Table of Contents

1 INTRODUGCTION. ..ttt e ettt et ettt et e e eaeaeaeaeaeneseeereerneenens 1
2 SUPPORTED PLATEORMS . ..ottt e e e e 2
A R I 1 110 SO 2
2.2 ETEEB S D e e 2

3 DEPENDAN CTE S . ettt e e e e e e e es aenenenen 3
N S NI I N 0 P 3
5 CONFEITGURATTION. ..ttt ettt ettt e e a et e eaeaeareneneneneen os 3
5.1 BASIC CONFTGURATION. ..ottt ettt eree e eeaaes 3
5.2 ROUTER DISCOVERY CONFIGURATION.....uiuititiiiiiiiiiieiieeeeeeeenenenes 7
5.2.1 ROUTER CONFIGURATION. ...ttt eeeeeeneeneaeaeneneans 7
5.2.2 HOST CONFIGURATIONttt ettt e et enenenes 8

6 RUNNING SENDD...iuititititiiiiiiiiiit ettt et e e e e enenenenerenereanes 9
7 DEBUGGING. ..ttt ettt et e e e e ae ettt ettt e e e e eaeaenenenenenenaenes 9
o T O €7\ 1@ 1) IS 10
8.1 GENERATTION....iuitititiiiti ettt ettt e et ae e e e enereenenenenees 10

o T A T A 1 S (0N [0) 11
8.3 CGATOOL CONSOLE. ..ttt aenn 11
8.4 DYNAMIC CGA PARAMETER ADMINISTRATION.....ccvtviiiiiiniiiniiinennnnes 11

1 I 1 0, 4 1O 1) 12
1O TIMI T AT TON S . ..ttt ettt ettt a e e e aea e e e e eeneeranaas 15

1 INTRODUCTION

This is a user-space inplenentation of SEcure Nei ghbor D scovery
(SEND) for IPv6. For all the gory details on SEND, please see the

| ETF RFCs online or in the docs directory. This package al so incl udes
libraries for generating and verifying Cryptographically Generated
Addr esses(CGAs) and X. 509 Extensions for |IP Addresses.

The primary goal for this project is to create a SEND i npl enentati on
that is easy to use and portable. Hence this inplenentation is
conpletely in user-space and self-contained, requiring no patches to
your kernel or any other prograns.

It works like a firewall filter between network devices and the | Pv6
stack. Al incom ng and outgoi ng nei ghbor discovery (ND) nessages are
I ntercepted and sent to user space for processing by sendd (the
mechanismis OS-specific). Sendd will add SEND options to outgoing ND
nmessages to secure them and wll verify SEND options on incom ng
nmessages, dropping those packets with invalid options, and passing
val i d packets on back to the kernel for processing.

This is a research prototype. W focused on protocol correctness;
there are no doubt bugs, as well as much to be done in hardening the
daenon itself against attack and making it nore robust and stable. Do
not expect comercial-grade reliability and security. We wll try to
provi de support, but can do so only as tinme permts.

2 SUPPORTED PLATFORMS

Currently the followi ng platforns are supported:

2.1 Linux

We have tested SEND on a nunber of 2.6.x kernels, on a nunber of
maj or di stributions: Fedora Core 2 — 4, Ubuntu 5.10, and SUSE 10. 0.
It should work on any distribution running a correctly configured
2.6.x kernel.

Your kernel nust have the foll ow ng enabl ed:

CONFI G_NETFI LTER

CONFI G_I PV6

CONFI G_I P6_NF_QUEUE

CONFI G_ I P6_NF_I PTABLES

CONFI G_I P6_NF_FI LTER

CONFI G_PROC_FS
Addltlonally, you need to ensure that the netfilter iptables user
space utilities are installed (check for the ip6tables comand), and
that you have the netfilter |ibipq developnent |ibrary and headers
i nstall ed. Check your distribution's package repository, or downl oad
the source from http://ww.netfilter.org.

SEND on Linux uses netfilter's |IP queuing nechanismto capture and
rei nject packets. Before sendd runs, you need to ensure that the
appropriate netfilter rules are in place. After installation, you
will find the scripts “sendd” and “snd_upd_fw in /etc/init.d. You
shoul d use /etc/init.d/sendd to start sendd by default. If you want
to run sendd directly fromthe command |ine, add the necessary rules
with /etc/init.d/ snd_upd_fw add. When done, you can renove the rules
with /etc/init.d/ snd_upd_fw del

2.2 FreeBSD

W have tested SEND on FreeBSD version 5.4. O her versions may work,
but have not been tested.

Your kernel needs netgraph(4) support, with support for the BPF,
SOCKET, and ETHER node types. These correspond to the foll ow ng
kernel configuration options:

NETGRAPH

NETGRAPH_BPF

NETGRAPH_ETHER

NETGRAPH_SOCKET
Additionally, you need to have libdnet installed (available from

http://1ibdnet.sourceforge.net/).

http://libdnet.sourceforge.net/
http://www.netfilter.org/

3 DEPENDANCIES

In addition to platformspecific dependanci es nentioned above, the
followng are also required for all platforns:

| i bcrypto 0.9.7 or greater, library and devel opnent headers
G\U nake

GCC (tested with 3.3.2 — 4.0.0)

| ex

yacc

optional: libreadline, ncurses |ibraries and devel opnent
headers.

Most major distributions either already have these installed, or nake
t hem avail abl e fromtheir package archives.

4 INSTALLATION

1. Edit the top | evel Makefile.config. You nust set your OS type
here, as well as some other OS-specific paramaters, and you can
al so set a nunber of optional paramaters.

2. make
3. neke install
A successful build will result in the installation of three binaries:
sendd The SEND daenon
cgat ool Tool for configuring CGAs

i pexttool Tool for configuring PKIX IP certificate extensions

Additionally, os-specific start scripts may al so be install ed.

5 CONFIGURATION

There are two | evels of configuration: a basic |level for hosts that
will not be participating in router discovery, and an additional
| evel for those that will participate in router discovery.

5.1 BASIC CONFIGURATION

You nust conplete two steps:
1. Generate CGA paraneters and a CGA
2. Configure sendd.

You nust generate CGA paraneters and at | east one address. To do so,
you need a RSA key pair. You can use a preexisting one froma PEM
file or a certificate, or generate one with cgatool or openssl(1).
For CGA generation, only the public key is needed (although you wll
need the corresponding private key for sendd).

Next you feed the key to cgatool along with a prefix to create your
CGA paraneters and a CGA. Probably the nost straightforward way to do
all this is with cgatool. The foll ow ng exanpl e generates a new RSA
key pair of 1024 bits, and then uses the key to generate a CGA and
CGA paraneters with a CGA sec value of 1 and a prefix of 2000::/64:

cgatool --gen -R 1024 -k nykey.pem-p 2000:: -o nyder -s 1

This puts the newy generated RSA key pair in nykey.pem and the DER-
encoded CGA paraneters in nyder. The CGAis printed to stdout. For
nore information on cgatool, see cgatool/README. Once you have your
new CGA, you should configure it on an interface (for exanple, using
ifconfig(l)), and update your system configuration to configure the
CGA upon boot .

You only need to generate CGA paraneters once, before you run sendd
for the first time. However, you can use cgatool to generate
addi ti onal CGAs based on the initially generated CGA paraneters.

Now you can configure sendd. Sendd reads its configuration froma
file (the default | ocation of which is /etc/sendd.conf). You can al so
specify an alternate configuration file with the -c conmand |ine
argunent. The file has a key-value format, i.e.

key=val ue
Any line beginning with a '# 1is considered a comment. You can copy
and edit the sanple sendd.conf provided with this distribution.

The follow ng setting is mandatory:

snd_cga_par ans Ful | path nanme of a file containing CGA
paranmeters specifications. See bel ow for
information on this file.
No default setting

The follow ng settings are optional:

snd_addr _aut oconf If “yes”, sendd will automatically
generate CGAs based on prefixes
received in router advertisenents.
Default = yes

snd_cga_m nsec The m ni mum CGA sec val ue this host
wi ||l accept from peers.
Default =0
snd_pki xi p_conf Location of this host's |IP Extensions

configuration file. Only needed for
router discovery; see bel ow
No default setting

snd_full _secure If “yes”, sendd will drop all incom ng
ND nessages that have not been secured

with SEND. |f

“no”, sendd will all ow

unsecured ND nessages. This setting
is useful for transition to SEND

Default = yes

snd_repl ace_linkl ocal s

If “yes”, sendd wll replace all non-
CGA linklocals with CGAs on startup
and during operation.

Default = yes

snd_ti mest anp_cache_max
Sets an upper

limt on the nunmber of

entries sendd will keep inits

ti mestanp cache.

Default = 1024 entries

snd_tinmestanp_delta The anount of tine (in seconds) that
a peer's clock can differ fromthe
| ocal host's clock. See RFC3971,

section 5. 3.4. 2.

Default = 300 seconds

snd_tinestanp _drift See RFC3971, section 5.3.4.2.

Default = 1%

snd_tinmestanp_fuzz See RFC3971, section 5.3.4.2.
Default = 1 second

snd_t hr pool _nax | f conmpiled with nulti-threading
support, sets the maxi unum nunber
of threads that sendd will spawn

to handl e cryptographi c operations.
Default is 2; hosts with multiple

processors or

multiple cores may see

sonme scal ability gains by increasing

thi s val ue.

There are ot her undocunented configuration settings; you should have
an understanding of the code to play with these.

It is necessary to keep your host's clock synchronized to within your

snd_tinmestanp_delta setting.

Sendd can handl e various |evels of granularity for CGA paraneters,

froma single set of paraneters for al

addresses and interfaces on a

host, down to different CGA paraneters for each address or interface.
The sendd CGA paraneters configuration file allows you to assign CGA

paraneters to addresses and interfaces. The file is conprised of
sections. There are two different types of sections: “naned” and
“address”. “naned” sections allow you to define CGA paraneters that
can be used by address sections as well as other nanmed sections.
“address” sections assign CGA paraneters to an individual address.
The file is formatted as foll ows:

nanmed <nane> {
CGA paraneters specified here
}

addr ess <address> {
CGA paraneters specified here
}

A section contains key-value pairs termnated with a ';', separated
by a space.

Each section can specify CGA paraneters or sinply use a set of naned
paranmeters. There MJST be at | east one naned section, “default”,
speci fying the default CGA parameters to use. To specify CGA
paranmeters, a section nmust contain these val ues:

snd_cga_priv Full path nanme of a file containing the
RSA private key corresponding to the public
key used to generate the CGA paraneters.

snd_cga_parans Full path nane of a file containing the
DER- encoded paraneters generated by cgat ool .

snd_cga_sec The CGA sec value used to generate the CGA
par anet ers.

For exanpl e:

naned default {
snd_cga_parans /et c/ sendd/ cga. par ans;
snd_cga_priv [/etc/sendd/ key. pem
snd_cga_sec 1;

}

To use nanmed paraneters instead of explicitly specifying a set of
paraneters, provide the “use” value. For exanple:

naned foo {

use defaul t;
}

Address sections nust contain, in addition to paraneters
specifications or a “use” directive, an interface directive nam ng

the interface on which the address is configured. For exanple:

addr ess 2000: : 38ch: 3d3d: 14ad: cb08 {
use foo;
i nterface ethO;

}

There is one special type of named section: |If the name corresponds
with an actual interface, when sendd autoconfigures a new address on
that interface it will use the paraneters fromthat section. For
exanpl e:

nanmed et hO {
use foo;
}

5.2 ROUTER DISCOVERY CONFIGURATION

If you need this configuration, conplete this section first, and then
t hen basic section, using the generated keys to generate CGA
par aneters.

There are two aspects to this configuration:

1. Routers nust be configured with a set of certificates that prove
their authority to act as a router and advertise a set of subnet
prefixes.

2. Hosts nust be configured with one or nore trust anchor
certificates with which to verify router certificates.

5.2.1 ROUTER CONFIGURATION

You need to create a certificate path with at |east one certificate,
and use ipexttool to add IP Extensions to it. The OpenSSL tool kit is
freely available, and can be used for this purpose (although it
entails a sonmewhat tedious and confusing process). There is a sanple
script in exanplel/ipext that can ease the process. O herw se, you
need to do sonething along the lines of the foll ow ng exanpl e that
shows how to do this with the OpenSSL tool kit.

First create a CA:
CA pl -newca

(CA.pl (1) lives in the ssl installation's msc directory; you can
al so use CA.sh if you do not have perl installed).
The CA' s certificate will be in denpCA/ cacert. pem

Now create the certificate for the next entity on the path.
Generate a key (this exanple uses 1024 bits; others will work too):
openssl genrsa -out <priv key file nanme> 1024

GCenerate a certificate request for the new entity:
openssl req -new -key <priv key file nane> -out new eq. pem

Do not enter a password, unless you plan to always start SEND daenons
interactively (since you will be pronpted for a password when readi ng
the private key).

Use CA.pl to sign the request.
CA. pl -sign

This creates a certificate path tw deep

If you want to create a deeper path, you need to replace the original
CA's information directory (denmbCA) with the second level entities
certificate and keying material. To do this, create a new denpoCA
directory structure for each certificate in the chain, using 'CA pl
-newca' . For exanple, say you have a certificate in md _cert, and you
want to use it to sign a new certificate request just generated by
openssl ... -neweq:

CA pl -newca
CA certificate filenanme (or enter to create)
dir_cert

CA. pl -sign
nmv newcert.pem <your cert nane>

Next you nust add a PKIX | P extension to each certificate and resign
the certificate using ipexttool.

See the section below on ipexttool for directions on howto do this.

Once you have finished, edit your sendd.conf to add the |ocation of
the I P extensions configuration file, i.e.

snd_pki xi p_conf =/ et ¢/ sendd/ i pext . conf

5.2.2 HOST CONFIGURATION

The host nust be configured with at | east one trust anchor
certificate. A trust anchor can be any entity in the signing path of
the router's certificate path (usually it can just be the CA
certificate).

For each trust anchor certificate on the M\, add a trustedcert entry
to the pkixip_conf file. For exanple:

files {
trustedcert /usr/certs/certs/ca. pem
trustedcert /usr/certs/certs/lvl1l. pem

}

The trust anchor certificates should include the | P Extensi ons needed
to authorize any routers the host may encounter.

Next edit sendd.conf, setting the snd _pkixip_conf key to the |locatoin
of the pkixip_conf file.

It is possible to configure a host to accept certificates
unconstrained by IP Extensions. In this configuration, the host wll
accept any prefixes advertised by a router if the router's
certificate does not contain any |P extensions. For security reasons,
this configuration is disabled by default. To enable it, set the
“snd_accept _unconstrained_ra” option to “yes” in sendd. conf.

It is recoomended that kernel address auto configuration be disabled,
since sendd will auto configure CGAs based on recei ved prefixes.

6 RUNNING SENDD

Once your configuration is ready to go, use your systemstart script
to run sendd. For Linux, this will /etc/init.d/sendd, and for
FreeBSD, this will be /etc/rc.d/sendd (you will also need to enable
sendd in rc.conf). By default it will run in the background as a
system daenon. |If you run sendd by hand, it takes the foll ow ng
command | i ne argunents:

-c <conf> Use an alternate configuration file

-f Run in the foreground.

-i <iface> Restrict SEND to running on this interface. This
can be repeated for additional interfaces.

-l <method> Specify where to output |ogging nessages. Choices
are “stderr”, “syslog” and “none”.

-V Di splay version information and exit.

7 DEBUGGING

You can get an interactive console on sendd and cgatool if you set
USE_CONSOLE=y in Makefile.config. Run sendd with the -f flag, and
cgatool with the -i flag. The consoles can display |ots of internal
state, and with cgatool, you can interactively generate and verify
CGAs.

For | ots nore debugging info, set DEBUG POLI CY=DEBUG i n
Makefile.config. Now ipexttool, cgatool, and sendd provide a -d
command |line flag to turn on debuggi ng output. You can repeat the -d
up to three tinmes with sendd to get even nore debuggi ng out put.

Wth debug enabl ed, you can fine-tune which sendd sub conponents
produce debugging output. On the console, you can get a list of

avai | abl e debugging |l evels with the “debug_| evel s” command. You can
turn individual levels on or off with the “debug_on” and “debug_off”
commands. For exanple, to enabl e debuggi ng out put for sendd
certificate processing, do

sendd> debug_on sendd cert

You can also use “all” as an argunent to “debug_on” and “debug_off”
to turn on or off all debuggi ng.

It is also possible to specify specific debug |levels in sendd. conf,
with the snd _debugs key. To enabl e sendd cert and proto:

snd_debugs=sendd: cert, sendd: prot o

Note: this only works with debug | evels within the sendd context.

8 CGATOOL

cgatool is a CLI front-end to the CGA library included in the
distribution. It allows you to generate and verify CGAs.

8.1 GENERATION

When generating a CGA, use the -g or —gen command |ine argunent. To
generate, you nust provide a key, an IPv6 prefix, and a CGA sec
val ue. There are four ways to provide a key:
1. Provide a certificate with -C or --certfile.
2. Provide a PEM encoded RSA key pair with -k or --keyfile.
3. Generate a RSA key on the fly with -R or --rsa <bits> You nust
al so provide a keyfile with -k to which to wite the new key.
4. Provi de DER-encoded CGA paranmeters with -D or --derfile.

Provide an IPv6 prefix with -p or --prefix <prefix>.
Provide a CGA sec value with -s or --sec <sec val ue>.
When generating, you nust also provide a derfile with -D to which to
wite the new DER-encoded CGA paraneters.
Sonme exanpl es:
Provi de the key from nykey. pem
cgatool -g -k nykey.pem-o0 nyder -p 2000:: -s 1
Provi de the key from nyder
cgatool -g -D nyder -o nyder -p 2000:: -s 1

Generate fromthe exanple paraneters provided in rfc3972:

cgatool --gen -D rfc_exanple.parans -0 nyder -p fe80:: -s 1
f e80: : 3c4a: 5bf 6: f f b4: cabe

The amount of time needed for CGA generation depends on the speed of
your hardware and the sec val ue. You should choose the |argest sec
val ue your hardware and patience can reasonably handle. On a 2GHz
Pentium 4, sec=1 usually takes just a few mlliseconds, while sec=2
takes at |least a few hours. The faster your hardware (and the nore
patient you are), the larger the sec value you can use. The | argest
possi bl e sec value is 7.

If you provide the key froma derfile, cgatool will use the nodifier
in the CGA paraneters, and will not search for a new nodifier

Once finished generating, cgatool will print the new CGA to stdout,
and wite the CGA paraneters to the provided derfile.

8.2 VERIFICATION

You will ordinarily not need to manually verify CGAs. This
functionality is provided for experinentation and sanity checks.

When verifying, use the -v or --ver command |ine argunent. To verify,
you nust provide the CGA to be verified, and the CGA' s DER-encoded
paraneters. Provide the address with -a or --address, and the derfile
with the -D or --derfile argunment. For exanpl e:

cgatool --ver -a 2000::2073: 8e00: 6d: aa09 -D nyder

8.3 CGATOOL CONSOLE

Run cgatool with the -i or --interactive command |ine argunment. You
can set all the argunents one-by-one, and use the “show command to
di splay current CGA context state.

I f you set USE THREADS=y in Makefile.config, you can al so use
multiple threads to search for the CGA nodifier in parallel. (O
course, this is only useful if you have a multi-processor and / or
multi-core systen). Set the nunmber of threads to use with '"thrcnt
<num>' . \Wile generating, cgatool will search a certain nunber of
nodi fiers, and then check for interrupts (i.e. You can halt
generation with ~C). The nunber of nodifiers searched between

i nterrupt checks is called the batchsize. You can change this val ue
with the 'batchsize <nunm®' command. The default batchsize is 500000.

8.4 DYNAMIC CGA PARAMETER ADMINISTRATION

Cgat ool can be used to dynamically add or renove CGA paraneters on
sendd.

To add new paraneters, use -A or --add. To add new naned paraneters,
provi de the new nane with -N. To add new address paraneters, provide
the address with -a and the interface with -1. To specify new
paranmeters, use -D to provide the DER-encoded paraneters, -k to
provide the key file, and -s to provide the sec value. To use

preexi sting naned paraneters, provide the nane with -U.

For exanple, to add new naned paraneters “foo” that use the “default”
par anet ers:

cgatool --add -N foo -U default
Add new address paraneters:

cgatool --add -a 2000::3c44:d77d: 3db1:9696 -s 1 -1 ethO
-D /etc/sendd/ cga. parans -k /etc/sendd/ key. pem

If you |l ook closely at the command |ine help synopsis, you m ght
notice the --signeth (-S) switch to select a signature nethod. There
is only one signature nethod in use, the one defined in RFC 3971, so
currently this switch does not need to be used. In the future, if new
signature nethods are defined, this switch will conme into use.

cgatool can also delete paraneters with the --erase or -E switch. To
erase address paraneters, specify the address with -a:

cgatool --erase -a 2000::3c44:d77d: 3dbl: 9696
To erase naned paraneters, provide the nane with -N

cgatool --erase -N foo

9 IPEXTTOOL

| pexttool is a CLI front-end to the IP extensions library. It allows
you to add I P extensions to certificates, and verify chai ns of
certificates with I P extensions.

To add or verify IP extensions in certificates, you nust first
specify a PKIX I P extension using ipexttool's configuration file.
This file contains one section where you describe the PKIX IP
extensi on, and anot her where you specify the |ocations of input,
signing, and output certificates.

Follow ng is a sinple exanple of such a configuration file:
addr esses {

i pv6 {
SAFl uni cast ;

prefix fec0:0:0:1::/64,
prefix fec0:0:0:2::/64;
prefix fec0:0:0:3::/64,
prefix fec0:0:0:4::/64;
}
}
files {
certfile /usr/src/fm p/send/ pkixi pext/certs/ca. pem
cacert /usr/src/fm p/send/ pkixi pext/certs/ca. pem
capriv /usr/src/fm p/send/ pki xi pext/certs/ca_priv.pem
outfile /usr/src/fm p/send/ pkixi pext/certs/ca_ipext.pem
}
The first section, "addresses", is where you put lists of prefixes,

ranges, or "inherit" directives. The first subsection contains
address fam |y blocks for either 1Pv4 or | Pv6 addresses. The first

directive in an address famly bl ock nmust be "SAFI", which stands for
"subsequent address famly identifier”. Al owed SAFl val ues are
"unicast", "nulticast”, and "both". "Both" neans both unicast and
mul ti cast.

After SAFlI conmes one or nore prefixes or ranges. A prefix is

descri bed by an address followed by '/' followed by a prefix |ength.
A range is described by "range" followed by a m ni nun address and
then a maxi nrum address. The m nunum address is followed by '/' and
the nunber of zero bits in the address. The maxi mum address is
followed by '/' and the nunber of bits that are set to 1. See rfc3779
section 2.2.3.9 for nore information on this.

The files section tells ipexttool where to get and put certificates.
"certfile" is the input certificate.
"cacert" is the input signer's certificate.
"capriv" is the input signer's private key.
"outfile" is where to put the newly signed certificate.

Now use i pexttool to add the I P extensions and resign the
certificate:

% i pexttool -w -i <conf file>
Now you have shoul d have a new certificate in outfile, correctly
signed and containing the PKIX | P extension you specified. Note that

the keying material has not changed.

You can use ipexttool to verify that the I P extension has been
witten to the outfile:

% i pexttool -p -c ca_ipext.pem

X509v3 ext ensi ons:

PKIX | P Addr Extension: critical
| Pv6 (Unicast)

Prefix or Range
Prefix:fec0:0:0:1::/64
Prefix:fec0:0:0:2::/64
Prefix:fec0:0:0:3::/64
Prefix:fec0:0:0:4::/64

You nust repeat the process for each certificate in the del egation
chain. Once you have done this, you can use ipexttool to verify that
you have created the chain correctly. For instance, say you have
created the followi ng del egation chain (DNs abbrieviated): ca -> |vl1l
->|vl2 ->1vl3, and that |vl3 has been delgated authority to route
the fec0:0:0:4::/64 prefix. Assum ng that the certificates are in
ca.pem Ilvll.pem Ivl2. pem and |vl3.pem create a new configuration
file setting ca, Ivll, and Ivl2 as trusted certificates and Ivl3 as
the certificate to be verified:

addr esses {
i pv6 {
SAFI uni cast;
prefix fec0:0:0:4::/64,

}
}
files {
trustedcert /usr/certs/ca. pem
trustedcert /usr/certs/lvll. pem
trustedcert /usr/certs/lvl2. pem
certfile /usr/certs/lvl 3. pem
}
% ipexttool -v -i <conf file>
If the verification succeeds, ipexttool will conplete silently.

Once you are satisfied that your configuration is correct, you need
to nodify sendd's configuration on the AR and client nodes. On the
router, create a configuration file specifying all the certificates
needed to conplete the delegation chain (including the AR s
certificate). (At this tine there is no support for dynam c
certificate | ookups, so all certificates nust be statically
configured). The host certificate is indicated with "certfile", al
others in the chain by "trustedcert"”. For exanple:

files {
trustedcert /usr/certs/ca.pem
trustedcert /usr/certs/lvl1l. pem

trustedcert /usr/certs/lvl2. pem
certfile /usr/certs/lvl 3. pem

}
10 LIMITATIONS

Since this inplenentation is conpletely independent of the kernel,
there are a few architectural |imtations worth nentioning.

RFC3971 states that if a ND packet is received and its tine stanp is
outside the permtted delta, the packet SHOULD still be processed,
but it should cause no change to the nei ghbor cache. Since this

i npl ementati on has no direct control over the neighbor cache, it
cannot follow this advice. Instead, it takes the “better safe than
sorry” approach and drops the packet. The work around for this is to
keep your hosts' clocks reasonably in sync.

This inplenentati on does not handl e DAD collisions, since it would be
too difficult to make this robust in the face of the kernel DAD
process.

	1INTRODUCTION
	2SUPPORTED PLATFORMS
	2.1Linux
	2.2FreeBSD

	3DEPENDANCIES
	4INSTALLATION
	5CONFIGURATION
	5.1BASIC CONFIGURATION
	5.2ROUTER DISCOVERY CONFIGURATION
	5.2.1ROUTER CONFIGURATION
	5.2.2HOST CONFIGURATION

	6RUNNING SENDD
	7DEBUGGING
	8CGATOOL
	8.1GENERATION
	8.2VERIFICATION
	8.3CGATOOL CONSOLE
	8.4DYNAMIC CGA PARAMETER ADMINISTRATION

	9IPEXTTOOL
	10LIMITATIONS

