COBF Reference Manual V1.06 (2006-01-07)

COBF

The C/C++ Sourcecode Obfuscator

A Program
By

Bernhard Baier
email: bernhard.baier@gmx.net
WWW: http://home.arcor.de/bernhard.baier

V 1.06
2006-01-07

This package is copyrighted.
See filecopyright.txt for details

COBF Reference Manual V1.06 (2006-01-07)

1. INTRODUCTION

2. INSTALLATION
2.1. Using an existing executable of COBF
2.2. Compilation of COBF

2.3. Creating the Script for Calling the Preprocessor

3. INVOCATION AND CONFIGURATION OF COBF
3.1. Introduction
3.2. Invocation
3.3. Theincludefile handling of COBF
External Includefiles

Internal Includefiles
Separate Headerfiles

4. STRATEGIES FOR OBFUSCATION OF C/C++ SOURCECODE
How Do | Handle <...> Includes?
How Do | Achieve the Best Possible CompressionEmetyption Of My Sourcefiles?
How Do | Preserve the Original File Structure?
How Do | Preserve Portability and ConfigurabilityMy Sourcefiles?

5. TECHNICAL DETAILS
51.Cor C++
5.2. Whitespace Compression

5.3. Identifier renaming

6. TROUBLESHOOTING

ACKNOWLEDGEMENTS

CHANGE HISTORY

0O 00 00 00

©o ©

12
12
12

13

14

15

15

COBF Reference Manual V1.06 (2006-01-07)

1. Introduction

COBF (aka C-Obfuscator) is a program which maniiggl& or C++ sourcefiles in a way that they aren't
readable by human beings; but they remain comgilabl

The benefit of COBF lies in the distribution of grams (freeware, shareware, commercial softwar§ etc

The distribution as a executable binary is oftenitdlexible (especially for Unix or Windows NT, tause it is
normally not feasible to support all possible patfis); on the other side one might not give awaystburcecode
(e. g. it looks poor [badly commented, Spaghettisjpor you just want to prevent plagiarism).

Here COBF can play an important role: It removés@inments and sourcecode formattings and renalines a
variable and function identifiers. In the futursecial add-on filter will break up dbr, while andif statements
into goto statements.

Here is an example:

#define MAX_INDEX 10
int my_output()
{

int count;
for (count = 0; count < MAX_INDEX; ++count)
print_result(count);

}

becomes something like that:

a 147(){a 1234;9(1118=0;1118<10;++1118)I193(1118);}

You need only little imagination to realize thabgrams prepared in such a way are practical unbéada
Conclusions to the original contents are only gaesiith great effort (similiar to dissassemblingmachine
language level).

COBF Reference Manual V1.06 (2006-01-07)

2. Installation

There is no special installation procedure for CO8imply unpack the archivabf.zip to a newly created
directory. Sediles.txt for a complete content description list of ®@BF archive!

2.1. Using an existing executable of COBF
In thesrc\win32\Release\ directory you can find an executable@DBF for Windows95/NT/XP.

For a first try rurdemo_test.bat in thedemo/-directory if you are using Windows 95 / NT / XIPl¢ase have
before a look into thpp_ger_msvc.bat file in theetc\ directory whether it fit to you local compiler/pm@cessor
installatation

2.2. Compilation of COBF

If you want to make changes on the COBF sourcégloere is no binary for your machine you must pimthe
COBF sources

For Unix/Linux you might start with the makefiledated in the src/unix directory (Please keep indhtivat the
makefile expects that all C++ source files haveektension “.cc” instead of “.cpp”. Also it hashie noticed that
the GNU C/C++ compiler has sometimes problems sdilirce files having linefeed + carriage returniras |
delimiter (as it is ususal for DOS), not only eelifeed. This leeds especially to problem with masmanning
over more than one line with the ‘\' delimiter. i@ert such files with thdos2unix command.)

If you want to make changes on the ftan.| you need additionally a LEX-compatible scanneregator (e. g.
GNU-flex). Take notice: The used LEX must generate ANShaE old-style K&C function definitions! However
if this is the case you must manually change theegeed fildex_yy.c or the corresponding LEX library files.
The reason for this is thbex_yy.c will be compiled as C++ sourcecode and C++ doedolv old-style function
definitions.

2.3. Creating the Script for Calling the Preprocessor

COBF needs for full functionality a C / C++ preproceasatich should be shipped as a command line tothl wi
your C / C++ compilerCOBF does not call the preprocessor directly but isusspecial shell script (in the
standard COBF package the script names startppithand are located in thetc/ -directory — normally they
must be adapted to your operating system and cengrilvironment.)

This preprocessor shell script expects 2 arguments:

pp_<xyz>(.bat) Inputfile Qutputfile

COBF expects that thpp_* script writes the preprocesskgbutfile to Outputfile. There is no need to tell the
invoked preprocessor something about include pathesnclude file handling is completly done G@BF.

The pp_borlandc.bat script was tested with the Borland C/C++ prepreoesThepp_ger_msvc.bat script was
tested with the preprocessor coming with Micros$ual Studio. Thep_cc script was tested with the GNU C
preprocessor.

COBF Reference Manual V1.06 (2006-01-07)

3. Invocation and Confiquration of COBE

3.1. Introduction
Please read the following instructions carefullyh@wise your shrouded sources won't be compilable!

IMPORTANT! Look after everyfCOBF session to the protocol fitmbf.log!! Take notice of eventually occuring
warnings!

Now lets look at a simple example. We want to stirtie following sourcefiléest.c (you can find this example
in the demo-directory):

[* test.c - simple test program for COBF */

#include <stdio.h>

#ifdef unix

#define MAX_COUNT 10
#else

#define MAX_COUNT 20
#endif

int main()

inti;

for (i=0; i < MAX_COUNT; ++i)
printf("Hello %d\n", i);

return O;

For example thdemo_test.bat (should work with all Windows Osses like 95 or X the folling content:

.\src\win32\release\cobf @demo_token.inv -0 output -b-p
.\etc\pp_ger_msvc.bat test.c

After invoking the batch file you should find thallbwing output in theoutput directory (under theemo
directory)

/* COBF by BB -- 'test.c' obfuscated at Sun Jan 21 18:44:05 1996

*/

#include<stdio.h>

#include"cobf.h"

#ifdef unix

#define b 10

#else

#define b 20

#endif

¢ e(){c a;d(a=0;a<b;++a)f("\x48\x65\x6c\x6¢c\x6f\x20 \x25\x64\x21\n",a)

.9 03}

This shrouded sourcefitest.c in theoutput directory is compilable and yields the same obijiézias the original
test.c sourcefile!

COBF Reference Manual V1.06 (2006-01-07)

You may wonder that seemingly such essential C kegsvadf or for disappeared. The disbandment is simple:
Look at the headerfileobf.h in the output directory:

/* COBF by BB -- obfuscated at Sun Jan 21 18:44:05 1996
*/

#define cint

#define e main

#define d for

#define f printf

#define g return

While local identifiers (here in the example thdér variablg) are completly replaced by a new identifier, some
other identifiers like the C tokens, (for) or identifiers with extern linkagergin, printf) are only exchanged on
preprocessor level.

Now let's take a look on the generated logfildir/cobf.log (the comments were later inserted):

Logfile for shrouding at Sun Jan 21 18:44:05 1996

output dirctory: output
shell script for performing preprocessing: ..\etc\c obf_pp.bat

[* Part 1 */

List of shrouded sourcefiles:

(H) included by another sourcefile (P) preprocessed header
(S) separately shrouded header (X) external header

test.c includes:stdio.h[X]

/* Part 2 */
No headerfile was included by cobf!

[* Part 3 */

The following external includefiles were found:

(all external visible identifiers in this files MUS T be defined as tokens
for cobf!!)

stdio.h

/* Part 4 */
No headerfile was separately shrouded!

COBF Reference Manual V1.06 (2006-01-07)

3.2. Invocation

General syntax:

cobf options [@invocationfile] ... filename [...]

Arguments in an invocationfile are treated aséytivere directly passed by command line.

Main options:

-hi filename specifiedilename as an internal includefile, i. e. a headerfile abhivill be
not separately shrouded and instead includeGQ@BF

-hsfilename specifiedilename as a separate includefile, i. e. a headerfile whiitl be
separately shrouded

-i path addspath to the search path list for source and headex file

-m filename adds identifiers ifilename to the system macro list (will not be shrouded or
preprocessed)

-mi filename Specifies the identifier mapping fifdename. Each line must consist of the
original identifier and then the new identifier aegted by one or more
whitespaces. Indetifier clashes to shrouded idergifire detected.

-t filename adds identifiers ifilename to the keyword list (only shrouded by
preprocessor)

-0 outputdir destination for temporary and shrouded files

-p batchfile script for invoking the preprocessor (1st arguniepiit file, 2nd input file)

Output options:

-b Preserve original filenames in output directpgr default the shrouded files
are renamed to a?.ext where *?' are consecutivbarsrbeginning with 0)

-c filename concatenate all sourcefiles to one filename

-g do not shroud strings (per default strings drfegcated by using the ASCII-
equivalent in hex for each character)

-dd filename dump identifier dictionary téilename

-dmfilename dump identifier mapping list tfilename

-r right margin
-u

-x prefix
-Xn

Debug options:

specifies the left most column for the shroudead cefiles

Treat keyword lists (specified with theoption) in the same manner as
system makro lists (specified with thre-option). The result is no shrouding
on preprocessor level.

For all output files add stringrefix to each identifier

do not use characters 'a’ - 'z' after the yffefi the most used identifiers

-a Do not delete temporary files generated by €@©BF pass
-d include debug comments into shrouded files

-di Add original identifier to each shrouded idéieti

-f filter mode (no shrouding)

-n no preprocessing

-S stop after pass 1 (optional -s0 to -s5)

-v verbose (optional -v1 to -v9 to increase verbesel)

COBF Reference Manual V1.06 (2006-01-07)

3.3. The includefile handling of COBF

COBF distinguishes between three kinds of includefiles:

External Includefiles
We call an includefile an external includefilejtifsn't explicitly passed t€OBF as a comand line parameter.

So external includefiles are not an intrinsic comgrat of your sourcefile configuration. Rather ieipected that
they are per default existing on the target platfdexamples arstdio.h (ANSI) or unistd.h.(Unix).

All global visible identifiers in external includéfs must be declared via thé- or -m- command line option.
The file cansilib.tok contains a subset of reserved identifiers confiognd the ANSI-C-standard. It is not
considered that ANSI-C generally reserves all iifiens for example beginning witis (like isalpha etc.)
because it is actually only possible to declardieitly known identifiers. But in practice this shloin't be a
problem because all "fixed" identifiers of the ANSistandard library declared in the well-known rexadike
stdio.h or stdlib.h are (hopefully) registered.

There are actually no corresponding token listse# or generally for operating system dependenllidefiles
(e. g.dos.h for DOS,windows.h for Windows 3.1/95/NT ounistd.h for Unix). If you have written such lists
please let me know.

External includefiles are marked witK] in the protocol filecobf.log.

Internal Includefiles

We call an includefile an internal includefile ifi$ passed via théii-Option toCOBF. If COBF finds in an early
stage of analyzing a sourcefile an #include stat¢énveh an internal headerfile, it simply substsit(without
help of the preprocessor!) the #include statemdthttive contents of the includefile. Recursive inthg is
prevented. The resulting sourcefile will be pressed if not then-option is given (no preprocessing)

Internal includefiles are marked witR] in the protocol filecobf.log.

Separ ate Headerfiles
We call an includefile a separate includefile ikipassed via théns-Option toCOBF. Separate includefiles will
not be preprocessed. Consequently #define or &teBtents in the remaining sourcefiles which contaaicros
defined in separate includefiles will not be prej@ssed.

Separate includefiles are marked Wigh in the protocol filecobf.log.

COBF Reference Manual V1.06 (2006-01-07)

4. Strategies for Obfuscation of C/C++ Sourcecode

How Do | Handle<...> Includes?

Headerfiles, which export functions, macros or aales available on the target platform should batéd as
external includefiles (see above).

Such headerfiles are normally included with angbekets, like that:

#include <stdio.h>

So

» do not pass such headerfiles via the commanddiGOBF

» declare all identifiers exported by such headesfilia the-t (or -m-)option

This guarantees that that your sourcefiles remainpilable on the target platform
» without unresolved externals reported by the linker

» independend of the fact whether a function is impaeted as a "real” function or as a macro.

How Do | Achieve the Best Possible Compression and Encryption Of My
Sour cefiles?

Use the-a-Option; all sourcefiles will be concatenated t@ dite and the shrouded as a single piece of
sourcecode.

Caution: It might be neccessary to make changestha sourcefiles are compileable as a singlegadc

sourcecode. Possible pitfalls are for example rtepeiacludefiles, redefinition of macros or mulépl
declarations of static variables.

How Do | Preservethe Original File Structure?
To preserve the original file structure do theduling:
» declare your own headerfiles as separate includefil
» to prevent the renaming of your sourcefiles useiaption
Take careCOBF doesn't invoke the preprocessor for separatedeéles; preprocessor statements in other
sourcefiles with dependencies to macros definegparate includefiles won't be shrouded, too. $alasions

to the original sourcecode may be easier. Sceitesmmended to use separate includefiles only where
necessary (see next chapter for an example).

COBF Reference Manual V1.06 (2006-01-07)

How Do | Preserve Portability and Configurability of My Sour cefiles?
COBF distinguishes between system macros of 1st ana&iet.

The so called 1st order system macros are deckitedhe-m-option (examples are LINE__, unix)
A macro will automatically added to the list of 2odler system macros by COBF when

» the macro is #defined in a separate includefile

» the mcro is #defined in a #if-block with the #i&stment containing a system macro.

Then the following rules apply:

 Preprocessor statements containing system madtosr(&' oder 2° order) are not preprocessed by COBF.
» COBF does not shroud 1st order system macros

» COBF substitutes 2nd order system macros on the prepsoc level (as an consequefBF generates for
each 2nd order system marco a #define-stateméime ineaderfilecobf.h)

An example:

#ifdef unix

#define PATH_SEPARATOR "/"
#else

#define PATH_SEPARATOR "\\"
#endif

After shrouding it might look like this:

#ifdef unix
#define 14711 /"
#else

#define 14711 "\\"
#endif

In this examplaunix is a 1st order system macro. Therefo@BF declares automaticalpATH_SEPARATOR
as 2nd order system macro. None of these two maaussbe proprocessed by COBF itself to preserve
portability on different target platforms; but inig example it is suitable to exchange the macro
PATH_SEPARATOR with a less-readable identifier.

-10-

COBF Reference Manual V1.06 (2006-01-07)

The concept of system macros is also usefull teguke source code configurability.

An example:

/* File myconfig.h */
#define MAX_WINDOWS 20
#define MAX_COLORS 256

#if MAX_COLORS > 256
#include "rgb.h"
#endif

It should be posssible for the receiver of the stieal sources to configure the sources in a pretiewes.
There are three posibilities:

» define all macros in myconfig.h explicitly as systenacros

» declare myconfig.h as a separate includefile; theros there defined will be renamend, but they tam
preprocessed

» declare blocks of system macros with the specitesy macro _ COBF_:

An example:

#if ldefined __ COBF__ /* __COBF__ should be neverd efined so the
condition is always true! */

#define MAX_WINDOWS 20

#define MAX_COLORS 256

#endif

The trick is thatCOBF internally keeps COBF___ as a 1st order system macro. Additionally all rmaavhich
are defined in a #if block containingCOBF__ were also declared as 1st order system macresfimnary to

the above rule, normaly they would declared asdtdér system macros).

The benefit in this example is that the identifisbaX WINDOWS andMAX_COLORS keep their original names
after the shrouding too.

-11-

COBF Reference Manual V1.06 (2006-01-07)

5. Technical Details

There are some details about internal procedbeemterested reader may want to know.

5.1. Cor C++
For COBF it makes no difference whether the sources arecauC or C++ becausgOBF analyzes the sources

only on the token level. There is no syntax chéckonsequence is, for example, that C++-style comsg// ..
) are allowed for C programs too.

5.2. Whitespace Compression

A C-Obfuscator shall remove all comments and ashnaiscpossible whitespaces from the program sources.
The removal of comments is easy. One have to chitteanore to remove all unneeded whitespaces.

It's obviously erroneous to change

int a;

to

inta,;

It is not so obviously, that this C++ fragment
List<List<String> >

shall not be changed to

List<List<String>>

because ">>" is a new token (the shift operator).

A C analogue:

a=bh++3;

Here it's not allowed to remove the space betwleemplus signs.

Here is another strange combination:

extern double a, *c;
b=al/*c;

COBF treats the source file as a sequence of tddeparated by whitespaces (normally blanks andimes)lor
comments (C-style and C++-style comments)

COBF inserts a blank between two tokens if othexwis

* two letters or numbers

» two equal charactes

» a asterisk and a non-letter (or vice versa)

would immediately succeed.

-12-

COBF Reference Manual V1.06 (2006-01-07)

| hope | considered all possible "strange" charamtel token combinations which can occur in C o+ G3n the
contrary it should not be difficult to find examplehere the above rules are inserting unneede#tslan

5.3. Identifier renaming

The basic idea of a C obfusctor is quite simiple:

Let's take a look at the follwing program section:

int main()

inti;
i =8;
printf("%d\n",i);

printf("%d\n", i);
For COBF it is completly irrelevant thatis the identifier of two different objects. Itssifficient to replace

systematicly all identical identifiers with another ones (whiiould not occure elsewhere in the original
sources).

! The C Obfusactor OPQCP (OpaqueCopy) from Russ(Ffist¥okzin@cs.utah.edu) inspired me to do the same
-13-

COBF Reference Manual V1.06 (2006-01-07)

6. Troubleshooting

If a program you obfuscated with COBF isn't comgtille you should first look at the figbf.log. There is a
brief summary wha€OBF has done when shrouding your sources.

Here is a short list of possible traps and pitfatig hints:

» use the —di option to get better understandablepdenerror messages (don'’t forget to remove tipisom for
the final obfuscating run!)

» Not all “public” symbols in the external headergilémarked with [X] in cobf.log) are known to COB%ee
the section “How Do | Handle <...> Includes?” featails.

» Check your general obfuscating stretegy: What @&igxternal, internal or separate header file?

» There are problems with macros containing the 't##&" operator or identifiers builded with the tog
pasting operator. Look a at the affiliated sectionthe cobf.log file!

» A system token (e. g. a C key word ligenst or void) gets redefined. Increase the verbose levehéaavt
option to find this out!

* You are using not fully supported #include statenoemstructs e. g. the include filename is a #aefivalue
» A #pragma directive may in some strange situatimise properly treated by COBF
* You are using inline assembling

» You encountered a bug 60OBF (to isolate the problem use the debug optiong, &-a” to have a look at
the temprary files COBF generates)

In every case, by increasing the verbose levelusinty the-d option (debug info is inserted in the shrouded
source file by comments) you should be able toretecthe problem.

-14-

Acknowledgements

COBF Reference Manual V1.06 (2006-01-07)

Barry Corlett (barry@bramley.spacenet.de) proafirthis documentation.

My brother Thomas (thomas.baier@stmuc.com) provitiedirst useful application of COBF: The source
distribution of 3DTO3D, an execellent 3D format gersion tool.

Alexei Kostin reported the bug concerning the wrbagdling of 8 bit character input.

Claudius Schnorr proposed source code change®ifog bompliant with ANSI C++ and reported a bugéti
between shrouded vs. system token identifiers)

Change History

Version Date Comment
1.0 1st public version
1.01 1998-03-22 minor fixes
1.02 2000-10-31 added -x option (prefix)
1.03 2002-05-01 - Documentation and installatiaaolp
- default PC target is now MS Visual Studio
- source code change: when opening a stream noleieigs flags will be passed
(old method seems to open the stream with wronguttefettings ..)
1.04 2003-01-01 bugfix: now 8 bit input is corrgdtandled (due to switch to GNU-Flex 2.5)
1.05 2006-01-02 Adaptation of the source code fFdSEAC++ (tested with Visual Studio .NET
2003 and gcc 3.4.4)
New command line options ‘-xn’, ‘-di’ and ‘-dd’
Bugfix: identifier clash between system token dietl shrouded identifiers now
detected
1.06 2006-01-07 New command line options ‘-mi’ &’

Changed semantics for building the shrouded identiflefault prefix is now ‘I’
which can be overwritten by the ‘-x’ option

-15-

