and letP be a vector of size

|V | such thatP[i] stores the number of the partition that veritdoelongs to. LeV, C V be the subset of interface (or
boarder) vertices. That is, each vertex Vj is connected to at least one vertex that belongs to a different partition.
For each vertex € V, let Nadj[v] be the number of domains other thBfw] that the vertices adjacent tobelong

to. Thetotalv of this partitioning is defined as:

totalv= Y ~ Nadj[v]. 1)

veVp

Equation 1 corresponds to the total communication volume incurred by the partitioning because each interface vertex
v needs to be sent to all of itdadj [v] partitions.

The above model can be extended to instances in which the amount of data that needs to be sent for each node is
different. In particular, ifw, is the amount of data that needs to be sent for vartétxen Equation 1 can be re-written
as:

totalv = Z w, Nadj [v]. 2)
veVp

METISlib supports this weighted totalv model by using an array calleze such that the amount of data that needs
to be sent due to thigh vertex is stored insize[i] . Note that the amount of data that needs to be sent is different
from theweightof the vertex. The former corresponds to communication cost whereas the later corresponds to the
computational cost.

Note that for partitioning algorithms to correctly minimize the totalv, the graph should reflect the true information
exchange requirements of the underlying computations. For instance, the dual graph of a finite element mesh does not

19

correctly model the underlying communication, whereas the nodal graph does.

Which one is Better? When partitioning is used to distribute a graph or a mesh among the processors of a parallel
computer, the edgecut is only an approximation of the true communication cost resulting from the partitioning. On
the other hand, by minimizing the totalv we can directly minimize the overall communication cost. Despite of that,
for many graphs the solutions obtained by minimizing the edgecut or minimizing the totalv, are comparable. This
is especially true for graphs corresponding to well-shaped finite element meshes. This is because for these graphs,
the degrees of the various vertices are similar and the objectives of minimizing the edgecut or the totalv behave the
same. On the other hand, if the vertex degrees vary significaatly graphs corresponding to linear programming
matrices), then by minimizing the totalv we can obtain a significant reduction in the total communication volume.

In terms of the amount of time required by these two partitioning objectives, minimizing the edgecut is faster than

minimizing the totalv. For this reason, the totalv objective should be used only for problems in which it actually
reduces the overall communication volume.

20

5.4 Graph Partitioning Routines

METIS_PartGraphRecursive (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,

Description

int *numflag, int *nparts, int *options, int *edgecut, idxtype *part)

It is used to partition a graph infoequal-size parts using multilevel recursive bisection. It provides the func-
tionality of thepmetis program. The objective of the partitioning is to minimize the edgecut (as described in
Section 5.3).

Parameters
n

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wagtflag

numflag

nparts
options

edgecut
part

Note

Information about the weights of the vertices and edges as described in Section 5.1.
Used to indicate if the graph is weighteggtflagcan take the following values:
0 No weights (vwgts and adjwgt are NULL)
1 Weights on the edges only (vwgts = NULL)
2 Weights on the vertices only (adjwgt = NULL)
3 Weights both on vertices and edges.
Used to indicate which numbering scheme is used for the adjacency structure of thengnafilag
can take the following two values:
0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1
The number of parts to partition the graph.
This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used.dptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Region Growing (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to 0 (Default).
Upon successful completion, this variable stores the number of edges that are cut by the partition.

This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

This function should be used to partition a graph into a small number of partitions (less than 8). If a large number
of partitions is desired, thRIETIS_PartGraphKway should be used instead, as it is significantly faster.

21

METIS_PartGraphKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,

int *numflag, int *nparts, int *options, int *edgecut, idxtype *part)

Description

It is used to partition a graph intk equal-size parts using the multiledelway partitioning algorithm. It
provides the functionality of themetis program. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters

Note

n The number of vertices in the graph.
xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt
Information about the weights of the vertices and edges as described in Section 5.1.
wgtflag Used to indicate if the graph is weightesigtflagcan take the following values:
0 No weights (vwgts and adjwgt are NULL)
1 Weights on the edges only (vwgts = NULL)
2 Weights on the vertices only (adjwgt = NULL)
3 Weights both on vertices and edges.
numflag Used to indicate which numbering scheme is used for the adjacency structure of thengrafihg
can take the following two values:
0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1
nparts The number of parts to partition the graph.
options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Random boundary refinement
2 Greedy boundary refinement
3 Random boundary refinement that also minimizes the connectivity among the sub-
domains (Default)
options[4] Used for debugging purposes. Always set it to 0 (Default).
edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.
part This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

This function should be used to partition a graph into a large number of partitions (greater than 8). If a small
number of partitions is desired, tMETIS_PartGraphRecursive should be used instead, as it produces some-
what better partitions.

22

METIS_PartGraphVKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *vsize, int *wgtflag,

Description

int *numflag, int *nparts, int *options, int *volume, idxtype *part)

It is used to partition a graph into equal-size parts using the multiledelvay partitioning algorithm. The
objective of the partitioning is to minimize the total communication volume (as described in Section 5.3).

Parameters
n The number of vertices in the graph.
xadj, adjncy
The adjacency structure of the graph as described in Sections 5.1 and 5.3.
vwgt, vsize
Information about the weights of the vertices related to the computation and communication as de-
scribed in Section 5.1.
wgtflag Used to indicate if the graph is weightesigtflagcan take the following values:
0 No weights (vwgts and vsize are NULL)
1 Communication weights only (vwgts = NULL)
2 Computation weights only (vsize = NULL)
3 Both communication and computation weights.
numflag Used to indicate which numbering scheme is used for the adjacency structure of thengrafihg
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
nparts The number of parts to partition the graph.
options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used.dptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Random boundary refinement (Default)
3 Random boundary refinement that also minimizes the connectivity among the sub-
domains
options[4] Used for debugging purposes. Always set it to 0 (Default).
volume Upon successful completion, this variable stores the total communication volume requires by the
partition.
part This is a vector of siza that upon successful completion stores the partition vector of the graph. The

numbering of this vector starts from either 0 or 1, depending on the valneroflag

23

METIS_mCPartGraphRecursive (int *n, int *ncon, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,

Description

int *wgtflag, int *numflag, int *nparts, int *options, int *edgecut, idxtype *part)

It is used to partition a graph intoparts such that multiple balancing constraints are satisfied. It uses the multi-
constraint multilevel recursive bisection algorithm. It provides the functionality opthetis program when

it is used to compute a multi-constraint partitioning. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters
n The number of vertices in the graph.
ncon The number of constraints. This should be greater than one and smaller than 15.
xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt
Information about the weights of the vertices and edges as described in Section 5.1. Note that the
weight vector must be supplied and it should be of sizecon.
wgtflag Used to indicate if the graph is weightesigtflagcan take the following values:
0 No weights (adjwgt is NULL)
1 Weights on the edges.
numflag Used to indicate which numbering scheme is used for the adjacency structure of thengrafihg
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
nparts The number of parts to partition the graph.
options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.

If options[0]=0then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

Random Matching (RM)

Heavy-Edge Matching (HEM)

Sorted Heavy-Edge Matching (SHEM) (Default)

Sorted Heavy-Edge Matching followed by 1-norm Balanced-edge (SHEBM1N)
Sorted Heavy-Edge Matching followed byg-norm Balanced-edge (SHEBMIN)
(Default)

7 1-norm Balanced-edge followed by Heavy-Edge Matching (SBHEM1N)

8 oo-norm Balanced-edge followed by Heavy-Edge Matching (SBHEMIN)
Experiments has shown that for simple balancing problems, the schemes that give pri-
ority to heavy edges(g, SHEM, SHEBM1N, SHEBMIN) perform better, and for hard
balancing problems, the schemes that give priority to balanced eelge SBHEM1N,
SBHEMIN) perform better.

options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Multi-constraint Greedy Graph Growing
2 Random (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

D 01T W N -

24

1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to 0 (Default).
edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.
part This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

Note
This function should be used to partition a graph into a small number of partitions. If a large number of partitions

is desired, theVETIS_mCPartGraphKway should be used instead, as it produces somewhat better partitions
(both in terms of quality and balance).

25

METIS_mCPartGraphKway (int *n, int *ncon, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,
int *wgtflag, int *numflag, int *nparts, float *ubvec, int *options, int *edgecut,
idxtype *part)

Description
It is used to partition a graph intoparts such that multiple balancing constraints are satisfied. It uses the multi-
constraint multilevek-way partitioning algorithm. It provides the functionality of thmetis program when
it is used to compute a multi-constraint partitioning. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters

n The number of vertices in the graph.

ncon The number of constraints. This should be greater than one and smaller than 15.

xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt
Information about the weights of the vertices and edges as described in Section 5.1. Note that the
weight vector must be supplied and it should be of sizecon.

wgtflag Used to indicate if the graph is weightesigtflagcan take the following values:
0 No weights (adjwgt is NULL)
1 Weights on the edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of thengraifihg
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

ubvec This is a vector of siz&icon that specifies the load imbalance tolerances for each one ofctre
constraints. Each tolerance should be greater than 1.0 (preferably greater than 1.03).

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:

Random Matching (RM)

Heavy-Edge Matching (HEM)

Sorted Heavy-Edge Matching (SHEM) (Default)

Sorted Heavy-Edge Matching followed by 1-norm Balanced-edge (SHEBM1N)

Sorted Heavy-Edge Matching followed byg-norm Balanced-edge (SHEBMIN)

(Default)

7 1-norm Balanced-edge followed by Heavy-Edge Matching (SBHEM1N)

8 oo-norm Balanced-edge followed by Heavy-Edge Matching (SBHEMIN)

Experiments has shown that for simple balancing problems, the schemes that give pri-
ority to heavy edges(g, SHEM, SHEBM1N, SHEBMIN) perform better, and for hard
balancing problems, the schemes that give priority to balanced eelge SBHEM1N,
SBHEMIN) perform better.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

D 01T W N

26

1 Multilevel recursive bisection
2 Relaxed Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Random boundary refinement (Default)
options[4] Used for debugging purposes. Always set it to 0 (Default).
edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

part This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

Note
This function should be used to partition a graph into a large number of partitions (greater than 8). If a small
number of partitions is desired, tiMETIS_mCPartGraphRecursive should be used instead, as it produces
somewhat better partitions.

27

METIS_WPartGraphRecursive (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,

Description

int *numflag, int *nparts, float *tpwgts, int *options, int *edgecut, idxtype *part)

It is used to partition a graph intio parts using multilevel recursive bisection. The underlying algorithm is
similar to the one used bYIETIS_PartGraphRecursive, but it can be used to compute a partitioning with
prescribed partition weights. For example, it can be used to compute a 3-way partition such that partition 1 has
50% of the weight, partition 2 has 20% of the weight, and partition 3 has 30% of the weight. The objective of
the partitioning is to minimize the edgecut (as described in Section 5.3).

Parameters
n

The number of vertices in the graph.

xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt

wgtflag

numflag

nparts
tpwgts

options

edgecut

Information about the weights of the vertices and edges as described in Section 5.1.
Used to indicate if the graph is weighteggtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

Used to indicate which numbering scheme is used for the adjacency structure of thengnaflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the graph.

This is an array containingpartsfloating point numbers. For partitiontpwgtsj] stores the fraction

of the total weight that should be assigned to it. For example, for a 4-way partition the tpeetibs[]
={0.20.2 0.4 0.2will result in partitions 0, 1, and 3 having 20% of the weight and partition 2 having
40% of the weight. Note that the numbergpnvgtsshould add up to 1.0.

This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Region Growing (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to 0 (Default).

Upon successful completion, this variable stores the number of edges that are cut by the partition.

28

part This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

Note
This function should be used to partition a graph into a small number of partitions (less than 8). If a large number
of partitions is desired, thRIETIS_WPartGraphKway should be used instead, as it is significantly faster.

29

METIS_WPartGraphKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,

Description

int *numflag, int *nparts, float *tpwgts, int *options, int *edgecut, idxtype *part)

It is used to partition a graph intio parts using multilevel recursive bisection. The underlying algorithm is
similar to the one used WMETIS_PartGraphKway, but it can be used to compute a partitioning with prescribed
partition weights. For example, it can be used to compute a 3-way partition such that partition 1 has 50% of
the weight, partition 2 has 20% of the weight, and partition 3 has 30% of the weight. The objective of the
partitioning is to minimize the edgecut (as described in Section 5.3).

Parameters

n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt
Information about the weights of the vertices and edges as described in Section 5.1.

wgtflag Used to indicate if the graph is weightesigtflagcan take the following values:
0 No weights (vwgts and adjwgt are NULL)
1 Weights on the edges only (vwgts = NULL)
2 Weights on the vertices only (adjwgt = NULL)
3 Weights both on vertices and edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of thengrafihg
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

tpwgts Thisis an array containingpartsfloating point numbers. For partitiontpwgtsj] stores the fraction
of the total weight that should be assigned to it. For example, for a 4-way partition the tpeotts|]
={0.20.2 0.4 0.2will resultin partitions 0, 1, and 3 having 20% of the weight and partition 2 having
40% of the weight. Note that the numbergpnvgtsshould add up to 1.0.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.

If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Random boundary refinement
2 Greedy boundary refinement

3 Random boundary refinement that also minimizes the connectivity among the sub-
domains (Default)

30

options[4] Used for debugging purposes. Always set it to 0 (Default).
edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.
part This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

Note
This function should be used to partition a graph into a large number of partitions (greater than 8). If a small
number of partitions is desired, tETIS_WPartGraphRecursive should be used instead, as it produces
somewhat better partitions.

31

METIS_WPartGraphVKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *vsize, int *wgtflag,

Description

int *numflag, int *nparts, float *tpwgts, int *options, int *volume, idxtype *part)

It is used to partition a graph intio parts using multilevel recursive bisection. The underlying algorithm is
similar to the one used WMETIS_PartGraphKway, but it can be used to compute a partitioning with prescribed
partition weights. For example, it can be used to compute a 3-way partition such that partition 1 has 50% of
the weight, partition 2 has 20% of the weight, and partition 3 has 30% of the weight. The objective of the
partitioning is to minimize the total communication volume (as described in Section 5.3).

Parameters

n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Sections 5.1 and 5.3.

vwgt, vsize
Information about the weights of the vertices related to the computation and communication as de-
scribed in Section 5.1.

wgtflag Used to indicate if the graph is weightesigtflagcan take the following values:
0 No weights (vwgts and vsize are NULL)
1 Communication weights only (vwgts = NULL)
2 Computation weights only (vsize = NULL)
3 Both communication and computation weights.

numflag Used to indicate which numbering scheme is used for the adjacency structure of thengraifibg
can take the following two values:
0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

tpwgts Thisis an array containingpartsfloating point numbers. For partitiontpwgtsj] stores the fraction
of the total weight that should be assigned to it. For example, for a 4-way partition the tgeetts|]
={0.20.2 0.4 0.2will result in partitions 0, 1, and 3 having 20% of the weight and partition 2 having
40% of the weight. Note that the numbergprvgtsshould add up to 1.0.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.

If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Multilevel recursive bisection (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Random boundary refinement (Default)

3 Random boundary refinement that also minimizes the connectivity among the sub-
domains

32

options[4] Used for debugging purposes. Always set it to 0 (Default).

volume Upon successful completion, this variable stores the total communication volume required by the
partition.

part This is a vector of siza that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the valneroflag

33

5.5 Mesh Partitioning Routines

METIS_PartMeshNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int *nparts, int *edgecut,
idxtype *epart, idxtype *npart)

Description
This function is used to partition a mesh ilkequal-size parts. It provides the functionality of re@tnmesh
program.
Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.
etype Indicates the type of the elements in the mestiipecan take the following values:

1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.
numflag Used to indicate which numbering scheme is used for the element noderaunaffagcan take the
following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the mesh.

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition in
the nodal graph.

epart This is a vector of sizaethat upon successful completion stores the partition vector for the elements
of the mesh. The numbering of this vector starts from either 0 or 1, depending on the value of
numflag

npart This is a vector of sizanthat upon successful completion stores the partition vector for the nodes of
the mesh. The numbering of this vector starts from either 0 or 1, depending on the valuaftdg

Note
This function converts the mesh into a nodal graph and thenME&3$S_PartGraphKway to compute a parti-
tioning of the nodes. This partitioning of nodes is then used to compute a partitioning for the elements. This is
done by assigning each element to the partition in which the majority of its nodes belong to (subject to balance
constraints).

34

METIS_PartMeshDual (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int *nparts, int *edgecut,

Description
This function is used to partition a mesh ilkequal-size parts. It provides the functionality of re@tdmesh

program.

Parameters

Note

ne
nn

elmnts

etype

numflag

nparts

edgecut

epart

npart

idxtype *epart, idxtype *npart)

The number of elements in the mesh.

The number of nodes in the mesh.

The element node array storing the mesh as described in Section 5.2.
Indicates the type of the elements in the mestiipecan take the following values:

1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

Used to indicate which numbering scheme is used for the element noderarraffagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

The number of parts to partition the mesh.

Upon successful completion, this variable stores the number of edges that are cut by the partition in
the dual graph.

This is a vector of sizaethat upon successful completion stores the partition vector for the elements
of the mesh. The numbering of this vector starts from either 0 or 1, depending on the value of
numflag

This is a vector of sizanthat upon successful completion stores the partition vector for the nodes of
the mesh. The numbering of this vector starts from either 0 or 1, depending on the valuaftdg

This function converts the mesh into a dual graph and thenMEG3S_PartGraphKway to compute a parti-
tioning of the elements. This partitioning of elements is then used to compute a partitioning for the nodes. This
is done by assigning each node to the partition in which the majority of its incident elements belong to (subject
to balance constraints).

35

5.6 Sparse Matrix Reordering Routines

METIS_EdgeND (int *n, idxtype *xadj, idxtype *adjncy, int *numflag, int *options, idxtype *perm, idxtype *iperm)

Description

This function computes fill reducing orderings of sparse matrices using the multilevel nested dissection algo-
rithm. It provides the functionality of theemetis program.

Parameters
n The number of vertices in the graph.
xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.
numflag Used to indicate which numbering scheme is used for the adjacency structure of thengrafihg
can take the following two values:
0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1
options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determined the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)
Experiments has shown that both HEM and SHEM perform quite well.
options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Region Growing (Default)
options[3] Determines the algorithm used for refinement. Possible values are:
1 Early-Exit Boundary FM refinement (Default)
options[4] Used for debugging purposes. Always set it to 0 (Default).
perm, iperm
These are vectors, each of sizeUpon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. L&tbe the original matrix and\’ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (columnpf A’ is the pernfi] row (column) of
A, and row (column) of A is the ipernii] row (column) of A’. The numbering of this vector starts
from either 0 or 1, depending on the valuennimflag
Note

This function computes the vertex separator from the edge separator using a minimum cover algorithm. This
function should be used only in ordering large graphs arising in 3D finite element applications. In general the
METIS_NodeND routine should be preferred, as it produces better orderings.

36

METIS_NodeND (int *n, idxtype *xadj, idxtype *adjncy, int *numflag, int *options, idxtype *perm, idxtype *iperm)

Description

This function computes fill reducing orderings of sparse matrices using the multilevel nested dissection algo-
rithm. It provides the functionality of thenmetis program.

Parameters
n The number of vertices in the graph.
xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.
numflag Used to indicate which numbering scheme is used for the adjacency structure of thengraifibg
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
options This is an array of 8 integers that is used to pass parameters for the various phases of the algorithm.

If options[0]=0then default values are used.alftions[0]=1, then the remaining seven elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments have shown that all three matching schemes perform quite well. In general
SHEM is faster and RM is slower, but feel free to experiment with the other matching
schemes.

options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Edge-based region growing (Default)
2 Node-based region growing
options[3] Determines the algorithm used for refinement. Possible values are:
1 Two-sided node FM refinement
2 One-sided node FM refinement (Default)

One-sided FM refinement is faster than two-sided, but in some cases two-sided refine-
ment may produce better orderings. Feel free to experiment with this option.

options[4] Used for debugging purposes. Always set it to O (Default).

options[5] Used to select whether or not to compress the graph and to order connected components
separately. The possible values and their meaning are as follows.

0 Do not try to compress the graph and do not order each connected component
separately.

1 Tryto compress the graph. (A compressed graph is actually formed if the size of
the graph can be reduced by at least 15%) (Default).

2 Order each connected component of the graph separately. This option is partic-
ularly useful when after a few levels of nested dissection, the graph breaks up in
many smaller disconnected subgraphs. This is true for certain types of LP matrices.

3 Tryto compress the graph and also order each connected component separately.

37

options[6] Used to control whether or not the ordering algorithm should remove any vertices with
high degreei(e., dense columns). This is particularly helpful for certain classes of LP
matrices, in which there a few vertices that are connected to many other vertices. By
removing these vertices prior to ordering, the quality and the amount of time required
to do the ordering improves. The possible values are as follows:
0 Do not remove any vertices (Default)
X Wherex > 0, instructs the algorithm to remove any vertices whose degree is
greater than @ x x * (average degree). For examplexif= 40, and the average
degree is 5, then the algorithm will remove all vertices with degree greater than 20.
The vertices that are removed are ordered iaest they are automatically placed in
the top-level separator). Good values are often in the range of 60 td.20® (o
20 times more than the average).
options[7] Used to determine how many separators to find at each step of nested dissection. The
larger the number of separators found at each step, the higher the runtime and better the
quality is (in general). The default value is 1, unless the graph has been compressed by
more than a factor of 2, in which case it becomes 2. Reasonable values are in the range
of 1to 5. For most problems, a value of 5 increases the runtime by a factor of 3.
perm, iperm
These are vectors, each of sizeUpon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. L&tbe the original matrix and\’ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (columnpf A’ is the pernfi] row (column) of
A, and row (column) of A is the ipernfi] row (column) of A’. The numbering of this vector starts
from either O or 1, depending on the valuennimflag

Note
This function computes the vertex separator directly by using a multilevel algorithm. This function produces

high quality orderings and should be preferred dM&TIS_EdgeND.

38

METIS_NodeWND (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, int *numflag, int *options,
idxtype *perm, idxtype *iperm)

Description
This function computes fill reducing orderings of sparse matrices using the multilevel nested dissection algo-
rithm. Itis similar toMETIS_NodeWND but it assumes that the compression has been already performed prior
to calling this routine. It is particularly suited for ordering very large matrices in which the compressed matrix
is known a priori.

Parameters
n The number of vertices in the graph.
xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.
vwgt The weight of the vertices.

numflag Used to indicate which numbering scheme is used for the adjacency structure of thengrafihg
can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used.ojptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:
options[1] Determines the matching type. Possible values are:
1 Random Matching (RM)
2 Heavy-Edge Matching (HEM)
3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments have shown that all three matching schemes perform quite well. In general
SHEM is faster and RM is slower, but feel free to experiment with the other matching
schemes.

options[2] Determines the algorithm used during initial partitioning. Possible values are:
1 Edge-based region growing (Default)
2 Node-based region growing
options[3] Determines the algorithm used for refinement. Possible values are:
1 Two-sided node FM refinement
2 One-sided node FM refinement (Default)
One-sided FM refinement is faster than two-sided, but in some cases two-sided refine-
ment may produce better orderings. Feel free to experiment with this option.
options[4] Used for debugging purposes. Always set it to O (Default).
perm, iperm
These are vectors, each of sizeUpon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. L&tbe the original matrix and\’ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (columindf A’ is the pernii] row (column) of
A, and row (column) of A is the ipernfi] row (column) of A’. The numbering of this vector starts
from either 0 or 1, depending on the valuennimflag

39

5.7 Auxiliary Routines

METIS_MeshToNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, idxtype *nxadj, idxtype *nadjncy)

Description
This function is used to convert a mesh into a nodal graph, in a format suitabefi8lib. It provides the
function of themesh2nodal program.

Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.
etype Indicates the type of the elements in the mestfipecan take the following values:
1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.
numflag Used to indicate which numbering scheme is used for the element noderarnaffagcan take the
following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
nxadj, nadjncy
These arrays store the adjacency structure of the nodal graph. The user must provide arrays that
are sufficiently large to store the graph. The size of amegdjis nn+1 where the size ofiadjncy
depends on the type of the mesh. For triangular-element and hexahedra-element nzefheg,

should be at least6nn, for quadrilateral-element meshasdjncyshould be at least#Ann, and for
tetrahedra-element meshaadjncyshould be at least 1bnn.

Note
The nodal graph is defined as the graph in which each vertex of the graph corresponds to a node in the mesh,
and two vertices are connected by an edge if the corresponding nodes a connected by an element.

40

METIS_MeshToDual (int*ne, int *nn, idxtype *elmnts, int *etype, int *numflag, idxtype *dxadj, idxtype *dadjncy)

Description
This function is used to convert a mesh into a dual graph, in a format suitabMg@lib. It provides the
function of themesh2nodal program.

Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.
etype Indicates the type of the elements in the mestiipecan take the following values:

1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.
numflag Used to indicate which numbering scheme is used for the element noderarnaffagcan take the
following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
dxadj, dadjncy
These arrays store the adjacency structure of the dual graph. The user must provide arrays that
are sufficiently large to store the graph. The size of adhesdjis ne+1 where the size ofladjncy
depends on the type of the mesh. For triangular-element meddmjacyshould be at least 8ne

for tetrahedra-element and quadrilateral-element meslagifncyshould be at least 4 ne, and for
hexahedra-element meshdadjncyshould be at least6ne

Note
The dual graph is defined as the graph in which each vertex of the graph corresponds to an element in the mesh,
and two vertices are connected by an edge if the corresponding elements share a face.

41

METIS_EstimateMemory (int *n, idxtype *xadj, int *adjncy, int *numflag, int *optype, int *nbytes)

Description
This function is used to estimate the amount of memory that will be us&Ebg. Even thoughMETIS dynam-
ically allocates the amount of memory that it needs, this function can be useful in determining if the amount of
memory in the system is sufficient fMeTS.

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

numflag Used to indicate which numbering scheme is used for the element noderarnaffagcan take the
following two values:

0 C-style numbering is assumed that starts from O
1 Fortran-style numbering is assumed that starts from 1
optype Indicates the operation for which the memory will be estimatgdypecan take the following values:
1 Estimatesthe memory neededfETIS_PartGraphRecursive andMETIS_WPartGraphRecursive.
2 Estimates the memory needed METIS_PartGraphKway andMETIS_WPartGraphKway.
3 Estimates the memory needed RETIS_EdgeND.
4

Estimates the memory needed FETIS_NodeND, but it does not take into account memory
saved due to compression.

nbytes Upon returnnbytesstores an estimate on the number of bytes &S requires.

42

5.8 C and Fortran Support

The various routines iMETiSlib can be called from either C or Fortran programs. Using C WItiiSlib is quite
straightforward (asvETiS is written entirely in C). HowevenMEISlib fully supports Fortran as well. This support
comes in three forms.

1. All the scalar arguments in the routines are passed by reference to facilitate Fortran programs.

2. All the routines take a parameter calleaimflagindicating whether or not the numbering of the graph or mesh
starts from 0 or 1. In C programs numbering usually starts from 0, whereas in Fortran programs numbering
starts from 1.

3. MEISlib incorporates alternative names for each of the routines to facilitate linking the library with Fortran pro-
grams. In particular, for every functidvieniSlib provides three additional names, one all capital, one all lower
case, and one all lower case withappended to it. For example, fMETIS_PartGraphKway, MEIiSIib pro-
videsMETIS_PARTGRAPHKWAY, metis_partgraphkway, andmetis_partgraphkway_. These extra names
allow the library to be directly linked into Fortran programs on a wide range of architectures including Cray,
SGl, and HP. If you still encounter problems linking with the library let us know so we can include appropriate
support.

43

6 System Requirements and Contact Information

The distribution ofMETIS contains a number of files, that total to over 22,000 lines of code. It is written entirely in
ANSI C, and is portable on most Unix systems that have an ANSI C compiler (the GNU C compiler will do). It has
been extensively tested on AlX, SunOS, Solaris, IRIX, Linux, HP-UX, BSD, and Unicos. Instructions on how to build
and installMeTS can be found in the fillNSTALL of the distribution.

Even thoughMETS contains no known bugs, it does not mean that all of its bugs have been found and fixed. If you
find any problems, please send emaihtetis@cs.umn.edwith a brief description of the problem you have found.
Also, any future updates tdETS will be made available on WWW dittp://www.cs.umn.edu/ "metis

References

[1] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning
unstructured problems. IAroceedings of the sixth SIAM conference on Parallel Processing for Scientific Compages
711-718, 1993.

[2] A. George and J. W.-H. LiuComputer Solution of Large Sparse Positive Definite Syst@metice-Hall, Englewood Cliffs,

NJ, 1981.

[3] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algorithms for sparse matrix factoriza-
tion. IEEE Transactions on Parallel and Distributed Syster@¢5):502-520, May 1997. Available on WWW at URL
http://www.cs.umn.edu/"karypis.

[4] Bruce Hendrickson and Robert Leland. The chaco user’s guide, version 1.0. Technical Report SAND93-2339, Sandia National
Laboratories, 1993.

[5] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report SAND93-1301,
Sandia National Laboratories, 1993.

[6] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. Technical Report TR 98-019,
Department of Computer Science, University of Minnesota, 1998.

[7] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular grapbsurnal of Parallel and Distributed
Computing 48(1):96—129, 1998. Also available on WWW at URL http://www.cs.umn.edu/ karypis.

[8] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular grahsM Journal on
Scientific Computingl998 (to appear). Also available on WWW at URL http://www.cs.umn.edu/"karypis. A short version
appears in Intl. Conf. on Parallel Processing 1995.

[9] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Application in visi
domain. InProceedings of the Design and Automation Confereh887.

[10] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypigoduction to Parallel Computing: Desigh and Analysis
of Algorithms Benjamin/Cummings Publishing Company, Redwood City, CA, 1994.

44

