
Table of Contents
1 INTRODUCTION...1
2 SUPPORTED PLATFORMS..2

2.1 Linux...2
2.2 FreeBSD...2

3 DEPENDANCIES...3
4 INSTALLATION...3
5 CONFIGURATION... ..3

5.1 BASIC CONFIGURATION...3
5.2 ROUTER DISCOVERY CONFIGURATION..7

5.2.1 ROUTER CONFIGURATION..7
5.2.2 HOST CONFIGURATION...8

6 RUNNING SENDD..9
7 DEBUGGING...9
8 CGATOOL..10

8.1 GENERATION...10
8.2 VERIFICATION...11
8.3 CGATOOL CONSOLE...11
8.4 DYNAMIC CGA PARAMETER ADMINISTRATION.....................................11

9 IPEXTTOOL...12
10 LIMITATIONS..15

1 INTRODUCTION
This is a user-space implementation of SEcure Neighbor Discovery
(SEND) for IPv6. For all the gory details on SEND, please see the
IETF RFCs online or in the docs directory. This package also includes
libraries for generating and verifying Cryptographically Generated
Addresses(CGAs) and X.509 Extensions for IP Addresses.

The primary goal for this project is to create a SEND implementation
that is easy to use and portable. Hence this implementation is
completely in user-space and self-contained, requiring no patches to
your kernel or any other programs.

It works like a firewall filter between network devices and the IPv6
stack. All incoming and outgoing neighbor discovery (ND) messages are
intercepted and sent to user space for processing by sendd (the
mechanism is OS-specific). Sendd will add SEND options to outgoing ND
messages to secure them, and will verify SEND options on incoming
messages, dropping those packets with invalid options, and passing
valid packets on back to the kernel for processing.

This is a research prototype. We focused on protocol correctness;
there are no doubt bugs, as well as much to be done in hardening the
daemon itself against attack and making it more robust and stable. Do
not expect commercial-grade reliability and security. We will try to
provide support, but can do so only as time permits.

2 SUPPORTED PLATFORMS
Currently the following platforms are supported:

2.1 Linux
We have tested SEND on a number of 2.6.x kernels, on a number of
major distributions: Fedora Core 2 – 4, Ubuntu 5.10, and SUSE 10.0.
It should work on any distribution running a correctly configured
2.6.x kernel.

Your kernel must have the following enabled:
• CONFIG_NETFILTER
• CONFIG_IPV6
• CONFIG_IP6_NF_QUEUE
• CONFIG_IP6_NF_IPTABLES
• CONFIG_IP6_NF_FILTER
• CONFIG_PROC_FS
Additionally, you need to ensure that the netfilter iptables user
space utilities are installed (check for the ip6tables command), and
that you have the netfilter libipq development library and headers
installed. Check your distribution's package repository, or download
the source from http://www.netfilter.org.

SEND on Linux uses netfilter's IP queuing mechanism to capture and
reinject packets. Before sendd runs, you need to ensure that the
appropriate netfilter rules are in place. After installation, you
will find the scripts “sendd” and “snd_upd_fw” in /etc/init.d. You
should use /etc/init.d/sendd to start sendd by default. If you want
to run sendd directly from the command line, add the necessary rules
with /etc/init.d/snd_upd_fw add. When done, you can remove the rules
with /etc/init.d/snd_upd_fw del.

2.2 FreeBSD
We have tested SEND on FreeBSD version 5.4. Other versions may work,
but have not been tested.

Your kernel needs netgraph(4) support, with support for the BPF,
SOCKET, and ETHER node types. These correspond to the following
kernel configuration options:
• NETGRAPH
• NETGRAPH_BPF
• NETGRAPH_ETHER
• NETGRAPH_SOCKET
Additionally, you need to have libdnet installed (available from
http://libdnet.sourceforge.net/).

http://libdnet.sourceforge.net/
http://www.netfilter.org/

3 DEPENDANCIES
In addition to platform-specific dependancies mentioned above, the
following are also required for all platforms:

• libcrypto 0.9.7 or greater, library and development headers
• GNU make
• GCC (tested with 3.3.2 – 4.0.0)
• lex
• yacc
• optional: libreadline, ncurses libraries and development

headers.

Most major distributions either already have these installed, or make
them available from their package archives.

4 INSTALLATION
1. Edit the top level Makefile.config. You must set your OS type

here, as well as some other OS-specific paramaters, and you can
also set a number of optional paramaters.

2. make
3. make install

A successful build will result in the installation of three binaries:

sendd The SEND daemon
cgatool Tool for configuring CGAs
ipexttool Tool for configuring PKIX IP certificate extensions

Additionally, os-specific start scripts may also be installed.

5 CONFIGURATION
There are two levels of configuration: a basic level for hosts that
will not be participating in router discovery, and an additional
level for those that will participate in router discovery.

5.1 BASIC CONFIGURATION
You must complete two steps:

1. Generate CGA parameters and a CGA
2. Configure sendd.

You must generate CGA parameters and at least one address. To do so,
you need a RSA key pair. You can use a preexisting one from a PEM
file or a certificate, or generate one with cgatool or openssl(1).
For CGA generation, only the public key is needed (although you will
need the corresponding private key for sendd).

Next you feed the key to cgatool along with a prefix to create your
CGA parameters and a CGA. Probably the most straightforward way to do
all this is with cgatool. The following example generates a new RSA
key pair of 1024 bits, and then uses the key to generate a CGA and
CGA parameters with a CGA sec value of 1 and a prefix of 2000::/64:

 # cgatool --gen -R 1024 -k mykey.pem -p 2000:: -o myder -s 1

This puts the newly generated RSA key pair in mykey.pem and the DER-
encoded CGA parameters in myder. The CGA is printed to stdout. For
more information on cgatool, see cgatool/README. Once you have your
new CGA, you should configure it on an interface (for example, using
ifconfig(1)), and update your system configuration to configure the
CGA upon boot.

You only need to generate CGA parameters once, before you run sendd
for the first time. However, you can use cgatool to generate
additional CGAs based on the initially generated CGA parameters.

Now you can configure sendd. Sendd reads its configuration from a
file (the default location of which is /etc/sendd.conf). You can also
specify an alternate configuration file with the -c command line
argument. The file has a key-value format, i.e.

key=value
Any line beginning with a '#' is considered a comment. You can copy
and edit the sample sendd.conf provided with this distribution.

The following setting is mandatory:

snd_cga_params Full path name of a file containing CGA
parameters specifications. See below for
information on this file.
No default setting

The following settings are optional:

snd_addr_autoconf If “yes”, sendd will automatically
generate CGAs based on prefixes
received in router advertisements.
Default = yes

snd_cga_minsec The minimum CGA sec value this host
will accept from peers.
Default = 0

snd_pkixip_conf Location of this host's IP Extensions
configuration file. Only needed for
router discovery; see below.
No default setting

snd_full_secure If “yes”, sendd will drop all incoming
ND messages that have not been secured
with SEND. If “no”, sendd will allow
unsecured ND messages. This setting
is useful for transition to SEND.
Default = yes

snd_replace_linklocals
If “yes”, sendd will replace all non-
CGA linklocals with CGAs on startup
and during operation.
Default = yes

snd_timestamp_cache_max
Sets an upper limit on the number of
entries sendd will keep in its
timestamp cache.
Default = 1024 entries

snd_timestamp_delta The amount of time (in seconds) that
a peer's clock can differ from the
local host's clock. See RFC3971,
section 5.3.4.2.
Default = 300 seconds

snd_timestamp_drift See RFC3971, section 5.3.4.2.
Default = 1%

snd_timestamp_fuzz See RFC3971, section 5.3.4.2.
Default = 1 second

snd_thrpool_max If compiled with multi-threading
support, sets the maxiumum number
of threads that sendd will spawn
to handle cryptographic operations.
Default is 2; hosts with multiple
processors or multiple cores may see
some scalability gains by increasing
this value.

There are other undocumented configuration settings; you should have
an understanding of the code to play with these.

It is necessary to keep your host's clock synchronized to within your
snd_timestamp_delta setting.

Sendd can handle various levels of granularity for CGA parameters,
from a single set of parameters for all addresses and interfaces on a
host, down to different CGA parameters for each address or interface.
The sendd CGA parameters configuration file allows you to assign CGA

parameters to addresses and interfaces. The file is comprised of
sections. There are two different types of sections: “named” and
“address”. “named” sections allow you to define CGA parameters that
can be used by address sections as well as other named sections.
“address” sections assign CGA parameters to an individual address.
The file is formatted as follows:

named <name> {
CGA parameters specified here

}

address <address> {
CGA parameters specified here

}

A section contains key-value pairs terminated with a ';', separated
by a space.

Each section can specify CGA parameters or simply use a set of named
parameters. There MUST be at least one named section, “default”,
specifying the default CGA parameters to use. To specify CGA
parameters, a section must contain these values:

snd_cga_priv Full path name of a file containing the
RSA private key corresponding to the public
key used to generate the CGA parameters.

snd_cga_params Full path name of a file containing the
DER-encoded parameters generated by cgatool.

snd_cga_sec The CGA sec value used to generate the CGA
parameters.

For example:

named default {
snd_cga_params /etc/sendd/cga.params;
snd_cga_priv /etc/sendd/key.pem;
snd_cga_sec 1;

}

To use named parameters instead of explicitly specifying a set of
parameters, provide the “use” value. For example:

named foo {
use default;

}

Address sections must contain, in addition to parameters
specifications or a “use” directive, an interface directive naming

the interface on which the address is configured. For example:

address 2000::38cb:3d3d:14ad:cb08 {
use foo;
interface eth0;

}

There is one special type of named section: If the name corresponds
with an actual interface, when sendd autoconfigures a new address on
that interface it will use the parameters from that section. For
example:

named eth0 {
use foo;

}

5.2 ROUTER DISCOVERY CONFIGURATION
If you need this configuration, complete this section first, and then
then basic section, using the generated keys to generate CGA
parameters.

There are two aspects to this configuration:
1. Routers must be configured with a set of certificates that prove

their authority to act as a router and advertise a set of subnet
prefixes.

2. Hosts must be configured with one or more trust anchor
certificates with which to verify router certificates.

5.2.1 ROUTER CONFIGURATION
You need to create a certificate path with at least one certificate,
and use ipexttool to add IP Extensions to it. The OpenSSL toolkit is
freely available, and can be used for this purpose (although it
entails a somewhat tedious and confusing process). There is a sample
script in example/ipext that can ease the process. Otherwise, you
need to do something along the lines of the following example that
shows how to do this with the OpenSSL toolkit.

First create a CA:
 # CA.pl -newca

(CA.pl(1) lives in the ssl installation's misc directory; you can
also use CA.sh if you do not have perl installed).
The CA's certificate will be in demoCA/cacert.pem.

Now create the certificate for the next entity on the path.
Generate a key (this example uses 1024 bits; others will work too):
 # openssl genrsa -out <priv key file name> 1024

Generate a certificate request for the new entity:
 # openssl req -new -key <priv key file name> -out newreq.pem

Do not enter a password, unless you plan to always start SEND daemons
interactively (since you will be prompted for a password when reading
the private key).

Use CA.pl to sign the request.
 # CA.pl -sign

This creates a certificate path two deep.

If you want to create a deeper path, you need to replace the original
CA's information directory (demoCA) with the second level entities
certificate and keying material. To do this, create a new demoCA
directory structure for each certificate in the chain, using 'CA.pl
-newca'. For example, say you have a certificate in mid_cert, and you
want to use it to sign a new certificate request just generated by
openssl ... -newreq:

 # CA.pl -newca
 CA certificate filename (or enter to create)
 dir_cert

 # CA.pl -sign
 # mv newcert.pem <your cert name>

Next you must add a PKIX IP extension to each certificate and resign
the certificate using ipexttool.

See the section below on ipexttool for directions on how to do this.

Once you have finished, edit your sendd.conf to add the location of
the IP extensions configuration file, i.e.

 snd_pkixip_conf=/etc/sendd/ipext.conf

5.2.2 HOST CONFIGURATION
The host must be configured with at least one trust anchor
certificate. A trust anchor can be any entity in the signing path of
the router's certificate path (usually it can just be the CA
certificate).

For each trust anchor certificate on the MN, add a trustedcert entry
to the pkixip_conf file. For example:

files {
trustedcert /usr/certs/certs/ca.pem;
trustedcert /usr/certs/certs/lvl1.pem;

}

The trust anchor certificates should include the IP Extensions needed
to authorize any routers the host may encounter.

Next edit sendd.conf, setting the snd_pkixip_conf key to the locatoin
of the pkixip_conf file.

It is possible to configure a host to accept certificates
unconstrained by IP Extensions. In this configuration, the host will
accept any prefixes advertised by a router if the router's
certificate does not contain any IP extensions. For security reasons,
this configuration is disabled by default. To enable it, set the
“snd_accept_unconstrained_ra” option to “yes” in sendd.conf.

It is recommended that kernel address auto configuration be disabled,
since sendd will auto configure CGAs based on received prefixes.

6 RUNNING SENDD
Once your configuration is ready to go, use your system start script
to run sendd. For Linux, this will /etc/init.d/sendd, and for
FreeBSD, this will be /etc/rc.d/sendd (you will also need to enable
sendd in rc.conf). By default it will run in the background as a
system daemon. If you run sendd by hand, it takes the following
command line arguments:

 -c <conf> Use an alternate configuration file
 -f Run in the foreground.
 -i <iface> Restrict SEND to running on this interface. This

can be repeated for additional interfaces.
 -l <method> Specify where to output logging messages. Choices

are “stderr”, “syslog” and “none”.
 -V Display version information and exit.

7 DEBUGGING
You can get an interactive console on sendd and cgatool if you set
USE_CONSOLE=y in Makefile.config. Run sendd with the -f flag, and
cgatool with the -i flag. The consoles can display lots of internal
state, and with cgatool, you can interactively generate and verify
CGAs.

For lots more debugging info, set DEBUG_POLICY=DEBUG in
Makefile.config. Now ipexttool, cgatool, and sendd provide a -d
command line flag to turn on debugging output. You can repeat the -d
up to three times with sendd to get even more debugging output.

With debug enabled, you can fine-tune which sendd sub components
produce debugging output. On the console, you can get a list of

available debugging levels with the “debug_levels” command. You can
turn individual levels on or off with the “debug_on” and “debug_off”
commands. For example, to enable debugging output for sendd
certificate processing, do

 sendd> debug_on sendd cert

You can also use “all” as an argument to “debug_on” and “debug_off”
to turn on or off all debugging.

It is also possible to specify specific debug levels in sendd.conf,
with the snd_debugs key. To enable sendd cert and proto:

 snd_debugs=sendd:cert,sendd:proto

Note: this only works with debug levels within the sendd context.

8 CGATOOL
cgatool is a CLI front-end to the CGA library included in the
distribution. It allows you to generate and verify CGAs.

8.1 GENERATION
When generating a CGA, use the -g or –gen command line argument. To
generate, you must provide a key, an IPv6 prefix, and a CGA sec
value. There are four ways to provide a key:

1. Provide a certificate with -C or --certfile.
2. Provide a PEM-encoded RSA key pair with -k or --keyfile.
3. Generate a RSA key on the fly with -R or --rsa <bits>. You must

also provide a keyfile with -k to which to write the new key.
4. Provide DER-encoded CGA parameters with -D or --derfile.

Provide an IPv6 prefix with -p or --prefix <prefix>.

Provide a CGA sec value with -s or --sec <sec value>.

When generating, you must also provide a derfile with -D to which to
write the new DER-encoded CGA parameters.
Some examples:
 Provide the key from mykey.pem:

 # cgatool -g -k mykey.pem -o myder -p 2000:: -s 1

 Provide the key from myder:

 # cgatool -g -D myder -o myder -p 2000:: -s 1

 Generate from the example parameters provided in rfc3972:

 # cgatool --gen -D rfc_example.params -o myder -p fe80:: -s 1
 fe80::3c4a:5bf6:ffb4:ca6c

The amount of time needed for CGA generation depends on the speed of
your hardware and the sec value. You should choose the largest sec
value your hardware and patience can reasonably handle. On a 2GHz
Pentium 4, sec=1 usually takes just a few milliseconds, while sec=2
takes at least a few hours. The faster your hardware (and the more
patient you are), the larger the sec value you can use. The largest
possible sec value is 7.

If you provide the key from a derfile, cgatool will use the modifier
in the CGA parameters, and will not search for a new modifier.

Once finished generating, cgatool will print the new CGA to stdout,
and write the CGA parameters to the provided derfile.

8.2 VERIFICATION
You will ordinarily not need to manually verify CGAs. This
functionality is provided for experimentation and sanity checks.

When verifying, use the -v or --ver command line argument. To verify,
you must provide the CGA to be verified, and the CGA's DER-encoded
parameters. Provide the address with -a or --address, and the derfile
with the -D or --derfile argument. For example:

 # cgatool --ver -a 2000::2073:8e00:6d:aa09 -D myder

8.3 CGATOOL CONSOLE
Run cgatool with the -i or --interactive command line argument. You
can set all the arguments one-by-one, and use the “show” command to
display current CGA context state.

If you set USE_THREADS=y in Makefile.config, you can also use
multiple threads to search for the CGA modifier in parallel. (Of
course, this is only useful if you have a multi-processor and / or
multi-core system). Set the number of threads to use with 'thrcnt
<num>'. While generating, cgatool will search a certain number of
modifiers, and then check for interrupts (i.e. You can halt
generation with ^C). The number of modifiers searched between
interrupt checks is called the batchsize. You can change this value
with the 'batchsize <num>' command. The default batchsize is 500000.

8.4 DYNAMIC CGA PARAMETER ADMINISTRATION
Cgatool can be used to dynamically add or remove CGA parameters on
sendd.

To add new parameters, use -A or --add. To add new named parameters,
provide the new name with -N. To add new address parameters, provide
the address with -a and the interface with -I. To specify new
parameters, use -D to provide the DER-encoded parameters, -k to
provide the key file, and -s to provide the sec value. To use
preexisting named parameters, provide the name with -U.

For example, to add new named parameters “foo” that use the “default”
parameters:

cgatool --add -N foo -U default

Add new address parameters:

cgatool --add -a 2000::3c44:d77d:3db1:9696 -s 1 -I eth0
-D /etc/sendd/cga.params -k /etc/sendd/key.pem

If you look closely at the command line help synopsis, you might
notice the --sigmeth (-S) switch to select a signature method. There
is only one signature method in use, the one defined in RFC 3971, so
currently this switch does not need to be used. In the future, if new
signature methods are defined, this switch will come into use.

cgatool can also delete parameters with the --erase or -E switch. To
erase address parameters, specify the address with -a:

cgatool --erase -a 2000::3c44:d77d:3db1:9696

To erase named parameters, provide the name with -N:

cgatool --erase -N foo

9 IPEXTTOOL
ipexttool is a CLI front-end to the IP extensions library. It allows
you to add IP extensions to certificates, and verify chains of
certificates with IP extensions.

To add or verify IP extensions in certificates, you must first
specify a PKIX IP extension using ipexttool's configuration file.
This file contains one section where you describe the PKIX IP
extension, and another where you specify the locations of input,
signing, and output certificates.

Following is a simple example of such a configuration file:

addresses {
ipv6 {

SAFI unicast;

prefix fec0:0:0:1::/64;
prefix fec0:0:0:2::/64;
prefix fec0:0:0:3::/64;
prefix fec0:0:0:4::/64;

}
}

files {
certfile /usr/src/fmip/send/pkixipext/certs/ca.pem;
cacert /usr/src/fmip/send/pkixipext/certs/ca.pem;
capriv /usr/src/fmip/send/pkixipext/certs/ca_priv.pem;
outfile /usr/src/fmip/send/pkixipext/certs/ca_ipext.pem;

}

The first section, "addresses", is where you put lists of prefixes,
ranges, or "inherit" directives. The first subsection contains
address family blocks for either IPv4 or IPv6 addresses. The first
directive in an address family block must be "SAFI", which stands for
"subsequent address family identifier". Allowed SAFI values are
"unicast", "multicast", and "both". "Both" means both unicast and
multicast.

After SAFI comes one or more prefixes or ranges. A prefix is
described by an address followed by '/' followed by a prefix length.
A range is described by "range" followed by a minimun address and
then a maximum address. The minumum address is followed by '/' and
the number of zero bits in the address. The maximum address is
followed by '/' and the number of bits that are set to 1. See rfc3779
section 2.2.3.9 for more information on this.

The files section tells ipexttool where to get and put certificates.
 "certfile" is the input certificate.
 "cacert" is the input signer's certificate.
 "capriv" is the input signer's private key.
 "outfile" is where to put the newly signed certificate.

Now use ipexttool to add the IP extensions and resign the
certificate:

% ipexttool -w -i <conf file>

Now you have should have a new certificate in outfile, correctly
signed and containing the PKIX IP extension you specified. Note that
the keying material has not changed.

You can use ipexttool to verify that the IP extension has been
written to the outfile:

% ipexttool -p -c ca_ipext.pem
...

 X509v3 extensions:
...

 PKIX IP Addr Extension: critical
 IPv6 (Unicast)
 Prefix or Range
 Prefix:fec0:0:0:1::/64
 Prefix:fec0:0:0:2::/64
 Prefix:fec0:0:0:3::/64
 Prefix:fec0:0:0:4::/64

You must repeat the process for each certificate in the delegation
chain. Once you have done this, you can use ipexttool to verify that
you have created the chain correctly. For instance, say you have
created the following delegation chain (DNs abbrieviated): ca -> lvl1
-> lvl2 -> lvl3, and that lvl3 has been delgated authority to route
the fec0:0:0:4::/64 prefix. Assuming that the certificates are in
ca.pem, lvl1.pem, lvl2.pem, and lvl3.pem, create a new configuration
file setting ca, lvl1, and lvl2 as trusted certificates and lvl3 as
the certificate to be verified:

addresses {
ipv6 {

SAFI unicast;
prefix fec0:0:0:4::/64;

}
}

files {
trustedcert /usr/certs/ca.pem;
trustedcert /usr/certs/lvl1.pem;
trustedcert /usr/certs/lvl2.pem;
certfile /usr/certs/lvl3.pem;

}

% ipexttool -v -i <conf file>

If the verification succeeds, ipexttool will complete silently.

Once you are satisfied that your configuration is correct, you need
to modify sendd's configuration on the AR and client nodes. On the
router, create a configuration file specifying all the certificates
needed to complete the delegation chain (including the AR's
certificate). (At this time there is no support for dynamic
certificate lookups, so all certificates must be statically
configured). The host certificate is indicated with "certfile", all
others in the chain by "trustedcert". For example:

files {
trustedcert /usr/certs/ca.pem;
trustedcert /usr/certs/lvl1.pem;

trustedcert /usr/certs/lvl2.pem
certfile /usr/certs/lvl3.pem

}

10 LIMITATIONS
Since this implementation is completely independent of the kernel,
there are a few architectural limitations worth mentioning.

RFC3971 states that if a ND packet is received and its time stamp is
outside the permitted delta, the packet SHOULD still be processed,
but it should cause no change to the neighbor cache. Since this
implementation has no direct control over the neighbor cache, it
cannot follow this advice. Instead, it takes the “better safe than
sorry” approach and drops the packet. The work around for this is to
keep your hosts' clocks reasonably in sync.

This implementation does not handle DAD collisions, since it would be
too difficult to make this robust in the face of the kernel DAD
process.

	1INTRODUCTION
	2SUPPORTED PLATFORMS
	2.1Linux
	2.2FreeBSD

	3DEPENDANCIES
	4INSTALLATION
	5CONFIGURATION
	5.1BASIC CONFIGURATION
	5.2ROUTER DISCOVERY CONFIGURATION
	5.2.1ROUTER CONFIGURATION
	5.2.2HOST CONFIGURATION

	6RUNNING SENDD
	7DEBUGGING
	8CGATOOL
	8.1GENERATION
	8.2VERIFICATION
	8.3CGATOOL CONSOLE
	8.4DYNAMIC CGA PARAMETER ADMINISTRATION

	9IPEXTTOOL
	10LIMITATIONS

