NumPy Reference
Release 1.6.0

Written by the NumPy community

May 15, 2011

CONTENTS

1 Array objects 3
1.1 The N-dimensional array (ndarray) . . . « v v v v v v i vt i i e e e e e e e e e 3
1.2 Scalars e e e e e e e e e e e 74
1.3 Datatype objects (ALYPE) . v v v v v v i e e e e e e e e e e e e e e e e 112
L4 Indexing i i e e e e e e e e e e 123
1.5 Standard array subclasses oL e e 127
1.6 Masked arrays L e e e e e e e e e e 254
1.7 The Array Interface e e 439

2 Universal functions (ufunc) 445
2.1 Broadcasting e e 445
2.2 Output type determination bt i e e e e e e e e e e e e e e 446
2.3 Useofinternal buffers e 446
24 Errorhandling L e e e e e e 446
2.5 CastingRules o e e e e e e 449
2.6 UTUNC . . . e e e e e e e e 451
2.7 Available ufuncs L L e e e e e e e 459

3 Routines 463
3.1 Array Ccreation rOutines v vttt e e e e e e e e e e e e e e 463
3.2 Array manipulation routineso e e e e e e e e 494
3.3 Indexing roUtiNeS v v v v v i e 529
34 DatatyperoUtiNeS . . . v v v v v vt e 559
3.5 Inputand output L e e e e e e e e e 574
3.6 Discrete Fourier Transform (numpy . ££t) oo o L 594
3.7 Linear algebra (numpy .1inalg) oo i i e e e e 614
3.8 Random sampling (numpy . random)ttt e e e e e e e e 645
3.9 Sorting, searching, and counting L. L e e e e e e e e e 699
3,10 Logic functions o o e e e e e e e e e e e e e e 712
3.11 Binary Operationso i i e e e e e e e e e e e e e 728
312 StatiStiCS + . v v v v e 735
3.13 Mathematical functions e e e e e e e e e e 756
3.14 Functional programming v v v i i e e e e e e e e e e e e e e e e e e e 815
3.15 Polynomials L e e e e e e 820
3.16 Financial functions L oL e e e e e e e e e e 833
307 Setroutines v v v o e 841
3.18 Window functions L e e e e e e e e e e e e e 846
3.19 Floating pointerror handling L e e e e e e 857
3.20 Masked array Operationso it e 863

8

3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31

Numpy-specific help functions e e e e e
Miscellaneous TOULINES v v v v v e
Test Support (NUMPY . £ESTING) « v v v v v e e e e e e e e e e e e e e e e e e e
ASSEITS .« v o v e
Mathematical functions with automatic domain (numpy.emath)
Matrix library (numpy .matl1ib) o oo e e e e
Optionally Scipy-accelerated routines (numpy.dual)« v v v v v v vt e e e e
Numarray compatibility (NUMPY . NUMATTAY) « v v v v v v v v v e e e e e e e e e e e e e
Old Numeric compatibility (numpy .oldnumeric). v vt
C-Types Foreign Function Interface (numpy .ctypeslib) o oo .
String Operationso e e e e e e e e e e e e e e e e e

Packaging (numpy .distutils)

4.1
4.2
4.3

Modules in numpy .distutils o o e e e e e e e e e e e e
Building Installable C libraries e e e e
Conversion of .srcfiles e e e e e e

Numpy C-API

5.1
5.2
53
54
55
5.6
5.7
5.8

Python Types and C-Structures ottt it e e e e e e
System configuration e e e e e e e e e e e e e e e e e e
Data Type APL e e e e
Array APL . . . e e
Array Iterator APL oL
UFunc APT o e e
Generalized Universal Function APT
Numpy core libraries o o i e e e e e e e e e e e e e

Numpy internals

6.1
6.2
6.3

Numpy C Code Explanations o v it i e e e e e e e e e e e e e e
Internal organization of nUMPY arrays oL e e e e e e e e e e e
Multidimensional Array Indexing Order Issues

Numpy and SWIG

7.1
7.2

Numpy.i: a SWIG Interface File for NumPy
Testing the numpy.i Typemaps e

Acknowledgements

Bibliography

Python Module Index

Index

986

1035
1035
1046
1047

1049
1049
1063
1065
1068
1104
1119
1125
1127

1133
1133
1140
1141

1143
1143
1156

1159

1161

1167

1169

NumPy Reference, Release 1.6.0

Release
1.6

Date
May 15, 2011

This reference manual details functions, modules, and objects included in Numpy, describing what they are and what
they do. For learning how to use NumPy, see also user.

CONTENTS 1

NumPy Reference, Release 1.6.0

2 CONTENTS

CHAPTER
ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, efc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array
scalar types built in Numpy. The array scalars allow easy manipulation of also more complicated arrangements of
data.

[gad | |
,.| data-type J = array

b

header TL ‘ ‘

ndarray

Figure 1.1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to de-
scribe the data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size
element of the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number
of dimensions and items in an array is defined by its shape, which is a tuple of N positive integers that specify
the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of
which is associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing
or slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray. Different

NumPy Reference, Release 1.6.0

ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That is, an
ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python strings or objects implementing the buffer or array
interfaces.

Example
A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array([[1l, 2, 31, [4, 5, 6]], np.int32)
>>> type (x)

<type ’numpy.ndarray’>

>>> x.shape

(2, 3)

>>> x.dtype

dtype (" int32')

The array can be indexed using Python container-like syntax:

>>> x[1,2] # i.e., the element of x in the xsecond* row, *thirds
column, namely, 6.

For example slicing can produce views of the array:

>>> y = x[:,1]

>>> y

array ([2, 5])

>>> y[0] = 9 # this also changes the corresponding element in x
>>> y

array ([9, 5])
>>> x
array ([[1, 9, 3]

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray An array object represents a multidimensional, homogeneous array of fixed-size items.

class numpy .ndarray
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters
given here refer to a low-level method (ndarray(...)) for instantiating an array.

For more information, refer to the numpy module and examine the the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below) :

shape : tuple of ints
Shape of created array.
dtype : data-type, optional

Any object that can be interpreted as a numpy data type.

4 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {‘C’, ‘F’}, optional
Row-major or column-major order.
See Also:
array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.
Notes
There are two modes of creating an array using ___new___
L.If buffer is None, then only shape, dtype, and order are used.

2.If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No__init__ method is needed because the array is fully initialized after the ___new___ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray (shape=(2,2), dtype=float, order='F')
array ([[-1.13698227e+002, 4.25087011e-3037,
[2.88528414e-306, 3.27025015e-30911) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),

offset=np.int_ () .itemsize,

dtype=int) # offset = l+itemsize, i.e. skip first element
array ([2, 31])

1.1. The N-dimensional array (ndarray) 5

NumPy Reference, Release 1.6.0

Attributes

T

data
dtype
flags
flat
imag(val)
real(val)
size(a[, axis])
itemsize
nbytes
ndim(a)
shape(a)
strides
ctypes
base

Create a data type object.

Return the imaginary part of the elements of the array.
Return the real part of the elements of the array.
Return the number of elements along a given axis.

Base object for a dictionary for look-up with any alias for an array dtype.
Return the number of dimensions of an array.

Return the shape of an array.

create and manipulate C data types in Python

class numpy . dtype
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be
constructed from different combinations of fundamental numeric types.

Parameters

obj :

Object to be converted to a data type object.

align : bool, optional

Add padding to the fields to match what a C compiler would output for a similar C-
struct. Can be True only if 0bj is a dictionary or a comma-separated string.

copy : bool, optional

Make a new copy of the data-type object. If False, the result may just be a reference
to a built-in data-type object.

See Also:

result_type

Examples

Using array-scalar type:

>>> np.dtype (np.intl6)
dtype ("intl6’)

Record, one field name ‘f1°, containing int16:

>>> np.dtype ([(" £f1’, np.intl6)])
dtype ([(" £f17, '<i2’)1])

Record, one field named ‘f1’, in itself containing a record with one field:

>>> np.dtype([(" £17, [("f1’, np.intl6)]1)1])
dtype ([(" f17, [("f17", "<i2")])1)

Record, two fields: the first field contains an unsigned int, the second an int32:

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.dtype ([(' £f1’, np.uint), ('£2’, np.int32)1])
dtype ([(" £1", ’"<u4d’), ("f2', '<id’)])

Using array-protocol type strings:
>>> np.dtype([('a’,” £8"), ("b","510")1)
dtype ([("a’, "<£87), ('b’, ’"[S10")])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype ("i4, (2,3)f8")
dtype ([(" £0", ’'<i4"), ('f1l’, "<£8’, (2, 3))1)

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype ([('hello’, (np.int,3)), ("world’,np.void, 10)1])
dtype ([("hello’, ’<id4’, 3), ('world’, ’|V10')])

Subdivide int16 into 2 int8°s, called x and y. 0 and 1 are the offsets in bytes:
>>> np.dtype ((np.intl6, {’'x’:(np.int8,0), v’ :(np.int8,1)}))
dtype (("<i2’, [('x’, "[i1"), ("y’, "1i1")1))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype ({' names’ : ["gender’,’age’], 'formats’:[’S1l’,np.uint8]})
dtype ([("gender’, 7 [S1"), ("age’, ’"|ul’)])

Offsets in bytes, here 0 and 25:

>>> np.dtype ({’ surname’ : (" S25’,0),"age’ : (np.uint8,25) })

dtype ([(" surname’, ' [S25"), ('age’, "|ul’)])
Methods
newbyteorder

numpy . imag (val)
Return the imaginary part of the elements of the array.

Parameters
val : array_like

Input array.

Returns
out : ndarray

Output array. If val is real, the type of val is used for the output. If val has complex
elements, the returned type is float.

See Also:

real, angle, real_if_close

Examples

>>> a = np.array([1+23, 3+43, 5+63])
>>> a.imag

array ([2., 4., 6.1)

>>> a.imag = np.array([8, 10, 12])

1.1.

The N-dimensional array (ndarray)

NumPy Reference, Release 1.6.0

>>> a

array ([1. +8.3, 3.+10.3, 5.+

numpy . real (val)

Return the real part of the elements of the array.

Parameters
val : array_like

Input array.

Returns
out : ndarray

12.31)

Output array. If val is real, the type of val is used for the output. If val has complex

elements, the returned type is float.
See Also:

real_if_close, imag, angle

Examples

>>> a = np.array([1+23, 3+47, 5+631])

>>> a.real

array ([1., 3., 5.1)

>>> a.real = 9

>>> a

array ([9.+2.7, 9.+4.7, 9.+6.731)

>>> a.real = np.array([9, 8, 7])

>>> a

array ([9.+2.7, 8.+4.7, 7.+6.731)

Methods

all(al, axis, out]) Test whether all array elements along a given axis evaluate to True.
any(a[, axis, out]) Test whether any array element along a given axis evaluates to True.
argmax(a[, axis]) Indices of the maximum values along an axis.
argmin(a[, axis]) Return the indices of the minimum values along an axis.
argsort(a[, axis, kind, order]) Returns the indices that would sort an array.
astype
byteswap
choose(a, choices[, out, mode]) Construct an array from an index array and a set of arrays to choose from.
clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.
compress(condition, a[, axis, out]) Return selected slices of an array along given axis.
conJ(x[, out]) Return the complex conjugate, element-wise.
conjugate(x[, out]) Return the complex conjugate, element-wise.
copy(a) Return an array copy of the given object.
cumprod(al, axis, dtype, out]) Return the cumulative product of elements along a given axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given axis.
diagonal(a[, offset, axisl, axis2]) Return specified diagonals.
dot(a, b[, out]) Dot product of two arrays.
dump
dumps
fill
flatten
getfield

Continued on next page ‘

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Table 1.1 — continued from previous page

item

itemset

max(al, axis, out]) Return the maximum of an array or maximum along an axis.
mean(al, axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min(al, axis, out]) Return the minimum of an array or minimum along an axis.
newbyteorder

nonzero(a) Return the indices of the elements that are non-zero.
prod(al, axis, dtype, out]) Return the product of array elements over a given axis.
ptp(al, axis, out]) Range of values (maximum - minimum) along an axis.
put(a, ind, v, mode]) Replaces specified elements of an array with given values.
ravel(a[, order]) Return a flattened array.

repeat(a, repeats|, axis]) Repeat elements of an array.

reshape(a, newshape|, order]) Gives a new shape to an array without changing its data.
resize(a, new_shape) Return a new array with the specified shape.
round(al, decimals, out]) Round an array to the given number of decimals.
searchsorted(a, v[, side]) Find indices where elements should be inserted to maintain order.
setasflat

setfield

setflags

sort(a[, axis, kind, order]) Return a sorted copy of an array.
squeeze(a) Remove single-dimensional entries from the shape of an array.
std(a[, axis, dtype, out, ddof]) Compute the standard deviation along the specified axis.
sum(a[, axis, dtype, out]) Sum of array elements over a given axis.
swapaxes(a, axisl, axis2) Interchange two axes of an array.

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
tofile

tolist

tostring

trace(al, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(al, axes]) Permute the dimensions of an array.

var(a[, axis, dtype, out, ddof]) Compute the variance along the specified axis.
view

numpy .all (a, axis=None, out=None)
Test whether all array elements along a given axis evaluate to True.

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical AND is performed. The default (axis = None) is to perform
alogical AND over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as
the expected output and its type is preserved (e.g., if dtype (out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for more
details.

Returns
all : ndarray, bool

1.1. The N-dimensional array (ndarray) 9

NumPy Reference, Release 1.6.0

A new boolean or array is returned unless out is specified, in which case a reference to
out is returned.

See Also:
ndarray.all
equivalent method
any
Test whether any element along a given axis evaluates to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Z€ero.
Examples
>>> np.all([[True,False], [True,True]])
False
>>> np.all([[True,False], [True,Truel], axis=0)

array ([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])

>>> z=np.all([-1, 4, 5], out=o0)

>>> id(z), id(o), =z

(28293632, 28293632, array ([True], dtype=bool))

numpy . any (a, axis=None, out=None)
Test whether any array element along a given axis evaluates to True.
Returns single boolean unless axis is not None

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical OR is performed. The default (axis = None) is to perform
a logical OR over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if it is of type float, then it will remain
so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See doc.ufuncs
(Section “Output arguments’) for details.

Returns
any : bool or ndarray

10

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A new boolean or ndarray is returned unless out is specified, in which case a reference
to out is returned.

See Also:
ndarray.any
equivalent method
all
Test whether all elements along a given axis evaluate to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Z€ero.
Examples
>>> np.any ([[True, False], [True, Truell)
True
>>> np.any ([[True, False], [False, False]], axis=0)

array ([True, False], dtype=bool)

>>> np.any ([-1, 0, 51])
True

>>> np.any (np.nan)
True

>>> o=np.array ([False]

>>> z=np.any([-1, 4, 5], out=o0)

>>> 7, O

(array ([True], dtype=bool), array([True], dtype=bool))
>>> # Check now that z 1is a reference to o

>>> z is o

True

>>> id(z), id(o) # identity of z and o

(191614240, 191614240)

numpy .argmax (a, axis=None)
Indices of the maximum values along an axis.

Parameters
a: array_like

Input array.
axis : int, optional
By default, the index is into the flattened array, otherwise along the specified axis.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See Also:

ndarray.argmax, argmin

1.1. The N-dimensional array (ndarray) 11

NumPy Reference, Release 1.6.0

amax
The maximum value along a given axis.

unravel_index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence
are returned.

Examples
>>> a = np.arange (6) .reshape (2, 3)
>>> a
array ([[0, 1, 21,
[3, 4, 511)
>>> np.argmax(a)

5

>>> np.argmax(a, axis=0)
array ([1, 1, 11)

>>> np.argmax(a, axis=1)
array ([2, 2])

>>> b = np.arange (6)
>>> b[l] = 5
>>> Db

array ([0, 5, 2, 3, 4, 51)
>>> np.argmax (b) # Only the first occurrence is returned.
1

numpy .argmin (a, axis=None)
Return the indices of the minimum values along an axis.
See Also:

argmax
Similar function. Please refer to numpy . argmax for detailed documentation.

numpy .argsort (a, axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a: array_like

Atrray to sort.
axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.

order : list, optional

12 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
al[index_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.
Notes
See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.

Examples
One dimensional array:

>>> x = np.array([3, 1, 21)
>>> np.argsort (x)
array ([1, 2, 0])

Two-dimensional array:

>>> x = np.array ([[0, 31, [2, 2]11])
>>> x
array ([[0, 3],

(2, 211

>>> np.argsort (x, axis=0)
array ([[0, 11,
(1, 011

>>> np.argsort (x, axis=1)
array ([[0, 1],
[0, 111)

Sorting with keys:

>>> x = np.array ([(1, 0), (0, 1)1, dtype=[('x", '<id"), ('vy’', '<id’)])
>>> x
array ([(1, 0), (0, 1)1,

dtype=[("x', ’'<id"), ('y’', '<i4’')1])

>>> np.argsort (x, order=('x’,’y’))
array ([1, 0])

1.1. The N-dimensional array (ndarray) 13

NumPy Reference, Release 1.6.0

>>> np.argsort (x, order=("y’,’ ’x"))
array ([0, 17)

numpy . choose (a, choices, out=None, mode="raise’)

Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality,
this function is less simple than it might seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([cl[al[I]]l[I] for I in ndi.ndindex(a.shape)l]).
But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are
first broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1
we have that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with
shape Ba . shape is created as follows:

*if node=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1]; now, suppose that i (in that range) is the value at the (jO, j1, ..., jm) position in Ba - then the
value at the same position in the new array is the value in Bchoices[i] at that same position;

*if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to
map integers outside the range [0, n-1] back into that range; and then the new array is constructed as
above;

*if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped
to O; values greater than n-/ are mapped to n-1; and then the new array is constructed as above.
Parameters

a: int array

This array must contain integers in [0, n-1], where n is the number of choices, unless
mode=wrap or mode=clip, in which cases any integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the same shape. If
choices is itself an array (not recommended), then its outermost dimension (i.e., the one
corresponding to choices.shape [0]) is taken as defining the “sequence”.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’ }, optional
Specifies how indices outside [0, n-1] will be treated:
* ‘raise’ : an exception is raised
* ‘wrap’ : value becomes value mod n
 ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array : array

The merged result.

Raises
ValueError: shape mismatch :

14

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

If a and each choice array are not all broadcastable to the same shape.

See Also:

ndarray.choose
equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported,
choices should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples

>>> choices
(20,

21

>>> np.choose([2,

rfo, 1, 2, 31, I[10, 11, 12, 131,
, 22, 231, [30, 31, 32, 3311
3, 1, 01, choices

the first element of the result will be the first element of the
third (2+1) "array" in choices, namely, 20; the second element
will be the second element of the fourth (3+1) choice array, i.e.,
31, etc.
S)
array ([20, 31, 12, 31)
>>> np.choose([2, 4, 1, 0], choices, mode=’'clip’) # 4 goes to 3 (4-1)
array ([20, 31, 12, 3])

>>> # because there are 4 choice arrays

>>> np.choose([2,
12,

1
0

array ([20,
>> # i.e.,

’

4, 1,

31)

0], choices, mode='wrap’) # 4 goes to (4 mod 4)

A couple examples illustrating how choose broadcasts:

>>>a = [[1, O, 11, (O, 1, O1, [1, O, 1711
>>> choices = [-10, 10]
>>> np.choose (a, choices)
array ([[10, =10, 1071,
[-10, 10, =107,
[10, =10, 10711)
>>> # With thanks to Anne Archibald
>>> a = np.array ([0, 1]).reshape((2,1,1))
>>> cl = np.array([1l, 2, 3]1).reshape((1,3,1))
>>> ¢c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (cl, c2)) # result is 2x3x5, res[0,:,:]=cl, res[1l,:,:]=c2
array ([[[1, 1, 1, 1, 11,
[z, 2, 2, 2, 21,
[3, 3, 3, 3, 311,
rr-1, -2, -3, -4, -51,
[-1, -2, -3, -4, =571,
[-1, -2, -3, -4, -5111)
numpy .clip (a, a_min, a_max, out=None)

Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval

of [0,

Parameters
a: array_like

1] is specified, values smaller than O become 0, and values larger than 1 become 1.

1.1. The N-dimensional array (ndarray)

15

NumPy Reference, Release 1.6.0

Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.arange (10)

>>> np.clip(a, 1, 8)

array ([, 1, 2, 3, 4, 5, 6, 7, 8, 8])

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])

>>> np.clip(a, 3, 6, out=a)

array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

>>> a = np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy . compress (condition, a, axis=None, out=None)

Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condi-
tion evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition : 1-D array of bools

Array that selects which entries to return. If len(condition) is less than the size of a
along the given axis, then output is truncated to the length of the condition array.

a: array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the flattened array.

out : ndarray, optional

16 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Output array. Its type is preserved and it must be of the right shape to hold the output.

Returns
compressed_array : ndarray

A copy of a without the slices along axis for which condition is false.
See Also:
take, choose, diag,diagonal, select

ndarray.compress
Equivalent method.

numpy .doc.ufuncs
Section “Output arguments”

Examples
>>> a = np.array ([[1, 2], [3, 4], [5, 611)
>>> a
array ([[1, 217,
(3, 41,
[5, 611)
>>> np.compress ([0, 1], a, axis=0)
array ([[3, 4]1)
>>> np.compress ([False, True, True], a, axis=0)
array([[3, 41,
[5, 611)

>>> np.compress ([False, Truel], a, axis=1)
array ([[2],

(41,

[611)

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress ([False, Truel], a)
array ([2])

numpy .conj (x[, out])
Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate (1+273)
(1-23)

>>> x = np.eye(2) + 13 * np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.71,

[0.-0.3, 1.-1.311)

1.1. The N-dimensional array (ndarray) 17

NumPy Reference, Release 1.6.0

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

Array interpretation of a.

Notes
This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array X, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = x
>>> z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[0]
False

numpy . cumprod (a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters
a: array_like

Input array.
axis : int, optional

Axis along which the cumulative product is computed. By default the input is flattened.
dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which the elements are
multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the
default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type of the resulting values will be cast if
necessary.

Returns
cumprod : ndarray

18 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1,2,3])

>>> np.cumprod(a) # intermediate results 1, 1#2
total product 1#2%3 = 6
array ([1l, 2, 6])
>>> a = np.array([[1l, 2, 31, [4, 5, 611)

>>> np.cumprod(a, dtype=float) # specify type of output
array ([1., 2., 6., 24., 120., 720.1)

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array ([[1, 2, 31,
[4, 10, 18]11])

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array ([[1, 2, 6],
[4, 20, 12011)

numpy . cumsum (a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a: array_like

Input array.
axis : int, optional

Axis along which the cumulative sum is computed. The default (None) is to compute
the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments”) for more details.

Returns
cumsum_along_axis : ndarray.

1.1.

The N-dimensional array (ndarray) 19

NumPy Reference, Release 1.6.0

A new array holding the result is returned unless out is specified, in which case a ref-
erence to out is returned. The result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See Also:

sum
Sum array elements.

trapz
Integration of array values using the composite trapezoidal rule.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> a
array ([[1, 2, 31,
[4, 5, 6]1)
>>> np.cumsum(a)
array ([1, 3, 6, 10, 15, 211])

>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array ([1., 3., 6., 10., 15., 21.1)
>>> np.cumsum(a, axis=0) # sum over rows for each of the 3 columns
array ([[1, 2, 31,

(5, 7, 911)
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array ([[1, 3, 6],

[4, 9, 1511)

numpy .diagonal (a, offset=0, axis1=0, axis2=1)

Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form
ali, i+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are
used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can
be determined by removing axis! and axis2 and appending an index to the right equal to the size of the
resulting diagonals.

Parameters
a: array_like

Array from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axisl : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

20

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned. If the dimension of a is
larger, then an array of diagonals is returned, “packed” from left-most dimension to
right-most (e.g., if a is 3-D, then the diagonals are “packed” along rows).

Raises
ValueError :

If the dimension of a is less than 2.
See Also:
diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

trace
Sum along diagonals.

Examples
>>> a = np.arange (4) .reshape (2, 2)
>>> a
array ([[0, 1],

(2, 311
>>> a.diagonal ()
array ([0, 31)
>>> a.diagonal (1)
array ([1])

A 3-D example:

>>> a = np.arange(8) .reshape(2,2,2); a
array ([[[0, 11,

[2, 311,

[[4, 51,

[6, 7111)

>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and
1) # the "middle" (row) axis first.

(1, 711

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> af:,:,0] # main diagonal is [0 6]
array ([[0, 2]

[4, 611)
>>> af:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

numpy .dot (a, b, out=None)
Dot product of two arrays.

1.1.

The N-dimensional array (ndarray) 21

NumPy Reference, Release 1.6.0

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors
(without complex conjugation). For N dimensions it is a sum product over the last axis of a and the
second-to-last of b:

dot (a, b)[i,],k,m] = sum(ali,],:] * blk,:,m])

Parameters
a: array_like

First argument.
b : array_like

Second argument.
out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

Returns
output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a
scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises
ValueError :

If the last dimension of a is not the same size as the second-to-last dimension of b.
See Also:
vdot

Complex-conjugating dot product.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.
Examples

>>> np.dot (3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot ([23, 331, [23, 33])
(-13+07)

For 2-D arrays it’s the matrix product:

>>> a = [[1, 0], [0, 11]
>>> b = [[4, 11, [2, 21]
>>> np.dot (a, b)
array ([[4, 11,

(2, 211)

22 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.arange (3%x4%x5%6) .reshape((3,4,5,6))

>>> b = np.arange (3%x4%x5%6) [::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]

499128

>>> sum(al[2,3,2,:]1 * b[1,2,:,2])

499128

numpy .mean (a, axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
average
Weighted average
Notes
The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for floar32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1, 21, [3, 411)
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array ([2., 3.1)

1.1.

The N-dimensional array (ndarray) 23

NumPy Reference, Release 1.6.0

>>> np.mean(a, axis=1)
array ([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512x512), dtype=np.float32)

>>> a[0, :] = 1.0
>>> af[l, :] = 0.1
>>> np.mean (a)
0.546875

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy .nonzero (a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in
that dimension. The corresponding non-zero values can be obtained with:

a[nonzero (a)]

To group the indices by element, rather than dimension, use:

transpose (nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a: array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples
>>> x = np.eye(3)
>>> x
array ([[1., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)
>>> np.nonzero (x)
(array ([0, 1, 21), array ([0, 1, 2]))

24 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x[np.nonzero (x)]
array ([1., 1., 1.1)
>>> np.transpose (np.nonzero (x))
array ([[0, O],
(1, 11,
(2, 211)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array
a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the
indices of the a where the condition is true.

>>> a = np.array([[1,2,3],14,5,61,17,8,911)
>>> a > 3
array ([[False, False, False],
[True, True, Truel,
[True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array (1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the boolean array can also be called.
>>> (a > 3) .nonzero ()
(array (1, 1, 1, 2, 2, 2]), array([O, 1, 2, 0, 1, 2]))
numpy . prod (a, axis=None, dtype=None, out=None)
Return the product of array elements over a given axis.

Parameters
a: array_like

Input data.
axis : int, optional

Axis over which the product is taken. By default, the product of all elements is calcu-
lated.

dtype : data-type, optional

The data-type of the returned array, as well as of the accumulator in which the elements
are multiplied. By default, if a is of integer type, dfype is the default platform integer.
(Note: if the type of a is unsigned, then so is drype.) Otherwise, the dtype is the same
as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

Returns
product_along_axis : ndarray, see dtype parameter above.

An array shaped as a but with the specified axis removed. Returns a reference to out if
specified.

See Also:
ndarray.prod
equivalent method

numpy .doc.ufuncs
Section “Output arguments”

1.1.

The N-dimensional array (ndarray) 25

NumPy Reference, Release 1.6.0

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a
32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

Examples

By default, calculate the product of all elements:

>>> np.prod([1l.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.11)
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.1]1, axis=1l)
array ([2., 12.1)

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.uint8)
>>> np.prod(x) .dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([l, 2, 3], dtype=np.int8)
>>> np.prod(x) .dtype == np.int
True

numpy . ptp (a, axis=None, out=None)

Range of values (maximum - minimum) along an axis.
The name of the function comes from the acronym for ‘peak to peak’.

Parameters
a: array_like

Input values.
axis : int, optional

Axis along which to find the peaks. By default, flatten the array.
out : array_like

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type of the output values will be cast if
necessary.

Returns
ptp : ndarray

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

26

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 1]

(2, 311

>>> np.ptp(x, axis=0)
array ([2, 2])

>>> np.ptp(x, axis=1)
array ([1, 1])

numpy . put (a, ind, v, mode="raise’)
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.
ind : array_like

Target indices, interpreted as integers.
v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

See Also:

putmask, place

Examples

>>> a = np.arange(5)

>>> np.put(a, [0, 2], [-44, -551])
>>> a

array ([—44, 1, -55, 3, 41)

>>> a = np.arange (5)
>>> np.put(a, 22, -5, mode='clip’)
>>> a

array ([O, 1, 2, 3, =-51)

1.1.

The N-dimensional array (ndarray) 27

NumPy Reference, Release 1.6.0

numpy . ravel (a, order="C’)
Return a flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’JF’, ‘A’, ‘K’}, optional

The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.
‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size(),).

See Also:

ndarray.flat
1-D iterator over an array.

ndarray.flatten
1-D array copy of the elements of an array in row-major order.

Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be
generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for Fortran-, or column-major,
mode.

Examples

It is equivalent to reshape (-1, order=order).

>>> x np.array ([[1, 2, 31, [4, 5, 611])
>>> print np.ravel (x)
[1 2 3 45 6]

>>> print x.reshape(-1)
[1 2345 6]

>>> print np.ravel(x, order='F’)
[1 42 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 42 5 3 6]

>>> print np.ravel(x.T, order=’'A’)
[1 2 3 45 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

28 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.arange(3)[::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order="K’)

array ([2, 1, 0])

>>> a = np.arange (12) .reshape(2,3,2) .swapaxes(1,2); a

array ([[[O, 2, 4],
1, 3, 511,
[[6, 8, 107,
L7, 9 11111)

>>> a.ravel (order='C")
array([O, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111])
>>> a.ravel (order='K’)
array ([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111])

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a: array_like

Input array.
repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.
See Also:
tile
Tile an array.
Examples

>>> x = np.array ([[1,2]1,[3,411)
>>> np.repeat (x, 2)

array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
4
[

[3, 3, 3, , 4, 411)
>>> np.repeat (x, 1, 21, axis=0)
array ([[1, 2],

[3, 41,

[3, 411)

numpy . reshape (a, newshape, order="C"’)
Gives a new shape to an array without changing its data.

1.1.

The N-dimensional array (ndarray) 29

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Array to be reshaped.
newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to
be raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))

A transpose make the array non-contiguous

>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the
initial object.

>>> ¢ = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 6])

>>> np.reshape(a, 6, order='F’)
array ([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 27,

[3, 41,

[5, 611)

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note
that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of
a.

Parameters
a: array_like

30 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array to be resized.
new_shape : int or tuple of int
Shape of resized array.

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See Also:
ndarray.resize
resize an array in-place.

Examples

>>> a=np.array([[0,1]1,[2,311])
>>> np.resize(a, (1,4))
array ([[0, 1, 2, 311)
>>> np.resize(a, (2,4))
array ([[0, 1, 2, 31,

[0, 1, 2, 311

numpy . searchsorted (a, v, side="left’)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a: 1-D array_like

Input array, sorted in ascending order.
v : array_like

Values to insert into a.
side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either 0 or N (where N is the length of
a).

Returns
indices : array of ints

Array of insertion points with the same shape as v.
See Also:
sort
Return a sorted copy of an array.

histogram
Produce histogram from 1-D data.

1.1.

The N-dimensional array (ndarray) 31

NumPy Reference, Release 1.6.0

Notes
Binary search is used to find the required insertion points.

As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.

Examples

>>> np.searchsorted([1,2,3,4,5], 3)

2

>>> np.searchsorted([1,2,3,4,5], 3, side='right’)
3

>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array ([0, 5, 1, 2])

numpy . sort (a, axis=-1, kind="quicksort’, order=None)
Return a sorted copy of an array.

Parameters
a: array_like

Array to be sorted.
axis : int or None, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

Returns
sorted_array : ndarray

Array of the same type and shape as a.
See Also:
ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.
Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work
space size, and whether they are stable. A stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following properties:

32 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

kind speed worst case work space | stable
‘quicksort’ 1 O(n"2) 0 no
‘mergesort’ | 2 O(n*log(n)) | ~n/2 yes
‘heapsort’ 3 O(n*log(n)) | O no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Con-
sequently, sorting along the last axis is faster and uses less space than sorting along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then
the order is determined by the real parts except when they are equal, in which case the order is determined

by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour.
In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

*Real: [R, nan]

*Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to

the non-nan part if it exists. Non-nan values are sorted as before.

Examples
>>> a = np.array ([[1,41,103,111)
>>> np.sort (a)
array ([[1, 4],
(1, 311)

>>> np.sort (a, axis=None)

array ([1, 1, 3, 41])
>>> np.sort (a, axis=0)
array ([[1, 1],

[3, 411)

sort along the last axis

sort the flattened array

sort along the first axis

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype =
>>> values =

[(" name’, ’"S10"),
[('Arthur’, 1.8, 41),
(" Galahad’, 1.7, 38)]1
np.array (values, dtype=dtype)
>>> np.sort(a, order="height’)
array ([("Galahad’, 1.7, 38), (’Arthur’,
("Lancelot’, 1.8999999999999999,
dtype=[('name’, ’|S10’),

("height’,
>>> g =
1.8,
("height’,

Sort by age, then height if ages are equal:

float),
(" Lancelot’,

38) 1,
r<fg8’),

("age’, int)]

1.9, 38),

create a structured array

41),

("age’, ’'<i4’)])

>>> np.sort(a, order=["age’, ’"height’])
array ([("Galahad’, 1.7, 38), (’Lancelot’, 1.8999999999999999, 38),
("Arthur’, 1.8, 41)],
dtype=|[('name’, ’|S10’), ("height’, ’"<£f8’), ('age’, ’'<id’)])

numpy . squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

Returns
squeezed : ndarray

1.1. The N-dimensional array (ndarray)

33

NumPy Reference, Release 1.6.0

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

Examples
>>> x = np.array ([[[0], [1], [2]11)
>>> x.shape
(1, 3, 1)
>>> np.squeeze (x) .shape
(3,)

numpy . std (a, axis=None, dtype=None, out=None, ddof=0)

Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The
standard deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See Also:
var, mean
numpy .doc.ufuncs
Section “Output arguments”
Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std
= sqgrt (mean(abs(x — x.mean())**x2)).

The average squared deviation is normally calculated as x.sum () / N, where N = len (x). If, how-
ever, ddof is specified, the divisor N — ddof is used instead. In standard statistical practice, ddof=1
provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables. The standard deviation computed in

34

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased

estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always

real and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a

higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.51)

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512x512), dtype=np.float32)

>>> af[0,:] = 1.0
>>> afl,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

numpy . sum (a, axis=None, dtype=None, out=None)
Sum of array elements over a given axis.

Parameters
a: array_like

Elements to sum.

axis : integer, optional

Axis over which the sum is taken. By default axis is None, and all elements are summed.

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are
summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the default platform integer. In that case, the default plat-

form integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is
given, it must be of the appropriate shape (the shape of a with axis removed, i.e.,
numpy.delete (a.shape, axis)). Its type is preserved. See doc.ufuncs (Sec-
tion “Output arguments”) for more details.

Returns
sum_along_axis : ndarray

1.1. The N-dimensional array (ndarray)

35

NumPy Reference, Release 1.6.0

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, a scalar is returned. If an output array is specified, a reference to out

is returned.
See Also:
ndarray.sum
Equivalent method.

cumsum

Cumulative sum of array elements.

trapz

Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.sum([0.5, 1.57])
2.0
>>> np.sum([0.5, 0.7,
1
>>> np.sum([[0, 1],
6
>>> np.sum([[0, 1],

array ([0, 6])
>>> np.sum([[0, 1],
array ([1, 51)

If the accumulator is too small, overflow occurs:

>>> np.ones (128, dtype=np.int8) .sum(dtype=np.int8)

-128

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.
axisl : int

First axis.
axis2 : int

Second axis.

Returns
a_swapped : ndarray

dtype=np.int32)

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

36

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
>>> x = np.array([[1,2,311)
>>> np.swapaxes(x,0,1)
array ([[1],
(21,
[311)
>>> x = np.array ([[[0,1]1,02,311,[[4,51,106,7111)
>>> x
array ([[[0, 11,
[2, 311,
(4, 51,
[6, 7111)

>>> np.swapaxes(x,0,2)
array ([[[0, 47,

[2, 6
[[1, 5
[3, 7

numpy . take (a, indices, axis=None, out=None, mode="raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be
easier to use if you need elements along a given axis.

Parameters
a: array_like

The source array.
indices : array_like

The indices of the values to extract.
axis : int, optional

The axis over which to select values. By default, the flattened input array is used.
out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
¢ ‘raise’ — raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.

See Also:

1.1. The N-dimensional array (ndarray) 37

NumPy Reference, Release 1.6.0

ndarray.take
equivalent method

Examples

>>> a = [4, 3, 5, 7, 6,
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array ([4, 3, 6])

8]

In this example if a is an ndarray, “fancy” indexing can be used.

>>> a = np.array (a)
>>> alindices]
array ([4, 3, 6])

numpy . trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements
al[i,i+offset] foralli.

If @ has more than two dimensions, then the axes specified by axisl and axis2 are used to determine the
2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with
axis] and axis2 removed.

Parameters
a: array_like

Input array, from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axisl, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the diag-
onals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns
sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See Also:

diag,diagonal,diagflat

38 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> np.trace(np.eye(3))

3.0

>>> a = np.arange (8) .reshape((2,2,2))
>>> np.trace(a)

array ([6, 81)

>>> a = np.arange (24) .reshape((2,2,2,3))
>>> np.trace(a) .shape
(2, 3)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.
axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values
given.

Returns
p : ndarray

a with its axes permuted. A view is returned whenever possible.
See Also:

rollaxis

Examples

>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 17,

(2, 311

>>> np.transpose (x)
array ([[0, 2],

[1, 311)
>>> x = np.ones((1l, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

numpy . var (a, axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is

computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

1.1. The N-dimensional array (ndarray)

39

NumPy Reference, Release 1.6.0

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N — ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs (x -
x.mean ()) *x2).

The mean is normally calculated as x . sum () / N,where N = len (x). If, however, ddof is specified,
the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased
estimator of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real
and nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array([[1,2],1[3,4]1])
>>> np.var (a)
1.25
>>> np.var (a,0)
array ([1., 1.1)

>>> np.var(a,l)
array ([0.25, 0.25])

40

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> af[0,:] = 1.0

>>> all,:] 0.1

>>> np.var (a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932997387

>>> ((1-0.55)%%2 + (0.1-0.55)*%2)/2
0.20250000000000001

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array [selection]. Similar syntax is also used
for accessing fields in a record array.

See Also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by
the array, or by some other object), combined with an indexing scheme that maps N integers into the location of an
item in the block. The ranges in which the indices can vary is specified by the shape of the array. How many
bytes each item takes and how the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of
an N-dimensional array in a 1-dimensional block. Numpy is flexible, and ndarray objects can accommodate any
strided indexing scheme. In a strided scheme, the N-dimensional index (ng,n1, ...,nny_1) corresponds to the offset
(in bytes):

N—-1
Noffset = § SNk
k=0

from the beginning of the memory block associated with the array. Here, sj, are integers which specify the st rides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to the strides:

k—1 N-1
column __ TOW __
i=0 j=k+1

where d; = self.itemsize * self.shape[j].

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-
segment arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

1.1. The N-dimensional array (ndarray) 41

NumPy Reference, Release 1.6.0

1.1.4 Array attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its at-
tributes allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed
attributes are the core parts of an array and only some of them can be reset meaningfully without creating a new array.
Information on each attribute is given below.

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.
ndarray.shape Tuple of array dimensions.

ndarray.strides Tuple of bytes to step in each dimension when traversing an array.
ndarray.ndim Number of array dimensions.

ndarray.data Python buffer object pointing to the start of the array’s data.
ndarray.size Number of elements in the array.

ndarray.itemsize Length of one array element in bytes.

ndarray.nbytes Total bytes consumed by the elements of the array.
ndarray.base Base object if memory is from some other object.

ndarray.flags

Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags [/ WRITEABLE']), or by using lowercased
attribute names (as in a. flags.writeable). Short flag names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assign-
ment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Attributes

ndarray.shape

Tuple of array dimensions.

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of elements

Examples
>>> x = np.array([1l, 2, 3, 41)
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y

42

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

array ([[0., 0., 0., 0., 0., 0., 0., 0.7,
r o., 0., 0., 0., 0., 0., 0., 0.7,
t o0., 0., 0., 0., 0., 0., 0., O0.11)

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

ndarray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (1 [0], i[1], ..., 1i[n]) inanarrayais:

offset = sum(np.array(i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

X = np.array([[0, 1, 2, 3, 41,
[5, 6! 7, 8/ 91], dtype:np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples
>>> y = np.reshape (np.arange (2+«3%4), (2,3,4))
>>> y
array ([[, 1, 2, ’

, 9, 10, 1
[[12, 13, 14, 1
[16, 17, 18, 1971,
[20, 21, 22, 23111)
>>> y.strides

[O 3
[4, 5, 6, 7
[8 1

5

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides = np.array((l1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange (5«6%«7%x8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

>>> i np.array([3,5,2,21)

>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

1.1. The N-dimensional array (ndarray) 43

NumPy Reference, Release 1.6.0

ndarray.ndim
Number of array dimensions.

Examples

>>> x np.array([1l, 2, 31])
>>> x.ndim

1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim

3

ndarray.data
Python buffer object pointing to the start of the array’s data.

ndarray.size
Number of elements in the array.

Equivalent to np.prod (a. shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

ndarray.itemsize
Length of one array element in bytes.

Examples
>>> x np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x np.array([1,2,3], dtype=np.complexl28)

>>> x.itemsize
16

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples
>>> X np.zeros((3,5,2), dtype=np.complexl28)
>>> x.nbytes
480
>>> np.prod(x.shape) *» x.itemsize
480

ndarray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

44 Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Data type

See Also:

Data type objects

The data type object associated with the array can be found in the dt ype attribute:

ndarray.dtype Data-type of the array’s elements.

ndarray.dtype
Data-type of the array’s elements.

Parameters
None :

Returns
d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> x
array ([[0, 17,

(2, 311)
>>> x.dtype
dtype (" int32")
>>> type (x.dtype)
<type ’numpy.dtype’>

Other attributes

ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.
ndarray.real The real part of the array.

ndarray.imag The imaginary part of the array.

ndarray.flat A 1-D iterator over the array.

ndarray.ctypes An object to simplify the interaction of the array with the ctypes module.

__array_priority_

ndarray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

1.1. The N-dimensional array (ndarray)

NumPy Reference, Release 1.6.0

>>> x = np.array ([[1.,2.],[3.,4.]1])
>>> x
array([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1.,2.,3.,4.1)

>>> x

array ([1., 2., 3., 4.])
>>> x.T

array ([1., 2., 3., 4.1)

ndarray.real
The real part of the array.

See Also:

numpy .real
equivalent function

Examples

>>> x = np.sqrt ([1+03, 0+13])

>>> x.real

array ([1. , 0.707106787])
>>> x.real.dtype

dtype (' float64’)

ndarray.imag
The imaginary part of the array.

Examples

>>> x = np.sqrt ([1+03, 0+131)

>>> x.imag

array ([O. , 0.707106781])
>>> x.imag.dtype

dtype (' float64’)

ndarray.flat
A 1-D iterator over the array.

This is a numpy . flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 3]

46 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x.flat[3]

4

>>> x.T

array ([[1, 4],
(2, 51,
[3, 611)

>>> x.T.flat[3]

5

>>> type(x.flat)
<type ’"numpy.flatiter’>

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 31,
[3, 3, 311)
>>> x.flat[[1,4]] = 1; x
array ([[3, 1, 31,
[3, 1, 311)

ndarray.ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None :

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy .ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the

shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

1.1.

The N-dimensional array (ndarray) 47

NumPy Reference, Release 1.6.0

edata_as(obj): Return the data pointer cast to a particular c-types object. For
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

example, calling

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct= (a+b) .ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,

(2, 311
>>> x.ctypes.data
30439712

>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))

<ctypes.LP_c_long

object at 0x01F01300>

>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_long)) .contents

c_long (0)

>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)

>>> x.ctypes.shape

<numpy.core._internal.c_long_Array_2 object at 0x01lFFD580>

>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>

>>> x.ctypes.strides

<numpy.core._internal.c_long_Array_2 object at O0x0lFCE620>

>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

Array interface

See Also:

The Array Interface.

array_interface
array_struct

Python-side of the array interface
C-side of the array interface

ctypes foreign function interface

ndarray.ctypes An object to simplify the interaction of the array with the ctypes module.

ndarray.ctypes

An object to simplify the interaction of the array with the ctypes module.

48

Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None :

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy .ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the
shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes. POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct=(a+b) .ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x

1.1. The N-dimensional array (ndarray) 49

NumPy Reference, Release 1.6.0

array ([[0, 1],

(2, 311
>>> x.ctypes.data
30439712

>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>

>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_long)) .contents
c_long (0)

>>> x.ctypes.data_as (ctypes
c_longlong (4294967296L)

>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01lFFD580>

>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>

>>> x.ctypes.strides

<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>

>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

.POINTER (ctypes.c_longlong)) .contents

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an
array result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any, argmax, argmin,
argsort, choose, clip, compress, copy, cumprod, cumsum, diagonal, imag, max, mean, min,
nonzero, prod, ptp, put, ravel, real, repeat, reshape, round, searchsorted, sort, squeeze,
std, sum, swapaxes, take, trace, transpose, var.

Array conversion

ndarray.item(*args) Copy an element of an array to a standard Python scalar and return
1t.

ndarray.tolist() Return the array as a (possibly nested) list.

ndarray.itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)

ndarray.setasflat(arr) Equivalent to a.flat = arr.flat, but is generally more efficient.

ndarray.tostring(order=) Construct a Python string containing the raw data bytes in the array.

ndarray.tofile(fid], sep, format]) Write array to a file as text or binary (default).

ndarray . dump(file) Dump a pickle of the array to the specified file.

ndarray.dumps() Returns the pickle of the array as a string.

ndarray.astype(t) Copy of the array, cast to a specified type.

ndarray.byteswap(inplace) Swap the bytes of the array elements

ndarray.copy(order=) Return a copy of the array.

ndarray . view(dtype=None[, type]) New view of array with the same data.

ndarray.get field(dtype, offset) Returns a field of the given array as a certain type.

ndarray.setflags(write=None[, Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY,

align, uic])
ndarray

. £ill(value)

respectively.
Fill the array with a scalar value.

ndarray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args : Arguments (variable number and type)

50

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

* none: in this case, the method only works for arrays with one element (a.size == I), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument is
interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can
be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using
Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
[2, 8, 31,
[8, 5, 311)

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

ndarray.tolist ()
Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
Python type.

Parameters
none :

Returns
y : list

The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

1.1. The N-dimensional array (ndarray) 51

NumPy Reference, Release 1.6.0

>>> a = np.array([1l, 2])

>>> a.tolist ()

(1, 2]

>>> a = np.array ([[1, 21, [3, 411)
>>> list (a)

[array ([1, 2]), array([3, 4])]

>>> a.tolist ()

(11, 21, (3, 411

ndarray.itemset (*args)

Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters
*args : Arguments

If one argument: a scalar, only used in case a is of size 1. If two arguments: the last
argument is the value to be set and must be a scalar, the first argument specifies a single
array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular location
in an ndarray, if you must do this. However, generally this is discouraged: among other problems, it complicates
the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to assign the methods to
a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[3, 1, 71,
[2, 8, 31,
[8, 5, 311)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)
>>> x
array ([[3, 1, 71,
[2, 0, 31,
[8, 5, 911)

ndarray.setasflat (arr)

Equivalent to a.flat = arr.flat, but is generally more efficient. This function does not check for overlap, so if arr
and a are viewing the same data with different strides, the results will be unpredictable.

Parameters
arr : array_like

The array to copy into a.

Examples

>>> a = np.arange (2%4) .reshape(2,4)[:,:-1]; a
array ([[0, 1, 2],
(4, 5, 611)
>>> b = np.arange (3%«3, dtype=’f4’) .reshape(3,3).T[::-1,:-1]; b
array ([[2., 5.1,

52

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

[1., 4.1,

[0., 3.]1, dtype=float32)
>>> a.setasflat (b)
>>> a
array ([[2, 5, 11,

[4, 0, 311)

ndarray.tostring (order="C’)
Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced
in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the
F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

Parameters
order : {‘C’, ‘F’, None}, optional

Order of the data for multidimensional arrays: C, Fortran, or the same as for the original
array.

Returns
S . str

A Python string exhibiting a copy of a‘s raw data.

Examples

>>> x = np.array ([[0, 11, [2, 311)

>>> x.tostring()
"\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00"
>>> x.tostring('C’) == x.tostring()

True

>>> x.tostring ('F’)
"\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00"

”

ndarray.tofile (fid, sep="", format=""%s”)
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters
fid : file or str

An open file object, or a string containing a filename.

sep : str
Separator between array items for text output. If “’ (empty), a binary file is written,
equivalentto file.write (a.tostring()).

format : str

Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is lost,
so this method is not a good choice for files intended to archive data or transport data between machines with
different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense
of speed and file size.

1.1. The N-dimensional array (ndarray) 53

NumPy Reference, Release 1.6.0

ndarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

ndarray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters
None :

ndarray.astype (1)
Copy of the array, cast to a specified type.

Parameters
t : str or dtype

Typecode or data-type to which the array is cast.

Raises
ComplexWarning : :

When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. , 2.5])

>>> x.astype (int)
array ([1, 2, 2])

ndarray .byteswap (inplace)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place.

Parameters
inplace: bool, optional :

If True, swap bytes in-place, defaultis False.

Returns
out: ndarray :

The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

["0x1", "0x100’", "0x2233"]

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intl6)

>>> map (hex, A)

[70x100", "0x1’", '0x3322"]

54 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Arrays of strings are not swapped

>>> A = np.array([’'ceg’, ’"fac’])

>>> A.byteswap ()

array ([’ceg’, ’'fac’],
dtype=’|S5S3")

ndarray.copy (order="C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

By default, the result is stored in C-contiguous (row-major) order in memory. If order is
F, the result has ‘Fortran’ (column-major) order. If order is ‘A’ (‘Any’), then the result
has the same order as the input.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order="F")
>>> y = x.copy()

>>> x.£111(0)

>>> x
array ([[0, 0O, 0],
[0, 0, 01D

>>> y
array ([[1, 2, 31,
[4, 5, 6]1)

>>> y.flags[’C_CONTIGUOUS']
True

ndarray.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a.

type : Python type, optional
Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.
Notes
a.view () isused two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view (type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

1.1. The N-dimensional array (ndarray) 55

NumPy Reference, Release 1.6.0

Examples

>>> x = np.array([(1, 2)], dtype=[('a’, np.int8), ('b’, np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> vy

matrix ([[513]], dtype=intl6)

>>> print type (y)

<class ’"numpy.matrixlib.defmatrix.matrix’>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[("a’, np.int8), ('b’, np.int8)])

>>> xv = x.view(dtype=np.int8) .reshape(-1,2)

>>> XV

array ([[1, 2]
[3, 4]

>>> xv.mean (0

], dtype=int8)
)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]
Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a

array ([1], dtype=int8)
Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

ndarray.getfield (dtype, offset)
Returns a field of the given array as a certain type.

A field is a view of the array data with each itemsize determined by the given type and the offset into the current
array, i.e. from offset » dtype.itemsizeto (offset+l) » dtype.itemsize.

Parameters
dtype : str

String denoting the data type of the field.
offset : int

Number of dtype.itemsize‘s to skip before beginning the element view.

Examples
>>> x = np.diag([1l.+1.3]%2)
>>> x
array ([[1.+1.73, 0.+0.73]

[0.40.3, 1.+1.311)

56 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x.dtype
dtype (' complex128’)

>>> x.getfield(’complex64’, 0) # Note how this != x
array ([[0.+1.875j, 0.40.j 1,
[0.40.7 , 0.41.87571], dtype=complex64)

>>> x.getfield(’complex64’,1) # Note how different this is than x
array ([[0. +5.87173204e-39j, 0. +0.00000000e+0071,
[0. +0.00000000e+00j, 0. +5.87173204e-397311, dtype=complex64)

>>> x.getfield(’complex128’, 0) == X
array ([[1.+1.7, 0.+0.717,
[0.40.3, 1.+1.311)

If the argument dtype is the same as x.dtype, then offset != 0 raises a ValueError:

>>> x.getfield (' complex128’, 1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Need 0 <= offset <= 0 for requested type but received offset =1

>>> x.getfield(’ float64d’, 0)
array ([[1., 0.1,
[0., 1.11)

>>> x.getfield(’ float6d’, 1)
array ([[1.77658241e-307, 0.00000000e+0007,
[0.00000000e+000, 1.77658241e-30711)

ndarray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The UPDATEIF-
COPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own
memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception
for string is made so that unpickling can be done without copying memory.)

Parameters
write : bool, optional

Describes whether or not a can be written to.
align : bool, optional

Describes whether or not a is aligned properly for its type.
uic : bool, optional

Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are
6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITEABLE, and
ALIGNED.

WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

1.1. The N-dimensional array (ndarray) 57

NumPy Reference, Release 1.6.0

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is deallo-
cated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

Examples

>>> y
array ([[3, 1, 71,
[2, 0, 01,
(8, 5, 911)
>>> y.flags
C_CONTIGUOUS
F_CONTIGUOUS
OWNDATA
WRITEABLE
ALIGNED True
UPDATEIFCOPY
>>> y.setflags (write=0,
>>> y.flags

True
False
True

True

False

C_CONTIGUOUS True
F_CONTIGUOUS False
OWNDATA True
WRITEABLE False
ALIGNED False
UPDATEIFCOPY False
>>> y.setflags (uic=1)
Traceback
File "<stdin>", line 1,

ValueError:

ndarray.£ill (value)
Fill the array with a scalar value.

Parameters
value : scalar

align=0)

(most recent call last):

in <module>

cannot set UPDATEIFCOPY flag to True

All elements of a will be assigned this value.

Examples

>>> a = np.array ([1,
>>> g.f111(0)

>>> a
array ([0, 0])

>>> a = np.empty (2)
>>> a.fi11(1)

>>> a

array ([1., 1.7)

Shape manipulation

2])

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted

as an n-tuple.

58

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ndarray . reshape(shapel[, order]) Returns an array containing the same data with a new shape.
ndarray.resize(new_shapel[, refcheck]) Change shape and size of array in-place.
ndarray.transpose(*axes) Returns a view of the array with axes transposed.
ndarray.swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 interchanged.
ndarray.flatten(order=) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.

ndarray.squeeze() Remove single-dimensional entries from the shape of a.

ndarray . reshape (shape, order="C’)
Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.
See Also:

numpy . reshape
equivalent function

ndarray.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints

Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None :

Raises
ValueError :

If a does not own its own data or references or views to it exist, and the data memory
must be changed.

SystemError :
If the order keyword argument is specified. This behaviour is a bug in NumPy.
See Also:
resize
Return a new array with the specified shape.
Notes
This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python
object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure
that you have not shared the memory for this array with another Python object, then you may safely set refcheck
to False.

1.1. The N-dimensional array (ndarray) 59

NumPy Reference, Release 1.6.0

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 11, [2, 311, order='C’")
>>> a.resize((2, 1))
>>> a
array ([[0],
[111)
>>> a = np.array([[0, 11, [2, 3]], order="F")
>>> a.resize((2, 1))
>>> a
array ([[0],
[211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn’t have to be a tuple
>>> b
array ([[0, 1, 21,
(3, 0, 0I1)

Referencing an array prevents resizing...

>>> ¢ = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that has been referenced

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a
array ([[0]1])
>>> ¢

array ([[011)

ndarray.transpose (*axes)

Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a ma-
trix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order in-

dicates how the axes are permuted (see Examples). If axes are not provided and a . shape = (i[0], i[1],
i[n-2], i[n-1]), then a.transpose() .shape = (i[n-1], 1i[n-2], ... if[1],
i[0]).
Parameters

axes : None, tuple of ints, or n ints
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

60

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

View of a, with axes suitably permuted.

See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array([[1, 21, [3, 411)
>>> a
array ([[1, 27,
[3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose ((1, 0))
array ([[1, 3],
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)

ndarray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

ndarray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the
C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.
See Also:
ravel
Return a flattened array.
flat
A 1-D flat iterator over the array.
Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten()
array ([1, 2, 3, 41)

1.1. The N-dimensional array (ndarray) 61

NumPy Reference, Release 1.6.0

>>> a.flatten (')
array ([1, 3, 2, 4])

ndarray.ravel ([order])
Return a flattened array.
Refer to numpy . ravel for full documentation.
See Also:
numpy . ravel
equivalent function
ndarray. flat
a flat iterator on the array.
ndarray.squeeze ()
Remove single-dimensional entries from the shape of a.
Refer to numpy . squeeze for full documentation.
See Also:

numpy . squeeze
equivalent function

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

ndarray.take(indices[, axis, out, Return an array formed from the elements of a at the given indices.

mode])

ndarray .put(indices, values[, mode]) Seta.flat[n] = values[n] forall nin indices.

ndarray.repeat(repeats|, axis]) Repeat elements of an array.

ndarray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.

ndarray.sort(axis=-1[, kind, order]) Sort an array, in-place.

ndarray.argsort(axis=-1[, kind, Returns the indices that would sort this array.

order])

ndarray.searchsorted(v], side]) Find indices where elements of v should be inserted in a to
maintain order.

ndarray.nonzero() Return the indices of the elements that are non-zero.

ndarray.compress(condition[, axis, Return selected slices of this array along given axis.

out])

ndarray.diagonal(offset=0][, axisl, Return specified diagonals.

axis2])

ndarray .take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy . t ake for full documentation.
See Also:

numpy . take
equivalent function

62 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ndarray .put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall nin indices.

Refer to numpy . put for full documentation.
See Also:

numpy . put
equivalent function

ndarray . repeat (repeats, axis=None)
Repeat elements of an array.
Refer to numpy . repeat for full documentation.
See Also:

numpy . repeat
equivalent function

ndarray.choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy . choose for full documentation.
See Also:

numpy . choose
equivalent function

ndarray.sort (axis=-1, kind="quicksort’, order=None)
Sort an array, in-place.

Parameters
axis : int, optional

Axis along which to sort. Default is -1, which means sort along the last axis.
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

See Also:
numpy . sort
Return a sorted copy of an array.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in sorted array.

1.1. The N-dimensional array (ndarray) 63

NumPy Reference, Release 1.6.0

Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.array([[1,4], [3,1]])
>>> ag.sort (axis=1)
>>> a
array ([[1, 41,
[1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
[1, 411])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a", 2), ('c’", 1)1, dtype=[("x", ’S1"), ("y’, int)])
>>> a.sort (order="vy")

>>> a

array ([("c", 1), ("a'", 2)1,

dtype=[('x", "|S1"), ('y’', '<id’)])
ndarray.argsort (axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort this array.
Refer to numpy . argsort for full documentation.
See Also:

numpy .argsort
equivalent function

ndarray.searchsorted (v, side="left’)
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted
See Also:

numpy . searchsorted
equivalent function

ndarray.nonzero ()
Return the indices of the elements that are non-zero.
Refer to numpy . nonzero for full documentation.
See Also:

numpy . nonzero
equivalent function

ndarray .compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy . compress for full documentation.

See Also:

64 Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

numpy . compress
equivalent function

ndarray.diagonal (offset=0, axis1=0, axis2=1)
Return specified diagonals.

Refer to numpy .diagonal for full documentation.

See Also:

numpy .diagonal
equivalent function

Calculation

Many of these methods take an argument named axis. In such cases,

o If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire
array. This behavior is also the default if self is a O-dimensional array or array scalar. (An array scalar is
an instance of the types/classes float32, float64, etc., whereas a O-dimensional array is an ndarray instance
containing precisely one array scalar.)

o If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created
along the given axis).

Example of the axis argument

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

0o, 1, 2]
3, 4, 5]
6, 7, 8]
9, 10, 11]
2, 13, 14]
5, 16, 17]
8, 19, 20]
21, 22, 23],
[24, 25, 26111)
>>> x.sum(axis=0)
array ([[27, 30, 3371,

[36, 39, 427,

[45, 48, 5111)
>>> # for sum, axis is the first keyword, so we may omit 1it,
>>> # specifying only its value
>>> x.sum(0), x.sum(l), x.sum(2)
(array ([[27, 30, 33]
36, 39, 427,
45, 48, 5111),
9, 12, 15]
6, 39, 42]
3, 66, 69]
3, 12, 21]
0, 39, 48],
7, 66, 7511))

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction
using a larger data type.

1.1. The N-dimensional array (ndarray) 65

NumPy Reference, Release 1.6.0

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data
type in which case casting will be performed.

ndarray.

ndarray

ndarray.
ndarray.
ndarray.
ndarray.

ndarray

ndarray.

])

ndarray.

ndarray
out])

ndarray.
ndarray.

ddof])

ndarray.

ddof])

ndarray.
ndarray.

out])

ndarray.

ndarray

argmax(axis=None[, out])
.min(axis=None][, out])
argmin(axis=None[, out])
ptp(axis=None[, out])
clip(a_min, a_max][, out])
conj()

. round(decimals=0[, out])

t race(offset=0[, axis1, axis2,

sum(axis=None[, dtype, out])
. cumsum(axis=None][, dtype,

mean(axis=None[, dtype, out])
var(axis=None[, dtype, out,

std(axis=None[, dtype, out,

prod(axis=None[, dtype, out])
cumprod(axis=None[, dtype,

all(axis=None[, out])
. any(axis=None[, out])

Return indices of the maximum values along the given axis.
Return the minimum along a given axis.

Return indices of the minimum values along the given axis of a.
Peak to peak (maximum - minimum) value along a given axis.
Return an array whose values are limited to [a_min,
Complex-conjugate all elements.

Return a with each element rounded to the given number of
decimals.

Return the sum along diagonals of the array.

a_max].

Return the sum of the array elements over the given axis.
Return the cumulative sum of the elements along the given axis.

Returns the average of the array elements along given axis.
Returns the variance of the array elements, along given axis.

Returns the standard deviation of the array elements along given
axis.

Return the product of the array elements over the given axis
Return the cumulative product of the elements along the given
axis.

Returns True if all elements evaluate to True.

Returns True if any of the elements of a evaluate to True.

ndarray.argmax (axis=None, out=None)

Return indices of the maximum values along the given axis.

Refer to numpy . argmax for full documentation.

See Also:

numpy . argmax
equivalent function

ndarray .min (axis=None, out=None)

Return the minimum along a given axis.

Refer to numpy . amin for full documentation.

See Also:

numpy .amin
equivalent function

ndarray.argmin (axis=None, out=None)

Return indices of the minimum values along the given axis of a.

Refer to numpy . argmin for detailed documentation.

See Also:

numpy .argmin
equivalent function

66

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ndarray .ptp (axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy . ptp for full documentation.
See Also:

numpy . ptp
equivalent function

ndarray.clip (a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].
Refer to numpy . c11ip for full documentation.
See Also:

numpy.clip
equivalent function

ndarray.conj ()
Complex-conjugate all elements.

Refer to numpy . con jugate for full documentation.
See Also:

numpy .conjugate
equivalent function

ndarray . round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.
Refer to numpy . around for full documentation.
See Also:

numpy .around
equivalent function

ndarray.trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy . trace
equivalent function

ndarray .sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to numpy . sum for full documentation.
See Also:

numpy . sum
equivalent function

1.1. The N-dimensional array (ndarray) 67

NumPy Reference, Release 1.6.0

ndarray . cumsum (axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.
Refer to numpy . cumsum for full documentation.
See Also:

numpy . cumsum
equivalent function

ndarray .mean (axis=None, dtype=None, out=None)

Returns the average of the array elements along given axis.
Refer to numpy . mean for full documentation.
See Also:

numpy .mean
equivalent function

ndarray .var (axis=None, dtype=None, out=None, ddof=0)

Returns the variance of the array elements, along given axis.
Refer to numpy . var for full documentation.
See Also:

numpy .var
equivalent function

ndarray .std (axis=None, dtype=None, out=None, ddof=0)

Returns the standard deviation of the array elements along given axis.
Refer to numpy . st d for full documentation.
See Also:

numpy .std
equivalent function

ndarray .prod (axis=None, dtype=None, out=None)

Return the product of the array elements over the given axis
Refer to numpy . prod for full documentation.
See Also:

numpy . prod
equivalent function

ndarray .cumprod (axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy . cumprod for full documentation.
See Also:

numpy . cumprod
equivalent function

68

Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

ndarray.all (axis=None, out=None)
Returns True if all elements evaluate to True.

Refer to numpy .all for full documentation.

See Also:

numpy.all
equivalent function

ndarray .any (axis=None, out=None)

Returns True if any of the elements of a evaluate to True.

Refer to numpy . any for full documentation.

See Also:

numpy . any
equivalent function

1.1.6 Arithmetic and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield

ndarray objects as results.

Each of the arithmetic operations (+, —, *, /, //, %, divmod (), % or pow (), <<, >>, &, *~, |, ~) and the
comparisons (==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in

Numpy. For more information, see the section on Universal Functions.

Comparison operators:

ndarray._ 1t x_lt_ (y) <==>x<y
ndarray.__le_ x.__le_ (y) <==>x<=y
ndarray.__ gt X._ gt (y)<=>x>y
ndarray.__ge__ X._ge_ (y)<==>x>=y
ndarray.__eq X._eq_ (y) <==>Xx==y
ndarray._ ne_ X._ne_ (y)<==>x!l=y

ndarray.__1lt__ ()
X.__lt_ (y) <==>x<y

ndarray._ le_ ()
X.__le_ (y) <==>x<=y

ndarray.__gt__ ()
X.__ gt (y)<==>x>y

ndarray.__ge__ ()
X.__ge_ (y) <==>x>=y

ndarray.__eq__ ()
X._Cq_(y) <==> X==y

ndarray.__ne__ ()
X.__ne_ (y) <==>x!=y

Truth value of an array (bool):

ndarray._ nonzero_ X._ nonzero_ () <==>x!=0

1.1. The N-dimensional array (ndarray)

69

http://docs.python.org/dev/library/functions.html#bool

NumPy Reference, Release 1.6.0

ndarray.__nonzero__ ()
X.__nonzero_ () <==>x1=0

Note: Truth-value testing of an array invokes ndarray.__nonzero__, which raises an error if the number of
elements in the the array is larger than 1, because the truth value of such arrays is ambiguous. Use .any () and
.all () instead to be clear about what is meant in such cases. (If the number of elements is 0, the array evaluates to
False.)

Unary operations:

ndarray._ neg___ X.__neg_ () <==>-x
ndarray._ _pos___ X.__pos__() <==>+4x
ndarray.__ abs_ () <==> abs(x)
ndarray.__invert_ X.__invert_ () <==> ~X

ndarray.__neg__ ()
X.__neg_ () <==>-x

ndarray.__pos__ ()
X.__pos__() <==>+x

ndarray._ abs__ () <==> abs(x)

ndarray.__invert__ ()
X.__invert_ () <==> ~X

Arithmetic:
ndarray.__add___ X.__add__(y) <==>x+y
ndarray.__sub___ X.__sub__(y) <==>x-y
ndarray.__mul___ X.__mul__(y) <==>x*y
ndarray._ div___ X.__div__(y) <==>x/ly
ndarray._ truediv___ X.__truediv__(y) <==>x/y
ndarray._ floordiv___ x.__floordiv__(y) <==> x/ly
ndarray.__mod X.__mod__(y) <==> x%y

ndarray. Adivm’od’(y) <==> divmod(x, y)
ndarray._ pow_(yl, z]) <==> pow(x, y[, 2])

ndarray._ lshift_ x.__Ishift_ (y) <==> x<<y
ndarray._ rshift_ X.__rshift_ (y) <==> x>>y
ndarray.__and___ Xx.__and__(y) <==>x&y
ndarray._ or___ X.__or__(y) <==>xly
ndarray.__ xor___ X.__xor__(y) <==>x"\y

ndarray.__add__ ()
X.__add__(y) <==> x+y

ndarray._ _sub__ ()
X.__sub__(y) <==>x-y

ndarray._ mul__ ()

X.__mul__(y) <==> x*y

ndarray.__div__ ()
X.__div__(y) <==>x/ly

ndarray._ _truediv__ ()
X.__truediv__(y) <==> x/y

ndarray.__ _floordiv__ ()
x.__floordiv__(y) <==> x/ly

70 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ndarray._ mod__ ()
X.__mod__(y) <==>x%y

ndarray.__divmod__ (y) <==> divmod(x, y)

ndarray.__pow__ (y[, z]) <==> pow(x, y[, z])

ndarray.__lshift__ ()
X.__Ishift__(y) <==> x<<y

ndarray._ _rshift__ ()
X.__rshift_ (y) <==>x>>y

ndarray.__and__ ()
X.__and__(y) <==>x&y

ndarray.__or__ ()
X.__or__(y) <==>xly

ndarray._ xor__ ()
X.__Xxor__(y) <==>x"y

Note:
* Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

* The three division operators are all defined; div is active by default, t ruediv is active when ___future___
division is in effect.

* Because ndarray is a built-in type (written in C), the __r{op}___ special methods are not directly defined.

e The functions called to implement many arithmetic special methods for arrays can be modified using
set_numeric_ops.

Arithmetic, in-place:

ndarray._ iadd__ X.__ladd__(y) <==>x+y
ndarray._ _isub_ X.__isub__(y) <==>x-y
ndarray.__imul___ X.__imul__(y) <==> x*y
ndarray._ _idiv___ X.__idiv__(y) <==>x/ly
ndarray._ itruediv_ X.__itruediv__(y) <==>x/y
ndarray.__ifloordiv__ x.__ifloordiv__(y) <==>x/ly
ndarray._ imod_ X.__imod__(y) <==> x%y
ndarray.__ipow___ X.__ipow__(y) <==> x**y
ndarray.__ilshift___ X.__ilshift__(y) <==> x<<y
ndarray._ irshift_ X.__irshift__(y) <==>x>>y
ndarray._ _iand__ x.__land__(y) <==> x&y
ndarray.__ior___ X.__lor__(y) <==>xly
ndarray.__ixor___ X. 1x0r_(y) <==>x"\y

ndarray._ _iadd__ ()
X.__ladd__(y) <==>x+y

ndarray._ _isub__ ()
X.__isub__(y) <==>x-y

ndarray.__imul__ ()
X.__imul__(y) <==> x*y

ndarray.__didiv__ ()
X.__idiv__(y) <==>x/ly

1.1. The N-dimensional array (ndarray) 71

http://docs.python.org/dev/library/functions.html#pow
http://docs.python.org/dev/library/__future__.html#__future__

NumPy Reference, Release 1.6.0

ndarray.__itruediv__ ()
X.__itruediv__(y) <==> x/y

ndarray.__ifloordiv__ ()
x.__ifloordiv__(y) <==> x/ly

ndarray._ _imod__ ()
X.__imod__(y) <==> x%y

ndarray.__ipow__ ()
X.__ipow__(y) <==>x**y

ndarray._ ilshift__ ()
X.__ilshift_ (y) <==> x<<y

ndarray.__irshift__ ()
X.__irshift__(y) <==>x>>y

ndarray._ _iand__ ()
X.__land__(y) <==> x&y

ndarray.__ior_ ()
X.__ior__(y) <==>xly

ndarray.__ixor__ ()
X.__ixor__(y) <==>x"y

Warning: In place operations will perform the calculation using the precision decided by the data type of the
two operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore,
for mixed precision calculations, A {op}= B can be different than A = A {op} B. For example, suppose
a = ones ((3,3)). Then, a += 37 is different than a = a + 37j: while they both perform the same
computation, a += 3 casts the result to fit back in a, whereas a = a + 37 re-binds the name a to the result.

1.1.7 Special methods

For standard library functions:

ndarray.__ copy__ ([order]) Return a copy of the array.
ndarray.__deepcopy_ a.__deepcopy__() -> Deep copy of array.
ndarray.__ reduce_ () For pickling.
ndarray.__setstate__(version, shape, dtype,...) For unpickling.

ndarray.__copy__ ([ora’er])
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default). If order is ‘Fortran’ (True)
then the result has fortran order. If order is ‘Any’ (None) then the result has fortran
order only if the array already is in fortran order.

ndarray.__deepcopy__ ()
a.__deepcopy__() -> Deep copy of array.

Used if copy.deepcopy is called on an array.

ndarray.__reduce__ ()
For pickling.

72 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ndarray.__setstate__ (version, shape, dtype, isfortran, rawdata)
For unpickling.

Parameters
version : int

optional pickle version. If omitted defaults to 0.
shape : tuple
dtype : data-type
isFortran : bool
rawdata : string or list
a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray._ _new___

ndarray.__array___ a.__array__(ldtype) -> reference if type unchanged, copy otherwise.

ndarray.__array_wrap__ a.__array_wrap__(obj) -> Object of same type as ndarray object a.
ndarray.__array__ ()

a.__array__(ldtype) -> reference if type unchanged, copy otherwise.

Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

ndarray.__array_wrap_ ()
a.__array_wrap__(obj) -> Object of same type as ndarray object a.

Container customization: (see /ndexing)

ndarray.__len__ () <==>len(x)

ndarray.__getitem___ X.__getitem__(y) <==> x[y]
ndarray._ setitem_ X.__setitem__(i, y) <==> Xx[i]=y
ndarray._ _getslice_ x.__getslice__(i, j) <==> x[i:j]
ndarray._ setslice_ x.__setslice__(i, j, y) <==> x[i:j]=y
ndarray.__ contains_ X.__contains__(y) <==>yinx

ndarray._ len__ () <==>len(x)

ndarray.__getitem__ ()
X.__getitem__(y) <==>x[y]

ndarray.__setitem__ ()
X.__setitem__(i, y) <==> x[i]=y

ndarray.__getslice__ ()
x.__getslice__(i, j) <==> x[i]]

Use of negative indices is not supported.

ndarray.__setslice__ ()
x.__setslice__(i, j, y) <==> x[i;j]=y

Use of negative indices is not supported.

ndarray.__contains__ ()
X.__contains__(y) <==>yin X

1.1. The N-dimensional array (ndarray) 73

NumPy Reference, Release 1.6.0

Conversion; the operations complex, int, long, float, oct, and hex. They work only on arrays that have one
element in them and return the appropriate scalar.

ndarray._ _int_ () <==>int(x)
ndarray.__long__ () <==>long(x)
ndarray._ float_ () <==>float(x)
ndarray.__ oct_ () <==> oct(x)
ndarray._ _hex__ () <==>hex(x)

ndarray._ _int_ () <==>int(x)

ndarray.__long _ () <==> long(x)

ndarray.__ _float__ () <==> float(x)

ndarray.__oct__ () <==> oct(x)

ndarray._ _hex () <==> hex(x)

String representations:

ndarray._ str_ () <==>str(x)
ndarray.__repr__ () <==>repr(x)

ndarray.__str__ () <==> str(x)

ndarray.__repr__ () <==> repr(x)

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.).
This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a
computer. For scientific computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors
are mostly based on the types available in the C language that CPython is written in, with several additional types
compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays. ' This allows one to treat items of an array partly
on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy:
For example, isinstance (val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for
example isinstance (val, np.complexfloating) will return True if val is a complex valued type, while
isinstance (val, np.flexible) will return true if val is one of the flexible itemsize array types (string,
unicode, void).

! However, array scalars are immutable, so none of the array scalar attributes are settable.

74 Chapter 1. Array objects

http://docs.python.org/dev/library/functions.html#complex
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#float
http://docs.python.org/dev/library/functions.html#oct
http://docs.python.org/dev/library/functions.html#hex

NumPy Reference, Release 1.6.0

¥ ¥ IR 2 \

bool_ object_ ' number : | flexible :

ﬁ integer j r inexact j + characte void

isignedintegtﬁ iunsignedintege;r flnatingé iccmple:-:ﬂcatind str_
;I _-I _] unicode |
—» byte > ubyte P half

- short | ushort | [single ¥ ceingle

= intc - uintc —P» float) complex|

> int_ > yint —» longfloat | dongfloat

—» longlong — ulonglong

Figure 1.2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types
intp and uintp which just point to the integer type that holds a pointer for the platform. All the number types can
be obtained using bit-width names as well.

1.2. Scalars 75

NumPy Reference, Release 1.6.0

1.2.1 Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array of the right size can always be ensured (e.g.
int8, float64, complex128). Two aliases (intp and uintp) pointing to the integer type that is sufficiently
large to hold a C pointer are also provided. The C-like names are associated with character codes, which are shown in
the table. Use of the character codes, however, is discouraged.

Five of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as well
as from the generic array scalar type:

Array scalar type | Related Python type
int_ IntType

float_ FloatType
complex_ ComplexType
str_ StringType
unicode_ UnicodeType

The bool_ data type is very similar to the Python BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the
same as a Python Boolean scalar.

Warning: The bool_ type is not a subclass of the int_ type (the bool__ is not even a number type). This is
different than Python’s default implementation of boo1l as a sub-class of int.

Tip: The default data type in Numpy is float_.

In the tables below, plat form? means that the type may not be available on all platforms. Compatibility with
different C or Python types is indicated: two types are compatible if their data is of the same size and interpreted in
the same way.

Booleans:

Type Remarks Character code
bool_ | compatible: Python bool | * 2’
bool8 | 8 bits

Integers:

byte compatible: C char "o’
short compatible: C short "h'
intc compatible: C int rir
int_ compatible: Python int r1r
longlong | compatible: C long long g’
intp large enough to fit a pointer | ' p’
int8 8 bits
intl6 16 bits
int32 32 bits
int64 64 bits

Unsigned integers:

76

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ubyte compatible: C unsigned char | ’ B’
ushort compatible: C unsigned short | ' H’
uintc compatible: C unsigned int "I’
uint compatible: Python int i
ulonglong | compatible: C long long rQ’
uintp large enough to fit a pointer rp’
uint8 8 bits
uintlé 16 bits
uint32 32 bits
uinte64 64 bits

Floating-point numbers:
half e’
single compatible: C float rfr
double compatible: C double
float_ compatible: Python float | " d’
longfloat | compatible: C long float | ’ g’
floatlé6 16 bits
float32 32 bits
float64 64 bits
float96 96 bits, platform?
floatl28 128 bits, platform?

Complex floating-point numbers:
csingle "F!
complex_ compatible: Python complex | ’ D’
clongfloat "G’
complex64 two 32-bit floats
complex128 | two 64-bit floats
complex192 | two 96-bit floats, platform?
complex256 | two 128-bit floats, platform?

Any Python object:

’ object_ \ any Python object \ "o’ ‘

Note: The data actually stored in object arrays (i.e., arrays having dtype ob ject_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python 11ist s, in the sense that their contents
need not be of the same Python type.

The object type is also special because an array containing object__ items does not return an object_ object on

item access, but instead returns the actual object that the array item refers to.

The following data types are flexible. They have no predefined size: the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)

str_
unicode_
void

compatible: Python str
compatible: Python unicode

IS#I
IU#I
Iv#l

Warning: Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never
recommended), you will need to change some of them to the new characters. In particular, the needed changes
arec -> S1,b -> B,1 -> b, s -> h,w —> H,and u -> I. These changes make the type character
convention more consistent with other Python modules such as the st ruct module.

1.2. Scalars

77

http://docs.python.org/dev/library/struct.html#struct

NumPy Reference, Release 1.6.0

1.2.2 Attributes

The array scalar objects have an array priority of NPY_SCALAR_PRIORITY (-1,000,000.0). They also do
not (yet) have a ct ypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags integer value of flags
generic.shape tuple of array dimensions
generic.strides tuple of bytes steps in each dimension
generic.ndim number of array dimensions
generic.data pointer to start of data
generic.size number of elements in the gentype
generic.itemsize length of one element in bytes
generic.base base object

generic.dtype get array data-descriptor
generic.real real part of scalar

generic.imag imaginary part of scalar
generic.flat a 1-d view of scalar

generic.T transpose
generic.__array_interface_ Array protocol: Python side
generic._ _array_struct_ Array protocol: struct
generic.__array_priority_ Array priority.
generic.__array_wrap_ sc.__array_wrap__(obj) return scalar from array

generic.flags
integer value of flags

generic.shape
tuple of array dimensions

generic.strides
tuple of bytes steps in each dimension

generic.ndim
number of array dimensions

generic.data
pointer to start of data

generic.size
number of elements in the gentype

generic.itemsize
length of one element in bytes

generic.base
base object

generic.dtype
get array data-descriptor

generic.real
real part of scalar

generic.imag
imaginary part of scalar

generic.flat
a 1-d view of scalar

generic.T
transpose

78 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

generic.__array_interface_
Array protocol: Python side

generic.__array struct_
Array protocol: struct

generic.__array_priority
Array priority.

generic.__array wrap__ ()
sc.__array_wrap__(obj) return scalar from array

1.2.3 Indexing

See Also:

Indexing, Data type objects (dtype)

Array scalars can be indexed like O-dimensional arrays: if x is an array scalar,
e x[()] returns a O-dimensional ndarray

e x[’field-name’] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a record data type.)

1.2.4 Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert
the scalar to an equivalent O-dimensional array and to call the corresponding array method. In addition, math operations
on array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that
the error state used for ufuncs also carries over to the math on array scalars.

The exceptions to the above rules are given below:

generic Base class for numpy scalar types.
generic.__array_ sc.__array__(Itype) return O-dim array
generic.__array_wrap___ Sc.__array_wrap__(obj) return scalar from array
generic.squeeze Not implemented (virtual attribute)
generic.byteswap Not implemented (virtual attribute)
generic.__reduce_

generic.__setstate_

generic.setflags Not implemented (virtual attribute)

class numpy .generic
Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same API as ndarray,
despite many consequent attributes being either “get-only,” or completely irrelevant. This is the class from which
it is strongly suggested users should derive custom scalar types.

Methods
all(al, axis, out]) Test whether all array elements along a given axis evaluate to True.
any(al, axis, out]) Test whether any array element along a given axis evaluates to True.
argmax(a[, axis]) Indices of the maximum values along an axis.
argmin(al, axis]) Return the indices of the minimum values along an axis.
argsort(a[, axis, kind, order]) Returns the indices that would sort an array.

\ Continued on next page |

1.2. Scalars 79

NumPy Reference, Release 1.6.0

Table 1.2 — continued from previous page

astype

byteswap

choose(a, choices[, out, mode]) Construct an array from an index array and a set of arrays to choose from.
clip(a, a_min, a_max|, out]) Clip (limit) the values in an array.
compress(condition, a[, axis, out]) Return selected slices of an array along given axis.
conij(x[, out]) Return the complex conjugate, element-wise.
conjugate(x[, out]) Return the complex conjugate, element-wise.
copy(a) Return an array copy of the given object.
cumprod(al, axis, dtype, out]) Return the cumulative product of elements along a given axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given axis.
diagonal(a[, offset, axisl, axis2]) Return specified diagonals.

dump

dumps

fill

flatten

getfield

item

itemset

max(al, axis, out]) Return the maximum of an array or maximum along an axis.
mean(al, axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min(al, axis, out]) Return the minimum of an array or minimum along an axis.
newbyteorder

nonzero(a) Return the indices of the elements that are non-zero.
prod(al, axis, dtype, out]) Return the product of array elements over a given axis.
ptp(al, axis, out]) Range of values (maximum - minimum) along an axis.
put(a, ind, v, mode]) Replaces specified elements of an array with given values.
ravel(a[, order]) Return a flattened array.

repeat(a, repeats|, axis]) Repeat elements of an array.

reshape(a, newshape|, order]) Gives a new shape to an array without changing its data.
resize(a, new_shape) Return a new array with the specified shape.
round(al, decimals, out]) Round an array to the given number of decimals.
searchsorted(a, v[, side]) Find indices where elements should be inserted to maintain order.
setfield

setflags

sort(a[, axis, kind, order]) Return a sorted copy of an array.
squeeze(a) Remove single-dimensional entries from the shape of an array.
std(a[, axis, dtype, out, ddof]) Compute the standard deviation along the specified axis.
sum(al, axis, dtype, out]) Sum of array elements over a given axis.
swapaxes(a, axisl, axis2) Interchange two axes of an array.

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
tofile

tolist

tostring

trace(al, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(al, axes]) Permute the dimensions of an array.

var(a[, axis, dtype, out, ddof]) Compute the variance along the specified axis.
view

numpy .all (a, axis=None, out=None)
Test whether all array elements along a given axis evaluate to True.

Parameters
a: array_like

80 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical AND is performed. The default (axis = None) is to perform
alogical AND over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as
the expected output and its type is preserved (e.g., if dtype (out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for more
details.

Returns
all : ndarray, bool

A new boolean or array is returned unless out is specified, in which case a reference to
out is returned.

See Also:
ndarray.all
equivalent method
any
Test whether any element along a given axis evaluates to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Z€ero.
Examples
>>> np.all([[True,False], [True,True]ll])
False
>>> np.all([[True,False], [True,True]], axis=0)

array ([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])

>>> z=np.all([-1, 4, 5], out=o0)

>>> id(z), id(o), =z

(28293632, 28293632, array ([True], dtype=bool))

numpy .any (a, axis=None, out=None)
Test whether any array element along a given axis evaluates to True.
Returns single boolean unless axis is not None

Parameters
a: array_like

Input array or object that can be converted to an array.

1.2. Scalars 81

NumPy Reference, Release 1.6.0

axis : int, optional

Axis along which a logical OR is performed. The default (axis = None) is to perform
a logical OR over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if it is of type float, then it will remain
so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See doc.ufuncs
(Section “Output arguments”) for details.

Returns
any : bool or ndarray

A new boolean or ndarray is returned unless out is specified, in which case a reference
to out is returned.

See Also:

ndarray.any
equivalent method

all
Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to
Zero.

Examples

>>> np.any([[True, False], [True, Truell])
True

>>> np.any ([[True, False], [False, Falsel]], axis=0)
array ([True, False], dtype=bool)

>>> np.any ([-1, 0, 5])
True

>>> np.any (np.nan)
True

>>> o=np.array([False])

>>> z=np.any([-1, 4, 5], out=o0)

>>> 7z, O

(array ([True], dtype=bool), array ([True], dtype=bool))
>>> # Check now that z is a reference to o

>>> z is o

True

>>> id(z), 1d(o) # identity of z and o

(191614240, 191614240)

numpy .argmax (a, axis=None)
Indices of the maximum values along an axis.

Parameters
a: array_like

82

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Input array.
axis : int, optional
By default, the index is into the flattened array, otherwise along the specified axis.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See Also:
ndarray.argmax, argmin

amax
The maximum value along a given axis.

unravel index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence
are returned.

Examples
>>> a = np.arange (6) .reshape (2, 3)
>>> a
array([[O0, 1, 2],
[3, 4, 511)
>>> np.argmax(a)

5

>>> np.argmax(a, axis=0)
array ([1, 1, 11)

>>> np.argmax(a, axis=1)
array ([2, 21])

>>> b = np.arange (6)
>>> b[l] = 5
>>> b

array ([0, 5, 2, 3, 4, 51])
>>> np.argmax(b) # Only the first occurrence 1is returned.
1

numpy .argmin (a, axis=None)
Return the indices of the minimum values along an axis.
See Also:

argmax
Similar function. Please refer to numpy . argmax for detailed documentation.

numpy .argsort (a, axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in sorted order.

1.2. Scalars 83

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Array to sort.
axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
al[index_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.
Notes
See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.

Examples
One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort (x)
array ([1, 2, 01])

Two-dimensional array:

>>> x = np.array ([[0, 3], [2, 2]1])
>>> x
array ([[0, 317,

(2, 211)

>>> np.argsort (x, axis=0)
array ([[0, 17,
[1, 011)

84 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.argsort (x, axis=1)
array ([[0, 1],
(0, 111

Sorting with keys:

>>> x = np.array ([(1, 0), (0, 1)1, dtype=[('x", '<id"), ('y’, ’'<id’)])
>>> x
array ([(1, 0), (0, 1)1,

dtype=[('x", ’'<id"), ('y’', '<id’")])

>>> np.argsort (x, order=('x’,"y’"))
array ([1, 0])

>>> np.argsort(x, order=("vy’,’ ' x"))
array ([0, 17)

numpy . choose (a, choices, out=None, mode="raise’)

Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality,
this function is less simple than it might seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([cl[a[I]][I] for I in ndi.ndindex (a.shape)]).
But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are
first broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1
we have that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with
shape Ba . shape is created as follows:

*if node=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1]; now, suppose that i (in that range) is the value at the (jO, j1, ..., jm) position in Ba - then the
value at the same position in the new array is the value in Bchoices/[i] at that same position;

*if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to
map integers outside the range [0, n-1] back into that range; and then the new array is constructed as
above;

*if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped
to 0; values greater than n-/ are mapped to n-1; and then the new array is constructed as above.
Parameters

a: int array

This array must contain integers in [0, n-1], where n is the number of choices, unless
mode=wrap or mode=clip, in which cases any integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the same shape. If
choices is itself an array (not recommended), then its outermost dimension (i.e., the one
corresponding to choices.shape [0]) is taken as defining the “sequence”.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’ }, optional

1.2

Scalars 85

NumPy Reference, Release 1.6.0

Specifies how indices outside [0, n-1] will be treated:

* ‘raise’ : an exception is raised

* ‘wrap’ : value becomes value mod n

 ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array : array

The merged result.

Raises
ValueError: shape mismatch :

If a and each choice array are not all broadcastable to the same shape.
See Also:

ndarray.choose
equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported,
choices should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples

>>> choices = [[O, 1, 2, 31, [10, 11, 12, 131,
(20, 21, 22, 23], [30, 31, 32, 3311
>>> np.choose([2, 3, 1, 0], choices
the first element of the result will be the first element of the
third (2+1) "array" in choices, namely, 20; the second element
will be the second element of the fourth (3+1) choice array, i.e.,
31, etc.
o)
array ([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode=’'clip’) # 4 goes to 3 (4-1)
array ([20, 31, 12, 31])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap’) # 4 goes to (4 mod 4)
array ([20, 1, 12, 31])
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>>a = [[1, O, 11, [0, 1, O], [1, O, 1]]

>>> choices = [-10, 10]
>>> np.choose(a, choices)
array ([[10, -10, 1017,

[-10, 10, -10],
[10, -10, 10]1)

>>> # With thanks to Anne Archibald

>>> a = np.array ([0, 1]).reshape((2,1,1))

>>> cl = np.array([1l, 2, 3]).reshape((1,3,1))

>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
(

>>> np.choose(a, (cl, c2)) # result is 2x3x5, res[0,:,:]=cl, res[1l,:,:]=c2

86 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

array ([[[1, 1, 1, 1, 1],
L2, 2, 2, 2, 21,
[3, 3, 3, 3, 311,
(-1, -2, -3, -4, -51,
(-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5111)

numpy .clip (a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval
of [0, 1] isspecified, values smaller than O become 0, and values larger than 1 become 1.

Parameters
a: array_like

Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.arange (10)

>>> np.clip(a, 1, 8)

array ([1, 1, 2, 3, 4, 5, 6, 7, 8, 81)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])

>>> np.clip(a, 3, 6, out=a)

array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

>>> a = np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 81)

numpy . compress (condition, a, axis=None, out=None)

Return selected slices of an array along given axis.

1.2

Scalars 87

NumPy Reference, Release 1.6.0

When working along a given axis, a slice along that axis is returned in output for each index where condi-
tion evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition : 1-D array of bools

Array that selects which entries to return. If len(condition) is less than the size of a
along the given axis, then output is truncated to the length of the condition array.

a : array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the flattened array.
out : ndarray, optional
Output array. Its type is preserved and it must be of the right shape to hold the output.

Returns
compressed_array : ndarray

A copy of a without the slices along axis for which condition is false.
See Also:
take, choose, diag,diagonal, select

ndarray.compress
Equivalent method.

numpy .doc.ufuncs
Section “Output arguments”

Examples
>>> a = np.array ([[1, 2], [3, 41, [5, 611)
>>> a
array ([[1, 2],
[3, 41,
[5, 611])
>>> np.compress ([0, 1], a, axis=0)
array ([[3, 411)
>>> np.compress ([False, True, True], a, axis=0)
array ([[3, 4],
[5, 611)

>>> np.compress ([False, True], a, axis=1)
array ([[2],

(41,

[611)

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress ([False, True], a)
array ([2])

numpy .conj (x[, out])
Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

88 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples
>>> np.conjugate (1+23)

(1-23)

>>> x = np.eye(2) + 1j » np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.71,

[0.-0.3, 1.-1.31D)

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

Array interpretation of a.

Notes
This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array X, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = x
>>> z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[0]
False

numpy . cumprod (a, axis=None, dtype=None, out=None)

Return the cumulative product of elements along a given axis.

Parameters
a: array_like

Input array.

1.2

Scalars

89

NumPy Reference, Release 1.6.0

axis : int, optional
Axis along which the cumulative product is computed. By default the input is flattened.
dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which the elements are
multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the
default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type of the resulting values will be cast if

necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-

ence to out is returned.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1,2,3])

>>> np.cumprod(a) # intermediate results 1, 1#2
total product 1#+2+3 = 6
array ([1, 2, 6])
>>> a = np.array ([[1l, 2, 31, [4, 5, 611)

>>> np.cumprod(a, dtype=float) # specify type of output
array ([1., 2., 6., 24., 120., 720.1)

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[1, 2, 31,
[4, 10, 1811)

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod (a,axis=1)
array ([[1, 2, 6],
[4, 20, 12011)

numpy . cumsum (a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a: array_like

Input array.

axis : int, optional

90 Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

Axis along which the cumulative sum is computed. The default (None) is to compute
the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments’) for more details.

Returns
cumsum_along_axis : ndarray.

A new array holding the result is returned unless out is specified, in which case a ref-
erence to out is returned. The result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See Also:

sum
Sum array elements.

trapz
Integration of array values using the composite trapezoidal rule.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> a
array ([[1, 2, 31,
(4, 5, 611)
>>> np.cumsum(a)
array ([1, 3, 6, 10, 15, 211])

>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array ([1., 3., 6., 10., 15., 21.71)
>>> np.cumsum(a, axis=0) # sum over rows for each of the 3 columns
array ([[1, 2, 31,

(5, 7, 911)
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array ([[1, 3, 6],

[4, 9, 1511)

numpy .diagonal (a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form
ali, i+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are
used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can
be determined by removing axis! and axis2 and appending an index to the right equal to the size of the
resulting diagonals.

1.2. Scalars 91

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Array from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axisl : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns
array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned. If the dimension of a is
larger, then an array of diagonals is returned, “packed” from left-most dimension to
right-most (e.g., if a is 3-D, then the diagonals are “packed” along rows).

Raises
ValueError :

If the dimension of a is less than 2.
See Also:
diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

trace
Sum along diagonals.

Examples
>>> a = np.arange (4) .reshape (2, 2)
>>> a
array ([[0, 11,

[2, 311
>>> a.diagonal ()
array ([0, 31)
>>> a.diagonal (1)
array ([1])

A 3-D example:

>>> a = np.arange(8) .reshape(2,2,2); a
array ([[[0, 11,

[2, 311,

[[4, 51,

[6, 7111)

>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and

92 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

1) # the "middle" (row) axis first.
4
(1, 711

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> al:,:,0] # main diagonal is [0 6]

array ([[0, 27,

[4, 611)
>>> al:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

numpy .mean (a, axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
average
Weighted average
Notes
The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

1.2

Scalars 93

NumPy Reference, Release 1.6.0

Examples
>>> a = np.array ([[1, 21, [3, 411)
>>> np.mean(a)
2.5

>>> np.mean(a, axis=0)
array ([2., 3.1)

>>> np.mean(a, axis=1)
array ([1.5, 3.51)

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512x512), dtype=np.float32)

>>> a0, :] = 1.0
>>> af[l, :] = 0.1
>>> np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy .nonzero (a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in
that dimension. The corresponding non-zero values can be obtained with:

al[nonzero (a)]

To group the indices by element, rather than dimension, use:

transpose (nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a: array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

94 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x = np.eye(3)
>>> x
array ([[1., 0., 0

[0., 1., 0.]

[0., 0., 1
>>> np.nonzero (x)
(array ([0, 1, 21), array ([0, 1, 21))
>>> x[np.nonzero (x)]
array ([1., 1., 1.1)
>>> np.transpose (np.nonzero (x))
array ([[0, 0],

(1, 11,

(2, 211

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array
a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the
indices of the a where the condition is true.

>>> a = np.array ([[1,2,31,104,5,6]1,17,8,911)
>>> a > 3
array ([[False, False, False],
[True, True, True],
[True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array (1, 1, 1, 2, 2, 21), array ([0, 1, 2, 0, 1, 21))

The nonzero method of the boolean array can also be called.
>>> (a > 3).nonzero ()
(array([1, 1, 1, 2, 2, 2]), array([O, 1, 2, O, 1, 2]))
numpy . prod (a, axis=None, dtype=None, out=None)
Return the product of array elements over a given axis.

Parameters
a: array_like

Input data.

axis : int, optional
Axis over which the product is taken. By default, the product of all elements is calcu-
lated.

dtype : data-type, optional

The data-type of the returned array, as well as of the accumulator in which the elements
are multiplied. By default, if a is of integer type, dtype is the default platform integer.
(Note: if the type of a is unsigned, then so is drype.) Otherwise, the dtype is the same
as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

Returns
product_along_axis : ndarray, see dtype parameter above.

An array shaped as a but with the specified axis removed. Returns a reference to out if
specified.

1.2

Scalars 95

NumPy Reference, Release 1.6.0

See Also:
ndarray.prod
equivalent method
numpy .doc.ufuncs
Section “Output arguments”
Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a
32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

Examples

By default, calculate the product of all elements:

>>> np.prod([1l.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.1])
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.1]1, axis=1)
array ([2., 12.1)

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.uint8)
>>> np.prod(x) .dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.int8)
>>> np.prod(x) .dtype == np.int
True

numpy . ptp (a, axis=None, out=None)
Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

Parameters
a: array_like

Input values.
axis : int, optional
Axis along which to find the peaks. By default, flatten the array.

out : array_like

96 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type of the output values will be cast if
necessary.

Returns
ptp : ndarray

A new array holding the result, unless outr was specified, in which case a reference to
out is returned.

Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 1]

[z, 311

>>> np.ptp(x, axis=0)
array ([2, 2])

>>> np.ptp(x, axis=1)
array ([1, 1])

numpy . put (a, ind, v, mode="raise’)
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.
ind : array_like

Target indices, interpreted as integers.
v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

See Also:

putmask, place

1.2

Scalars

97

NumPy Reference, Release 1.6.0

Examples
>>> a = np.arange (5)
>>> np.put(a, [0, 21, [-44, -551)
>>> g

array ([—-44, 1, -55, 3, 47)

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip’)
>>> 3

array ([O, 1, 2, 3, =-51)

numpy . ravel (a, order="C’)

Return a flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’F’, ‘A’, ‘K’}, optional
The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.

‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size(),).
See Also:
ndarray.flat
1-D iterator over an array.
ndarray.flatten
1-D array copy of the elements of an array in row-major order.
Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be
generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for Fortran-, or column-major,
mode.

Examples
It is equivalent to reshape (-1, order=order).

>>> x = np.array ([[1, 2, 31, [4, 5, 611)
>>> print np.ravel (x)
[1 2 3 45 6]

>>> print x.reshape(-1)
[1 2345 6]

98

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> print np.ravel (x, order='F")
[1 425 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 4 2 5 3 6]

>>> print np.ravel(x.T, order='A")
[1 2 345 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order='K")

array ([2, 1, 0])

>>> a = np.arange(l2) .reshape(2,3,2) .swapaxes (1,2); a
array ([[[O, 2, 41,

[1, 3, 511,

([6, 8, 101,

L7, 9 11111)
>>> a.ravel (order='C")
array ([O, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111])
>>> a.ravel (order="K’)
array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a: array_like

Input array.
repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.
See Also:
tile
Tile an array.
Examples

>>> x = np.array([[1,2],103,411)
>>> np.repeat (x, 2)

1.2

Scalars 99

NumPy Reference, Release 1.6.0

array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1l)
array ([[1, 1, 1, 2, 2, 21,

[3, 3, 3, 4, 4, 411)
[1, 2], axis=0)

>>> np.repeat (x,

array ([[1, 21,
[3, 4],
[3, 411)

numpy . reshape (a, newshape, order="C’)
Gives a new shape to an array without changing its data.

Parameters
a: array_like

Array to be reshaped.
newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to
be raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))

A transpose make the array non-contiguous

>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the
initial object.

>>> ¢ = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 6])

>>> np.reshape(a, 6, order="F’)
array ([1, 4, 2, 5, 3, 6])

100

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 217,

[3, 41,

[5, 611])

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note
that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of
a.

Parameters
a: array_like

Array to be resized.
new_shape : int or tuple of int
Shape of resized array.

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See Also:
ndarray.resize

resize an array in-place.
Examples

>>> a=np.array ([[0
>>> np.resize(a, (1
array ([[O0, 1, 2, 3
>>> np.resize(a, (2
array ([[0, 1, 2, 3

(o, 1, 2, 3

numpy . searchsorted (a, v, side="left’)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a: 1-D array_like

Input array, sorted in ascending order.
v : array_like

Values to insert into a.
side : {‘left’, ‘right’}, optional

If “left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either 0 or N (where N is the length of
a).

1.2

Scalars 101

NumPy Reference, Release 1.6.0

Returns
indices : array of ints

Array of insertion points with the same shape as v.

See Also:
sort

Return a sorted copy of an array.
histogram

Produce histogram from 1-D data.
Notes
Binary search is used to find the required insertion points.
As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.
Examples

>>> np.searchsorted([1,2,3,4,5], 3)

2

>>> np.searchsorted([1,2,3,4,5], 3, side="right’)
3

>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array ([0, 5, 1, 2])

numpy . sort (a, axis=-1, kind="quicksort’, order=None)
Return a sorted copy of an array.

Parameters
a: array_like

Array to be sorted.
axis : int or None, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

Returns
sorted_array : ndarray

Array of the same type and shape as a.
See Also:
ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

102 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.
Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work
space size, and whether they are stable. A stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following properties:

kind speed worst case work space | stable
‘quicksort’ 1 O(n"2) 0 no
‘mergesort’ | 2 O(n*log(n)) | ~n/2 yes
‘heapsort’ 3 O(n*log(n)) | O no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Con-
sequently, sorting along the last axis is faster and uses less space than sorting along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then
the order is determined by the real parts except when they are equal, in which case the order is determined
by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour.
In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

*Real: [R, nan]
*Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to
the non-nan part if it exists. Non-nan values are sorted as before.

Examples
>>> a = np.array ([[1,4]1,[3,111)
>>> np.sort (a) # sort along the last axis
array ([[1, 41,
[1, 311
>>> np.sort (a, axis=None) # sort the flattened array
array ([1, 1, 3, 41])
>>> np.sort (a, axis=0) # sort along the first axis
array ([[1, 11,
[3, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name’, 'S10"), (’'height’, float), ("age’, int)]
>>> values = [('Arthur’, 1.8, 41), ('Lancelot’, 1.9, 38),
. (" Galahad’, 1.7, 38)]1
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort (a, order="height’)
array ([("Galahad’, 1.7, 38), (’Arthur’, 1.8, 41),
("Lancelot’, 1.8999999999999999, 38)1,
dtype=[('name’, ' [S10’), ("height’, ’'<£f8"), ('age’, ’'<id’)])

Sort by age, then height if ages are equal:

>>> np.sort (a, order=["age’, "height’])
array ([("Galahad’, 1.7, 38), (’Lancelot’, 1.8999999999999999, 38),

1.2. Scalars 103

NumPy Reference, Release 1.6.0

("Arthur’, 1.8, 41)]1,
dtype=[('name’, ’|S10’), ("height’, ’'<£f8"), ('age’, ’'<id’)])

numpy . squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

Returns
squeezed : ndarray

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

Examples
>>> x = np.array ([[[0], [11, [2111)
>>> x.shape
(1, 3, 1)
>>> np.squeeze (x) .shape
(3,)

numpy . std (a, axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements.

standard deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

The

104 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:

var, mean

numpy .doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std
= sqgrt (mean (abs(x — x.mean())**x2)).

The average squared deviation is normally calculated as x. sum () / N, where N = len (x). If, how-
ever, ddof is specified, the divisor N — ddof is used instead. In standard statistical practice, ddof=1
provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables. The standard deviation computed in
this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased
estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always
real and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.51)

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> af0,:] = 1.0

>>> afl,:] = 0.1

>>> np.std(a)

0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

numpy . sum (a, axis=None, dtype=None, out=None)
Sum of array elements over a given axis.

Parameters
a: array_like

Elements to sum.
axis : integer, optional
Axis over which the sum is taken. By default axis is None, and all elements are summed.

dtype : dtype, optional

1.2. Scalars 105

NumPy Reference, Release 1.6.0

The type of the returned array and of the accumulator in which the elements are
summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the default platform integer. In that case, the default plat-
form integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is
given, it must be of the appropriate shape (the shape of a with axis removed, i.e.,
numpy.delete (a.shape, axis)). Its type is preserved. See doc.ufuncs (Sec-
tion “Output arguments”) for more details.

Returns
sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, a scalar is returned. If an output array is specified, a reference to out
is returned.

See Also:
ndarray.sum
Equivalent method.

cumsum
Cumulative sum of array elements.

trapz
Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 511)
6
>>> np.sum([[0, 1], [0, 511, axis=0)

array ([0, 6])
>>> np.sum([[0, 1], [0, 511, axis=1)
array ([1, 51)

If the accumulator is too small, overflow occurs:

>>> np.ones (128, dtype=np.int8) .sum(dtype=np.int8)
-128

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.

106 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

axisl : int
First axis.

axis2 : int
Second axis.

Returns
a_swapped : ndarray

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

Examples

>>> x = np.array ([[1,2,3]1])
>>> np.swapaxes (x,0,1)
array ([[1],

(21,

[(311)
>>> x = np.array ([[[0,11,02,311,[[4,51,106,7111)
>>> x
array ([[[0, 17,

[2, 311,

(4, 51,

(6, 7111

>>> np.swapaxes (x,0,2)
array ([[[0, 4],
:|’

[2, 6]

[[1, 51,

[3, 7111)

numpy . take (a, indices, axis=None, out=None, mode="raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be
easier to use if you need elements along a given axis.

Parameters
a : array_like

The source array.
indices : array_like

The indices of the values to extract.
axis : int, optional

The axis over which to select values. By default, the flattened input array is used.
out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)

* ‘wrap’ — wrap around

1.2

Scalars 107

NumPy Reference, Release 1.6.0

* ‘clip’ — clip to the range

‘clip” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.
See Also:
ndarray.take
equivalent method
Examples

>>> a = [4, 3, 5, 7, 6,
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array ([4, 3, 6])

8]

In this example if @ is an ndarray, “fancy” indexing can be used.

>>> a = np.array (a)
>>> al[indices]
array ([4, 3, 6])

numpy . trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements
al[i,i+offset] foralli.

If @ has more than two dimensions, then the axes specified by axisl and axis2 are used to determine the
2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with
axis] and axis2 removed.

Parameters
a: array_like

Input array, from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axisl, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the diag-
onals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

108 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns
sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See Also:
diag,diagonal,diagflat

Examples

>>> np.trace (np.eye (3))

3.0

>>> a = np.arange (8) .reshape((2,2,2))
>>> np.trace(a)

array ([6, 8])

>>> a = np.arange(24) .reshape((2,2,2,3))
>>> np.trace(a) .shape
(2, 3)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.
axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values

given.
Returns
p : ndarray
a with its axes permuted. A view is returned whenever possible.
See Also:
rollaxis
Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> X
array ([[0, 1]

(2, 311

>>> np.transpose (x)
array ([[0, 21,
(1, 311

>>> x = np.ones ((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

1.2

Scalars

109

NumPy Reference, Release 1.6.0

numpy . var (a, axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is
computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is floar32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom™: the divisor used in the calculation is N — ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs(x -
x.mean ()) *x2).

The mean is normally calculated as x . sum () / N,where N = len (x). If, however, ddof is specified,
the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased
estimator of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real
and nonnegative.

110 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

For floating-point input, the variance is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1,2],[3,4]1])
>>> np.var (a)
1.25
>>> np.var(a,0)
array ([1., 1.1)

>>> np.var(a, 1)
array ([0.25, 0.257)

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512x512), dtype=np.float32)
>>> af[0,:] = 1.0

>>> afl,:] = 0.1

>>> np.var(a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932997387

>>> ((1-0.55)**x2 + (0.1-0.55)%x%2)/2
0.20250000000000001

generic.__array__ ()
sc.__array__(ltype) return O-dim array

generic.__array wrap_ ()
sc.__array_wrap__(obj) return scalar from array

generic.squeeze ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes
of the ndarray class so as to provide a uniform APIL.

See Also:
The

generic.byteswap ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes
of the ndarray class so as to provide a uniform APIL.

See Also:
The
generic.__reduce__ ()

generic.__setstate_ ()

generic.setflags ()
Not implemented (virtual attribute)

1.2. Scalars 111

NumPy Reference, Release 1.6.0

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the attributes
of the ndarray class so as to provide a uniform API.

See Also:
The

1.2.5 Defining new types

There are two ways to effectively define a new array scalar type (apart from composing record dtypes from the built-in
scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This will work to a
degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the data type of an
array you need to define a new data-type, and register it with NumPy. Such new types can only be defined in C, using
the Numpy C-API.

1.3 Data type objects (dtype)

A data type object (an instance of numpy . dt ype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)

2. Size of the data (how many bytes is in e.g. the integer)
3. Byte order of the data (little-endian or big-endian)
4

. If the data type is a record, an aggregate of other data types, (e.g., describing an array item consisting of an
integer and a float),

(a) what are the names of the “fields” of the record, by which they can be accessed,
(b) what is the data-type of each field, and
(c) which part of the memory block each field takes.

5. If the data is a sub-array, what is its shape and data type.

To describe the type of scalar data, there are several built-in scalar types in Numpy for various precision of integers,
floating-point numbers, efc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is
the scalar type associated with the data type of the array.

Note that the scalar types are not dt ype objects, even though they can be used in place of one whenever a data type
specification is needed in Numpy. Record data types are formed by creating a data type whose fields contain other
data types. Each field has a name by which it can be accessed. The parent data type should be of sufficient size to
contain all its fields; the parent can for example be based on the void type which allows an arbitrary item size. Record
data types may also contain other record types and fixed-size sub-array data types in their fields. Finally, a data type
can describe items that are themselves arrays of items of another data type. These sub-arrays must, however, be of a
fixed size. If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended
to the shape of the array when the array is created. Sub-arrays in a field of a record behave differently, see Record
Access.

Example

A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

112 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> dt = np.dtype (' >14")
>>> dt.byteorder

’ >I

>>> dt.itemsize

4

>>> dt.name

"int32’

>>> dt.type is np.int32
True

The corresponding array scalar type is int 32.
Example

A record data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point
number (in field ‘grades’):

>>> dt = np.dtype ([('name’, np.str_, 16), ('grades’, np.float64, (2,))])
>>> dt [name’]

dtype (' |S16")

>>> dt[’grades’]

dtype ((" floated’, (2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> x = np.array ([(' Sarah’, (8.0, 7.0)), ("John’, (6.0, 7.0))]1, dtype=dt)
>>> x[1]

("John’, [6.0, 7.07])

>>> x[1] [’'grades’]

array ([6., 7.1)

>>> type(x[1])

<type ’'numpy.void’>

>>> type (x[1]["grades’])

<type ’numpy.ndarray’>

1.3.1 Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dt ype object or something that can be
converted to one can be supplied. Such conversions are done by the dt ype constructor:

dtype Create a data type object.

class numpy . dtype
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be
constructed from different combinations of fundamental numeric types.

Parameters
obj :

Object to be converted to a data type object.
align : bool, optional

Add padding to the fields to match what a C compiler would output for a similar C-
struct. Can be True only if 0bj is a dictionary or a comma-separated string.

copy : bool, optional

1.3. Data type objects (dtype) 113

NumPy Reference, Release 1.6.0

Make a new copy of the data-type object. If False, the result may just be a reference
to a built-in data-type object.

See Also:

result_type

Examples
Using array-scalar type:
>>> np.dtype (np.intl6)
dtype ("intl6’)
Record, one field name ‘f1°, containing int16:

>>> np.dtype ([(' £f1’, np.intl6)])
dtype ([(" £f17, 7<i2’)])

Record, one field named ‘f1’, in itself containing a record with one field:

>>> np.dtype ([(" £f1", [('fl’, np.intl6)])])
dtype ([(" £1", [("fl", "<i2")1)])

Record, two fields: the first field contains an unsigned int, the second an int32:
>>> np.dtype ([(' f1’, np.uint), ('£f2’, np.int32)1])
dtype ([(" £f1", ’"<u4’), ("f2’', ’'<i4d’")])

Using array-protocol type strings:
>>> np.dtype([("a’,”£8"), ("b",7510")1])
dtype([("a’, "<f8"), ('b’, "[s107)1)

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype ([(" £0", ’<i4"), ('f1’, '<£8", (2, 3))1)

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype ([(’hello’, (np.int,3)), ('world’,np.void, 10)1)
dtype ([("hello’, ’<i4’, 3), ('world’, " |V10’)])

Subdivide int16 into 2 int8°s, called x and y. 0 and 1 are the offsets in bytes:
>>> np.dtype ((np.intl6, {’x’:(np.int8,0), 'y’ :(np.int8,1)}))
dtype (("<i2’, [("x", "|i1"), ("y’', "11i1")]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype ({'names’ : ["gender’,’age’], ’'formats’:[’S1l’,np.uint8]})
dtype ([("gender’, " [|S1"), ('age’, ’[ul’)])

Offsets in bytes, here 0 and 25:

>>> np.dtype ({’ surname’ : (* S25’,0), " age’ : (np.uint8,25) })
dtype ([(" surname’, ' [S25"), ("age’, "|ul’)1])

114 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Methods

newbyteorder

What can be converted to a data-type object is described below:
dtype object
Used as-is.
None
The default data type: float_.
Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their
sub-classes as well.

Note that not all data-type information can be supplied with a type-object: for example, flexible data-types
have a default itemsize of 0, and require an explicitly given size to be useful.

Example

>>> dt np.dtype (np.int32) # 32-bit integer
>>> dt = np.dtype(np.complex128) # 128-bit complex floating-point number

Generic types

The generic hierarchical type objects convert to corresponding type objects according to the associations:

number, inexact, floating | float
complexfloating cfloat
integer, signedinteger int_
unsignedinteger uint
character string
generic, flexible void

Built-in Python types

Several python types are equivalent to a corresponding array scalar when used to generate a dt ype object:

int int_
bool bool__
float float_
complex | cfloat
str string
unicode unicode_
buffer void

(all others) | object__

Example
>>> dt = np.dtype (float) # Python-compatible floating-point number
>>> dt = np.dtype (int) # Python-compatible integer

>>> dt = np.dtype (object) # Python object

Types with . dtype

Any type object with a dt ype attribute: The attribute will be accessed and used directly. The attribute
must return something that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be prepended with ’ >’ (big-endian), ' <’ (little-
endian), or ' =’ (hardware-native, the default), to specify the byte order.

1.3. Data type objects (dtype) 115

NumPy Reference, Release 1.6.0

One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

>>> dt
>>> dt
>>> dt
>>> dt

= np.dtype('b")

= np.dtype (' >H’

= np.dtype ("' <£’)
(

= np.dtype("d’)

byte, native byte order
big-endian unsigned short

little—-endian single-precision float

double-precision floating-point number

Array-protocol type strings (see The Array Interface)

The first character specifies the kind of data and the remaining characters specify how many bytes of data.
The supported kinds are

"o’ Boolean

rir (signed) integer

ru’ unsigned integer

i floating-point

rc’ complex-floating point

rsr,"a’ | string

ru’ unicode

v’ anything (void)

Example

>>> dt = np.dtype(’i4")
>>> dt = np.dtype (' £8")
>>> dt = np.dtype('cl6’)
>>> dt = np.dtype(’a25")

String with comma-separated fields

HH FH W H

32-bit signed integer

64-bit floating-point number

128-bit complex floating—-point number
25-character string

Numarray introduced a short-hand notation for specifying the format of a record as a comma-separated
string of basic formats.

A basic format in this context is an optional shape specifier followed by an array-protocol type string.
Parenthesis are required on the shape if it is greater than 1-d. NumPy allows a modification on the format
in that any string that can uniquely identify the type can be used to specify the data-type in a field. The
generated data-type fields are named ’ £0’, " £17, ..., " £<N-1>’ where N (>1) is the number of comma-
separated basic formats in the string. If the optional shape specifier is provided, then the data-type for the
corresponding field describes a sub-array.

Example

* field named f£0 containing a 32-bit integer

¢ field named £1 containing a 2 x 3 sub-array of 64-bit floating-point numbers

¢ field named £2 containing a 32-bit floating-point number

>>> dt

= np.dtype("i4,

(2,3)£8, £4")

* field named £0 containing a 3-character string

e field named £1 containing a sub-array of shape (3,) containing 64-bit unsigned integers

* field named £2 containing a 3 x 4 sub-array containing 10-character strings

Type strings

>>> dt

= np.dtype("a3,

3u8, (3,4)alld")

116

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Any string in numpy . sctypeDict.keys():

Example
>>> dt = np.dtype ('uint327) # 32-bit unsigned integer
>>> dt = np.dtype ('Float64’) # 64-bit floating-point number

(flexible_ dtype, itemsize)

The first argument must be an object that is converted to a flexible data-type object (one whose element
size is 0), the second argument is an integer providing the desired itemsize.

Example
>>> dt = np.dtype ((void, 10)) # 10-byte wide data block
>>> dt = np.dtype((str, 35)) # 35-character string
>>> dt = np.dtype(('U’, 10)) # 10-character unicode string

(fixed_dtype, shape)

The first argument is any object that can be converted into a fixed-size data-type object. The second
argument is the desired shape of this type. If the shape parameter is 1, then the data-type object is
equivalent to fixed dtype. If shape is a tuple, then the new dtype defines a sub-array of the given shape.

Example
>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array
>>> dt = np.dtype((’S107, 1)) # 10-character string

>>> dt = np.dtype(('i4, (2,3)f8, f£47, (2,3))) # 2 x 3 record sub-array

(base_dtype, new_dtype)

Both arguments must be convertible to data-type objects in this case. The base_dtype is the data-type
object that the new data-type builds on. This is how you could assign named fields to any built-in data-
type object.

Example

32-bit integer, whose first two bytes are interpreted as an integer via field real, and the following two
bytes via field imag.

>>> dt = np.dtype((np.int32,{’real’ : (np.intl6, 0),’imag’ :(np.intl6, 2)})

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four unsigned integers:

>>> dt = np.dtype(("1i4’, [(x’,’ul’), (g",’ul”), (b","ul’), ("a’","ul’)]))

[(field_name, field_dtype, field_shape), ...]

obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the
descriteminthe array_interface_ attribute.)

The first element, field_name, is the field name (if this is ” then a standard field name, * £#', is assigned).
The field name may also be a 2-tuple of strings where the first string is either a “title” (which may be any
string or unicode string) or meta-data for the field which can be any object, and the second string is the
“name” which must be a valid Python identifier.

The second element, field_dtype, can be anything that can be interpreted as a data-type.

1.3. Data type objects (dtype) 117

NumPy Reference, Release 1.6.0

The optional third element field_shape contains the shape if this field represents an array of the data-type
in the second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.

This style does not accept align in the dtype constructor as it is assumed that all of the memory is
accounted for by the array interface description.

Example
Data-type with fields big (big-endian 32-bit integer) and 1itt le (little-endian 32-bit integer):

>>> dt = np.dtype ([("big’, ">147), (’'little’, "<id4’)1)

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

>>> dt = np.dtype ([('R’,’ul’), ('G’,’ul’), ('B’,"ul’), ('A’,"’ul’)])

{"names’ : ..., "formats’: ..., "offsets’: ..., 'titles’: ..}

This style has two required and two optional keys. The names and formats keys are required. Their
respective values are equal-length lists with the field names and the field formats. The field names must
be strings and the field formats can be any object accepted by dt ype constructor.

The optional keys in the dictionary are offsets and titles and their values must each be lists of the same
length as the names and formats lists. The offsets value is a list of byte offsets (integers) for each field,
while the titles value is a list of titles for each field (None can be used if no title is desired for that field).
The titles can be any string or unicode object and will add another entry to the fields dictionary
keyed by the title and referencing the same field tuple which will contain the title as an additional tuple
member.

Example
Data type with fields r, g, b, a, each being a 8-bit unsigned integer:
>>> dt = np.dtype({'names’: ["x’,’'g’,'b’,"a’],

"formats’: [uint8, uint8, uint8, uint8]})

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte
position 0 from the start of the field and the second at position 2:

>>> dt = np.dtype({’names’: ["r’,’b"], ’"formats’: [’"ul’, ’"ul’l,
"offsets’: [0, 2],
"titles’: ['Red pixel’, ’'"Blue pixel’]})
{"fieldl’: .., 'field2’: B

This style allows passing in the fields attribute of a data-type object.

obj should contain string or unicode keys that refer to (data-type, offset) or (data-type,
offset, title) tuples.

Example

Data type containing field col1 (10-character string at byte position 0), col2 (32-bit float at byte posi-
tion 10), and co13 (integers at byte position 14):

>>> dt = np.dtype({’coll’: (’S10’, 0), 'col2’: (float32, 10),
"col3’: (int, 14)})

1.3.2 dtype

Numpy data type descriptions are instances of the dt ype class.

118 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Attributes

The type of the data is described by the following dt ype attributes:

dtype.type The type object used to instantiate a scalar of this data-type.
dtype.kind A character code (one of ‘biufcSUV’) identifying the general kind of data.
dtype.char A unique character code for each of the 21 different built-in types.
dtype.num A unique number for each of the 21 different built-in types.

dtype.str The array-protocol typestring of this data-type object.

dtype.type
The type object used to instantiate a scalar of this data-type.

dtype.kind
A character code (one of ‘biufcSUV’) identifying the general kind of data.

dtype.char
A unique character code for each of the 21 different built-in types.

dtype.num
A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

dtype.str
The array-protocol typestring of this data-type object.

Size of the data is in turn described by:

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

dtype.itemsize
The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

Endianness of this data:

dtype.byteorder A character indicating the byte-order of this data-type object.

dtype .byteorder
A character indicating the byte-order of this data-type object.

One of:
‘=" | native
‘<’ | little-endian
>’ | big-endian
‘" | not applicable

All built-in data-type objects have byteorder either ‘=" or ‘I’.

Examples

>>> dt = np.dtype('i2")
>>> dt.byteorder

r—r

1.3. Data type objects (dtype) 119

NumPy Reference, Release 1.6.0

>>> # endian is not relevant for 8 bit numbers

>>> np.dtype(’il’) .byteorder

I‘I

>>> # or ASCII strings

>>> np.dtype (' S2’) .byteorder

I‘I

>>> # Even 1f specific code is given, and it is native
>>> # /=’ is the byteorder

>>> import sys

>>> sys_is_le = sys.byteorder == ’"little’
>>> native_code = sys_is_le and ’'<’ or ’>’
>>> swapped_code = sys_is_le and '>’ or <’

>>> dt = np.dtype (native_code + "127)

>>> dt.byteorder

r—r

>>> # Swapped code shows up as itself
>>> dt = np.dtype (swapped_code + "12")
>>> dt.byteorder == swapped_code

True

Information about sub-data-types in a record:

dtype.fields Dictionary of named fields defined for this data type, or None.
dtype.names Ordered list of field names, or None if there are no fields.

dtype.fields
Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully
describing the field:

(dtype, offset[, title])

If present, the optional title can be any object (if it is a string or unicode then it will also be a key in the fields
dictionary, otherwise it’s meta-data). Notice also that the first two elements of the tuple can be passed directly
as arguments to the ndarray.getfield and ndarray.setfield methods.

See Also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype ([('name’, np.str_, 16), ('grades’, np.float64, (2,))])
>>> print dt.fields
{"grades’: (dtype((’'float64’,(2,))), 16), ’'name’: (dtype(’[S1l6’), 0)}

dtype.names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through all
of the named fields in offset order.

Examples

>>> dt = np.dtype ([('name’, np.str_, 16), ('grades’, np.float64, (2,))])
>>> dt.names
("name’, ’'grades’)

For data types that describe sub-arrays:

120 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

dtype
dtype

.subdtype Tuple (item_dtype, shape) if this dfype describes a sub-array, and
.shape Shape tuple of the sub-array if this data type describes a sub-array,

dtype.subdtype
Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the
array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked

on

to the end of the retrieved array.

dtype.shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Attributes providing additional information:

dtype

dtype.
dtype.
dtype.
dtype.
dtype.

.hasobjectBoolean indicating whether this dtype contains any reference-counted objects in any fields
or sub-dtypes.

flags Bit-flags describing how this data type is to be interpreted.

isbuiltinlnteger indicating how this dtype relates to the built-in dtypes.

isnative Boolean indicating whether the byte order of this dtype is native

descr Array-interface compliant full description of the data-type.

alignment The required alignment (bytes) of this data-type according to the compiler.

dtype.hasobject

Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address of that
object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types

that may contain arbitrary Python objects and data-types that won’t.

dtype.flags
Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of
these flags is in C-API documentation; they are largely useful for user-defined data-types.

dtype.isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

Read-only.
0 | if this is a structured array type, with fields
1 | if this is a dtype compiled into numpy (such as ints, floats etc)
2 | if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to
extend numpy to handle a new array type. See user.user-defined-data-types in the Numpy manual.
Examples

>>> dt = np.dtype('i2")
>>> dt.isbuiltin

1

>>> dt = np.dtype(’£8")
>>> dt.isbuiltin

>>> dt = np.dtype ([(' fieldl’, 7£8")1)
>>> dt.isbuiltin

1.3. Data type objects (dtype) 121

NumPy Reference, Release 1.6.0

dtype.isnative
Boolean indicating whether the byte order of this dtype is native to the platform.

dtype.descr
Array-interface compliant full description of the data-type.

The format is that required by the ‘descr’ key in the __array_interface__ attribute.

dtype.alignment
The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

Methods

Data types have the following method for changing the byte order:

dtype.newbyteorder(new_order=) Return a new dtype with a different byte order.

dtype .newbyteorder (new_order='S")
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.

Parameters
new_order : string, optional

Byte order to force; a value from the byte order specifications below. The default value
(‘S’) results in swapping the current byte order. new_order codes can be any of:

* 'S’ - swap dtype from current to opposite endian
* {’<', "L’} - little endian

* {’>", "B’} - big endian

* {’=", 'N’} - native order

* {’]", "I’} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of new_order for these alter-
natives. For example, any of >’ or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

Returns
new_dtype : dtype

New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples
>>> import sys
>>> sys_1is_le = sys.byteorder == ’'little’
>>> native_code = sys_is_le and "<’ or ’'>'
>>> swapped_code = sys_is_le and '>’ or ’<’
>>> native_dt = np.dtype(native_code+’i2")
>>> swapped_dt = np.dtype (swapped_code+’i2")
>>> native_dt .newbyteorder (’'S’) == swapped_dt
True
>>> native_dt.newbyteorder () == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder (’S’)

122 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

True

>>> native_dt == swapped_dt.newbyteorder ('=")

True

>>> native_dt == swapped_dt.newbyteorder ('N’)

True

>>> native_dt == native_dt.newbyteorder (' |’)

True

>>> np.dtype (' <i2’) == native_dt.newbyteorder (’'<’)
True

>>> np.dtype (' <i2’) == native_dt.newbyteorder ('L")
True

>>> np.dtype(’>12’) == native_dt.newbyteorder ('>")
True

>>> np.dtype(’>12’) == native_dt.newbyteorder ('B’)
True

The following methods implement the pickle protocol:

dtype._ reduce_
dtype._ _setstate_

dtype.__reduce__ ()

dtype.__setstate__ ()

1.4 Indexing

ndarrays can be indexed using the standard Python x [ob7j] syntax, where x is the array and obj the selection.
There are three kinds of indexing available: record access, basic slicing, advanced indexing. Which one occurs
depends on obj.

Note: In Python, x[(expl, exp2, ..., expN)] is equivalent to x[expl, exp2, ..., expN]; the
latter is just syntactic sugar for the former.

1.4.1 Basic Slicing

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic slicing occurs when obj is a slice
object (constructed by start : stop:step notation inside of brackets), an integer, or a tuple of slice objects and
integers. E11lipsis and newaxis objects can be interspersed with these as well. In order to remain backward
compatible with a common usage in Numeric, basic slicing is also initiated if the selection object is any sequence
(such as a 1ist) containing s1ice objects, the E11ipsis object, or the newaxis object, but no integer arrays or
other embedded sequences. The simplest case of indexing with N integers returns an array scalar representing the
corresponding item. As in Python, all indices are zero-based: for the i-th index n;, the valid range is 0 < n; < d;
where d; is the i-th element of the shape of the array. Negative indices are interpreted as counting from the end of the
array (i.e., if i < 0, it means n; + 7).

All arrays generated by basic slicing are always views of the original array.

The standard rules of sequence slicing apply to basic slicing on a per-dimension basis (including using a step index).
Some useful concepts to remember include:

¢ The basic slice syntax is i : j:k where i is the starting index, j is the stopping index, and & is the step (k # 0).
This selects the m elements (in the corresponding dimension) with index values i, i + k, ..., i + (m - 1) k where

1.4. Indexing 123

NumPy Reference, Release 1.6.0

m = g+ (r # 0) and ¢ and r are the quotient and remainder obtained by dividing j-iby k: j-i =gk + r, so
thati + (m-1)k <.

Example
>>> x = np.array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 51)

Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding
dimension. Negative k makes stepping go towards smaller indices.

Example
>>> x[-2:10]
array ([8, 91)
>>> x[-3:3:-1]
array ([7, 6, 5, 41])

Assume n is the number of elements in the dimension being sliced. Then, if i is not given it defaults to O for k >
0 and n for k < 0. If j is not given it defaults to n for k > 0 and -1 for k < 0 . If k is not given it defaults to 1.
Note that : : is the same as : and means select all indices along this axis.

Example

>>> x[5:]
[

array ([5, 6, 7, 8, 91)

If the number of objects in the selection tuple is less than N , then : is assumed for any subsequent dimensions.

Example
>>> x = np.array ([[[1],[2],(3]], [(4],[5],[6]11])
>>> x.shape
(2, 3, 1)
>>> x[1:2
array ([[[4],

]
4
(51,
[6111)

Ellipsis expand to the number of : objects needed to make a selection tuple of the same length as x . ndim.
Only the first ellipsis is expanded, any others are interpreted as :.

Example

>>> x[...,0]
array ([[1, 2, 31,
[4, 5, 6]1)

Each newaxis object in the selection tuple serves to expand the dimensions of the resulting selection by one
unit-length dimension. The added dimension is the position of the newaxis object in the selection tuple.

Example
>>> x[:,np.newaxis, :, :].shape
(2, 1, 3, 1)

An integer, i, returns the same values as 1 : 1+1 except the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the p-th element an integer (and all other entries :) returns the corresponding
sub-array with dimension N - I. If N = I then the returned object is an array scalar. These objects are explained
in Scalars.

124

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

* If the selection tuple has all entries : except the p-th entry which is a slice object i: j:k, then the returned
array has dimension N formed by concatenating the sub-arrays returned by integer indexing of elements i, i+k,
v i+ (m-1)k <],

* Basic slicing with more than one non-: entry in the slicing tuple, acts like repeated application of slicing using
a single non-: entry, where the non-: entries are successively taken (with all other non-: entries replaced by
:). Thus, x [indl, ..., ind2, :] actslike x [ind1] [..., ind2, :] under basic slicing.

Warning: The above is not true for advanced slicing.

* You may use slicing to set values in the array, but (unlike lists) you can never grow the array. The size of the
value to be setin x [obj] = wvalue must be (broadcastable) to the same shape as x [ob]].

Note: Remember that a slicing tuple can always be constructed as obj and used in the x [obj] notation. Slice objects
can be used in the construction in place of the [start:stop:step] notation. For example, x [1:10:5, : : =1]
can also be implemented as obj = (slice(1,10,5), slice(None,None,-1)); x[obj] . This can be
useful for constructing generic code that works on arrays of arbitrary dimension.

numpy .newaxis
The newaxis object can be used in the basic slicing syntax discussed above. None can also be used instead
of newaxis.

1.4.2 Advanced indexing

Advanced indexing is triggered when the selection object, 0bj, is a non-tuple sequence object, an ndarray (of data
type integer or bool), or a tuple with at least one sequence object or ndarray (of data type integer or bool). There are
two types of advanced indexing: integer and Boolean.

Advanced indexing always returns a copy of the data (contrast with basic slicing that returns a view).

Integer

Integer indexing allows selection of arbitrary items in the array based on their N-dimensional index. This kind of
selection occurs when advanced indexing is triggered and the selection object is not an array of data type bool. For the
discussion below, when the selection object is not a tuple, it will be referred to as if it had been promoted to a 1-tuple,
which will be called the selection tuple. The rules of advanced integer-style indexing are:

If the length of the selection tuple is larger than N an error is raised.

All sequences and scalars in the selection tuple are converted to intp indexing arrays.

All selection tuple objects must be convertible to intp arrays, s1ice objects, orthe E11ipsis object.

The first E11ipsis object will be expanded, and any other E11ipsis objects will be treated as full slice (:)
objects. The expanded E11ipsis object is replaced with as many full slice (:) objects as needed to make the
length of the selection tuple N.

If the selection tuple is smaller than N, then as many : objects as needed are added to the end of the selection
tuple so that the modified selection tuple has length N.

All the integer indexing arrays must be broadcastable to the same shape.

The shape of the output (or the needed shape of the object to be used for setting) is the broadcasted shape.

After expanding any ellipses and filling out any missing : objects in the selection tuple, then let /V; be the
number of indexing arrays, and let N, = N — IN; be the number of slice objects. Note that N; > 0 (or we
wouldn’t be doing advanced integer indexing).

1.4. Indexing 125

NumPy Reference, Release 1.6.0

e If Ny = 0 then the M-dimensional result is constructed by varying the index tuple (i_1, ..., i_M) over
the range of the result shape and for each value of the index tuple (ind_1, ..., ind_M):
resultf(i_1, ..., i_M] == x[ind_17[4i_1, ..., i_M], ind_2[4i_1, ..., i_M]J,
., ind N[i_ 1, ..., i_M]]
Example

Suppose the shape of the broadcasted indexing arrays is 3-dimensional and N is 2. Then the result is found by
letting i, j, k run over the shape found by broadcasting ind_1 and ind_2, and each i, j, k yields:

result[i, j, k] = x[ind_1[i,3J,k], ind_2[i, 3, k]]

* If Ny > 0, then partial indexing is done. This can be somewhat mind-boggling to understand, but if you think
in terms of the shapes of the arrays involved, it can be easier to grasp what happens. In simple cases (i.e.
one indexing array and N - [slice objects) it does exactly what you would expect (concatenation of repeated
application of basic slicing). The rule for partial indexing is that the shape of the result (or the interpreted shape
of the object to be used in setting) is the shape of x with the indexed subspace replaced with the broadcasted
indexing subspace. If the index subspaces are right next to each other, then the broadcasted indexing space
directly replaces all of the indexed subspaces in x. If the indexing subspaces are separated (by slice objects),
then the broadcasted indexing space is first, followed by the sliced subspace of x.

Example

Suppose x.shape is (10,20,30) and ind is a (2,3,4)-shaped indexing intp array, then result =
x[...,1ind, :]1 has shape (10,2,3,4,30) because the (20,)-shaped subspace has been replaced with a
(2,3,4)-shaped broadcasted indexing subspace. If we let i, j, k loop over the (2,3,4)-shaped subspace then
result[...,1i,3,k,:1 = x[...,ind[1, J,k],:]. This example produces the same result as
x.take (ind, axis=-2).

Example

Now let x . shape be (10,20,30,40,50) and suppose ind_1 and ind_2 are broadcastable to the shape (2,3,4).
Then x[:,ind_1, ind_2] has shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X has
been replaced with the (2,3,4) subspace from the indices. However, x[:,ind_1, :, ind_2] has shape
(2,3,4,10,30,50) because there is no unambiguous place to drop in the indexing subspace, thus it is tacked-
on to the beginning. It is always possible to use .transpose () to move the subspace anywhere desired.
(Note that this example cannot be replicated using take.)

Boolean

This advanced indexing occurs when obj is an array object of Boolean type (such as may be returned from com-
parison operators). It is always equivalent to (but faster than) x [obJj.nonzero ()] where, as described above,
obj.nonzero () returns a tuple (of length ob j . ndim) of integer index arrays showing the True elements of obj.

The special case when obj.ndim == x.ndim is worth mentioning. In this case x [obj] returns a 1-dimensional
array filled with the elements of x corresponding to the True values of obj. The search order will be C-style (last
index varies the fastest). If obj has True values at entries that are outside of the bounds of x, then an index error will
be raised.

You can also use Boolean arrays as element of the selection tuple. In such instances, they will always be interpreted
as nonzero (obj) and the equivalent integer indexing will be done.

Warning: The definition of advanced indexing means that x[(1,2, 3),] is fundamentally different than
x[(1,2,3)]1. The latter is equivalent to x [1, 2, 3] which will trigger basic selection while the former will
trigger advanced indexing. Be sure to understand why this is occurs.

Also recognize that x [[1,2,3]] will trigger advanced indexing, whereas x [[1,2, slice (None)]] will
trigger basic slicing.

126 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

1.4.3 Record Access

See Also:
Data type objects (dtype), Scalars

If the ndarray object is a record array, i.e. its data type is a record data type, the fields of the array can be accessed
by indexing the array with strings, dictionary-like.

Indexing x [” field-name’] returns a new view to the array, which is of the same shape as x (except when the field
is a sub-array) but of data type x.dtype [’ field-name’] and contains only the part of the data in the specified
field. Also record array scalars can be “indexed” this way.

If the accessed field is a sub-array, the dimensions of the sub-array are appended to the shape of the result.

Example

>>> x = np.zeros((2,2), dtype=[("a’, np.int32), ('b’, np.float64, (3,3))])
>>> x["a’].shape

(2, 2)

>>> x[’a’].dtype
dtype (" int32")
>>> x[’b’].shape
(2, 2, 3, 3)

>>> x['b’].dtype
dtype (" float64’)

1.4.4 Flat lterator indexing

x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with the last index varying
the fastest). This iterator object can also be indexed using basic slicing or advanced indexing as long as the selection
object is not a tuple. This should be clear from the fact that x . f1at is a 1-dimensional view. It can be used for integer
indexing with 1-dimensional C-style-flat indices. The shape of any returned array is therefore the shape of the integer
indexing object.

1.5 Standard array subclasses

The ndarray in NumPy is a “new-style” Python built-in-type. Therefore, it can be inherited from (in Python or in
C) if desired. Therefore, it can form a foundation for many useful classes. Often whether to sub-class the array object
or to simply use the core array component as an internal part of a new class is a difficult decision, and can be simply a
matter of choice. NumPy has several tools for simplifying how your new object interacts with other array objects, and
so the choice may not be significant in the end. One way to simplify the question is by asking yourself if the object
you are interested in can be replaced as a single array or does it really require two or more arrays at its core.

Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly
through your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict
guidelines, asanyarray would rarely be useful. However, most subclasses of the arrayobject will not redefine
certain aspects of the array object such as the buffer interface, or the attributes of the array. One important example,
however, of why your subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine
the “*” operator to be matrix-multiplication, rather than element-by-element multiplication.

1.5. Standard array subclasses 127

NumPy Reference, Release 1.6.0

1.5.1 Special attributes and methods

See Also:
Subclassing ndarray
Numpy provides several hooks that subclasses of ndarray can customize:

numpy.__array_ finalize__ (self)
This method is called whenever the system internally allocates a new array from obj, where 0bj is a subclass
(subtype) of the ndarray. It can be used to change attributes of self after construction (so as to ensure
a 2-d matrix for example), or to update meta-information from the “parent.”” Subclasses inherit a default
implementation of this method that does nothing.

numpy.__array_prepare__ (array, context=None)
At the beginning of every ufunc, this method is called on the input object with the highest array priority, or the
output object if one was specified. The output array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which simply returns the output array unmodified.
Subclasses may opt to use this method to transform the output array into an instance of the subclass and update
metadata before returning the array to the ufunc for computation.

numpy.__array wrap__ (array, context=None)
At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the
user. Subclasses inherit a default implementation of this method, which transforms the array into a new instance
of the object’s class. Subclasses may opt to use this method to transform the output array into an instance of the
subclass and update metadata before returning the array to the user.

numpy.__array_priority
The value of this attribute is used to determine what type of object to return in situations where there is more
than one possibility for the Python type of the returned object. Subclasses inherit a default value of 1.0 for this
attribute.

numpy.__array__ ([dtype])
If aclass having the __array__ method is used as the output object of an ufunc, results will be written to the
object returned by ___array__ .

1.5.2 Matrix objects

matrix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices
but expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (‘;”) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make sure you understand this for func-
tions that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a
matrix when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(...) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

128 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

6. Matrices have special attributes which make calculations easier. These are

matrix.T transpose

matrix.H hermitian (conjugate) transpose
matrix.I inverse
matrix.A base array

matrix.T
transpose

matrix.H
hermitian (conjugate) transpose

matrix.I
inverse

matrix.A
base array

Warning: Matrix objects over-ride multiplication, ‘*’, and power, ‘**’, to be matrix-multiplication and matrix
power, respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then
you must use the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own
subclass of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted
to an ndarray . The name “mat “is an alias for “matrix “in NumPy.

matrix Returns a matrix from an array-like object, or from a string of data.
asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat (obj[, 1dict, gdict]) Build a matrix object from a string, nested sequence, or array.

class numpy .matrix
Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that
retains its 2-D nature through operations. It has certain special operators, such as » (matrix multiplication) and
** (matrix power).

Parameters
data : array_like or string

If data is a string, it is interpreted as a matrix with commas or spaces separating
columns, and semicolons separating rows.

dtype : data-type
Data-type of the output matrix.
copy : bool

If data is already an ndarray, then this flag determines whether the data is copied (the
default), or whether a view is constructed.

See Also:

array

Examples

>>> a = np.matrix(’1 2; 3 47)
>>> print a

[[1 2]

[3 4]]

1.5. Standard array subclasses 129

NumPy Reference, Release 1.6.0

>>> np.matrix ([[1, 2], [3, 4]1)
matrix ([[1, 2]

[3, 411)

Methods
all(al, axis, out]) Test whether all array elements along a given axis evaluate to True.
any(al, axis, out]) Test whether any array element along a given axis evaluates to True.
argmax(a[, axis]) Indices of the maximum values along an axis.
argmin(al, axis]) Return the indices of the minimum values along an axis.
argsort(a[, axis, kind, order]) Returns the indices that would sort an array.
astype
byteswap
choose(a, choices[, out, mode]) Construct an array from an index array and a set of arrays to choose from.
clip(a, a_min, a_max|, out]) Clip (limit) the values in an array.
compress(condition, a[, axis, out]) Return selected slices of an array along given axis.
conJx[, out]) Return the complex conjugate, element-wise.
conjugate(x[, out]) Return the complex conjugate, element-wise.
copy(a) Return an array copy of the given object.
cumprod(al, axis, dtype, out]) Return the cumulative product of elements along a given axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given axis.
diagonal(a[, offset, axisl, axis2]) Return specified diagonals.
dot(a, bl, out]) Dot product of two arrays.
dump
dumps
fill
flatten
getA
getAl
getH
getI
getT
getfield
item
itemset
max(al, axis, out]) Return the maximum of an array or maximum along an axis.
mean(a[, axis, dtype, out]) Compute the arithmetic mean along the specified axis.
min(al, axis, out]) Return the minimum of an array or minimum along an axis.
newbyteorder
nonzero(a) Return the indices of the elements that are non-zero.
prod(al, axis, dtype, out]) Return the product of array elements over a given axis.
ptp(al, axis, out]) Range of values (maximum - minimum) along an axis.
put(a, ind, v, mode]) Replaces specified elements of an array with given values.
ravel(a[, order]) Return a flattened array.
repeat(a, repeats|, axis]) Repeat elements of an array.
reshape(a, newshape[, order]) Gives a new shape to an array without changing its data.
resize(a, new_shape) Return a new array with the specified shape.
round(al, decimals, out]) Round an array to the given number of decimals.
searchsorted(a, v[, side]) Find indices where elements should be inserted to maintain order.
setasflat
setfield
setflags
sort(a[, axis, kind, order]) Return a sorted copy of an array.

Continued on next page ‘

130 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Table 1.3 — continued from previous page

squeeze(a) Remove single-dimensional entries from the shape of an array.
std(a[, axis, dtype, out, ddof]) Compute the standard deviation along the specified axis.
sum(al, axis, dtype, out]) Sum of array elements over a given axis.
swapaxes(a, axisl, axis2) Interchange two axes of an array.

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
tofile

tolist

tostring

trace(al, offset, axisl, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(al, axes]) Permute the dimensions of an array.

var(a[, axis, dtype, out, ddof]) Compute the variance along the specified axis.
view

numpy .all (a, axis=None, out=None)
Test whether all array elements along a given axis evaluate to True.

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical AND is performed. The default (axis = None) is to perform
alogical AND over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as
the expected output and its type is preserved (e.g., if dtype (out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”’) for more
details.

Returns
all : ndarray, bool

A new boolean or array is returned unless out is specified, in which case a reference to
out is returned.

See Also:
ndarray.all
equivalent method
any
Test whether any element along a given axis evaluates to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to
Zero.

Examples

>>> np.all([[True,False], [True,True]l])
False

1.5.

Standard array subclasses 131

NumPy Reference, Release 1.6.0

>>> np.all([[True,False], [True,Truel], axis=0)
array ([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])

>>> z=np.all([-1, 4, 5], out=o0)

>>> id(z), id(o), =z

(28293632, 28293632, array ([True], dtype=bool))

numpy . any (a, axis=None, out=None)
Test whether any array element along a given axis evaluates to True.
Returns single boolean unless axis is not None

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical OR is performed. The default (axis = None) is to perform
a logical OR over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if it is of type float, then it will remain
so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See doc.ufuncs
(Section “Output arguments”) for details.

Returns
any : bool or ndarray

A new boolean or ndarray is returned unless out is specified, in which case a reference
to out is returned.

See Also:
ndarray.any
equivalent method
all
Test whether all elements along a given axis evaluate to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to
Zero.

Examples

>>> np.any ([[True, Falsel], [True, Truell)
True

132 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.any([[True, False], [False, False]], axis=0)
array ([True, False], dtype=bool)

>>> np.any ([-1, 0, 51])
True

>>> np.any (np.nan)
True

>>> o=np.array ([False]

>>> z=np.any([-1, 4, 5], out=o0)

>>> 7, O

(array ([True], dtype=bool), array([True], dtype=bool))
>>> # Check now that z is a reference to o

>>> z is o

True

>>> id(z), id(o) # identity of z and o

(191614240, 191614240)

numpy .argmax (a, axis=None)
Indices of the maximum values along an axis.

Parameters
a: array_like

Input array.
axis : int, optional
By default, the index is into the flattened array, otherwise along the specified axis.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See Also:
ndarray.argmax, argmin

amax
The maximum value along a given axis.

unravel_index
Convert a flat index into an index tuple.
Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence
are returned.

Examples
>>> a = np.arange (6) .reshape (2, 3)
>>> a
array ([[0, 1, 21,
(3, 4, 511)
>>> np.argmax(a)

5
>>> np.argmax(a, axis=0)
array ([1, 1, 1])

1.5. Standard array subclasses 133

NumPy Reference, Release 1.6.0

>>> np.argmax(a, axis=1)
array ([2, 2])

>>> b = np.arange (6)

>>> b[l] = 5

>>> b

array ([0, 5, 2, 3, 4, 51])

>>> np.argmax(b) # Only the first occurrence 1is returned.
1

numpy .argmin (a, axis=None)
Return the indices of the minimum values along an axis.
See Also:

argmax
Similar function. Please refer to numpy . argmax for detailed documentation.

numpy .argsort (a, axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a: array_like

Array to sort.
axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

134 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Notes
See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.

Examples
One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort (x)
array([1, 2, 0])

Two-dimensional array:

>>> x = np.array ([[0, 31, [2, 211)
>>> x
array ([[0, 31,

(2, 211)

>>> np.argsort (x, axis=0)
array ([[0, 17,
[1, 011)

>>> np.argsort (x, axis=1)
array ([[0, 17,
[0, 111)

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)1, dtype=[('x", '<id4’), ("y', '<i4")1)
>>> x
array ([(1, 0), (0, 1)1,

dtype=[('x", ’'<id4"), ('y’, '<i4’)1)

>>> np.argsort (x, order=('x’',’y’))
array ([1, 0])

>>> np.argsort (x, order=("y’,’ ’x"))
array ([0, 11])

numpy . choose (a, choices, out=None, mode="raise’)
Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality,
this function is less simple than it might seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([cl[al[I]]l[I] for I in ndi.ndindex(a.shape)l]).
But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are
first broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1
we have that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with
shape Ba . shape is created as follows:

*if node=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1]; now, suppose that i (in that range) is the value at the (jO, jI, ..., jm) position in Ba - then the
value at the same position in the new array is the value in Bchoices[i] at that same position;

1.5. Standard array subclasses 135

NumPy Reference, Release 1.6.0

*if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to
map integers outside the range [0, n-1] back into that range; and then the new array is constructed as
above;

*if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped
to 0; values greater than n-1 are mapped to n-1; and then the new array is constructed as above.

Parameters
a: int array

This array must contain integers in [0, n-1], where n is the number of choices, unless
mode=wrap or mode=clip, in which cases any integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the same shape. If
choices is itself an array (not recommended), then its outermost dimension (i.e., the one
corresponding to choices.shape [0]) is taken as defining the “sequence”.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’ }, optional
Specifies how indices outside [0, n-1] will be treated:
* ‘raise’ : an exception is raised
* ‘wrap’ : value becomes value mod n

* ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array : array

The merged result.

Raises
ValueError: shape mismatch :

If a and each choice array are not all broadcastable to the same shape.

See Also:

ndarray.choose
equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported,
choices should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples

>>> choices = [[0O, 1, 2, 31, [10, 11, 12, 131,
(20, 21, 22, 231, [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices
the first element of the result will be the first element of the
third (2+1) "array" in choices, namely, 20; the second element
will be the second element of the fourth (3+1) choice array, i.e.,

136 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

31, etc.
o)
array ([20, 31, 12, 31)
>>> np.choose([2, 4, 1, 0], choices, mode=’'clip’) # 4 goes to 3 (4-1)
array ([20, 31, 12, 37)
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap’) # 4 goes to (4 mod 4)
array ([20, 1, 12, 37)
>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>>a = [[1, O, 1], [0, 1, O], [1, O, 111

>>> choices = [-10, 10]
>>> np.choose (a, choices)
array ([[10, -10, 1071,

[-10, 10, -10],
(10, -10, 10]])

>>> # With thanks to Anne Archibald

>>> a = np.array ([0, 1]).reshape((2,1,1))

>>> cl = np.array([l, 2, 3]).reshape((1,3,1))

>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))

>>> np.choose (a, cl, c2)) # result is 2x3x5, res[0,:,:]=cl, res[1l,:,:]=c2

array ([[[1, 1, 1, 1,
L2, 2, 2, 2,

, 3, 3, 3,

[
(
(
(

numpy .clip (a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval
of [0, 1] isspecified, values smaller than O become 0, and values larger than 1 become 1.

Parameters
a: array_like

Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

. Standard array subclasses 137

NumPy Reference, Release 1.6.0

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.arange (10)

>>> np.clip(a, 1, 8)

array([1, 1, 2, 3, 4, 5, 6, 7, 8, 81])
>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])
>>> np.clip(a, 3, 6, out=a)

array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4]

; 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 81])

numpy . compress (condition, a, axis=None, out=None)
Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condi-
tion evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition : 1-D array of bools

Array that selects which entries to return. If len(condition) is less than the size of a
along the given axis, then output is truncated to the length of the condition array.

a: array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the flattened array.
out : ndarray, optional
Output array. Its type is preserved and it must be of the right shape to hold the output.

Returns
compressed_array : ndarray

A copy of a without the slices along axis for which condition is false.
See Also:
take, choose, diag,diagonal, select

ndarray.compress
Equivalent method.

numpy .doc.ufuncs
Section “Output arguments”

Examples

138 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.array ([[1, 2], [3, 41, [5, 611])
>>> a
array ([[1, 21,

[3, 41,

[5, 611)
>>> np.compress ([0, 1], a, axis=0)
array ([[3, 4]1)
>>> np.compress ([False, True, True], a, axis=0)
array ([[3, 41,

[5, 611)
>>> np.compress ([False, True], a, axis=1)
array ([[2],

(41,

[611)

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress ([False, Truel], a)
array ([2])

numpy .conj (x[, out])
Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples
>>> np.conjugate (1+273)

(1-23)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.71,

[0.-0.3, 1.-1.911)

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

Array interpretation of a.

Notes

This is equivalent to

1.5.

Standard array subclasses 139

NumPy Reference, Release 1.6.0

>>> np.array(a, copy=True)

Examples

Create an array X, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = x
>>> 7z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10

>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

numpy . cumprod (a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters
a: array_like

Input array.
axis : int, optional

Axis along which the cumulative product is computed. By default the input is flattened.
dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which the elements are
multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the
default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type of the resulting values will be cast if
necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

140 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.array([1,2,3])

>>> np.cumprod(a) # intermediate results 1, 1#2
. # total product 1x2%3 = 6
array ([1l, 2, 6])
>>> a = np.array([[1l, 2, 31, [4, 5, 611)

>>> np.cumprod(a, dtype=float) # specify type of output
array ([1., 2., 6., 24., 120., 720.1])

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array ([[1, 2, 31,
[4, 10, 1811)

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array ([[1, 2, 6],
[4, 20, 12011)

numpy . cumsum (a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a: array_like

Input array.
axis : int, optional

Axis along which the cumulative sum is computed. The default (None) is to compute
the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments”) for more details.

Returns
cumsum_along_axis : ndarray.

A new array holding the result is returned unless out is specified, in which case a ref-
erence to out is returned. The result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See Also:
sum
Sum array elements.

trapz
Integration of array values using the composite trapezoidal rule.

1.5.

Standard array subclasses 141

NumPy Reference, Release 1.6.0

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array ([[1, 2, 31,
(4, 5, 611)
>>> np.cumsum(a)
array ([1, 3, 6, 10, 15, 211])

>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array ([1., 3., 6., 10., 15., 21.1)
>>> np.cumsum(a, axis=0) # sum over rows for each of the 3 columns
array ([[1, 2, 31,

(5, 7, 911)
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array ([[1, 3, 6],

[4, 9, 1511)

numpy .diagonal (a, offset=0, axis1=0, axis2=1)

Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form
ali, i+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are
used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can
be determined by removing axis! and axis2 and appending an index to the right equal to the size of the
resulting diagonals.

Parameters
a: array_like

Array from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axisl : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns
array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned. If the dimension of a is
larger, then an array of diagonals is returned, “packed” from left-most dimension to
right-most (e.g., if a is 3-D, then the diagonals are “packed” along rows).

Raises
ValueError :

If the dimension of a is less than 2.

142

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:
diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

trace
Sum along diagonals.

Examples
>>> a = np.arange (4) .reshape (2, 2)
>>> a
array ([[0, 1],

(2, 311
>>> a.diagonal ()
array ([0, 31)
>>> a.diagonal (1)
array ([1])

A 3-D example:

>>> a = np.arange(8) .reshape(2,2,2); a
array ([[[0, 11,
[2, 311,
(14, 51,
[6, 7111)
>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and
1) # the "middle" (row) axis first.

(1, 711

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> al:,:,0] # main diagonal is [0 6]
array ([[0, 2]

[4, 611)
>>> al:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

numpy .dot (a, b, out=None)
Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors
(without complex conjugation). For N dimensions it is a sum product over the last axis of a and the
second-to-last of b:

dot (a, b)[i,Jj,k,m] = sum(ali,j,:] » blk,:,m])

Parameters
a: array_like

First argument.

b : array_like

1.5.

Standard array subclasses 143

NumPy Reference, Release 1.6.0

Second argument.
out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

Returns
output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a
scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises
ValueError :

If the last dimension of a is not the same size as the second-to-last dimension of b.
See Also:
vdot

Complex-conjugating dot product.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

Examples

>>> np.dot (3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot ([23, 331, [23, 331)
(-=134+07)

For 2-D arrays it’s the matrix product:

>>> a [r1, 01, [0, 11]
>>> b = [[4, 11, [2, 21]
>>> np.dot (a, b)
array ([[4, 17,

[2, 211)

>>> a = np.arange (3%«4x5%6) .reshape((3,4,5,6))

>>> b = np.arange (3%x4%x5%x6) [::—-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]

499128

>>> sum(al2,3,2,:] = b[l,2,:,2])

499128

numpy .mean (a, axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.

144 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
average
Weighted average
Notes
The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for floar32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array ([2., 3.1)

>>> np.mean(a, axis=1)
array ([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512x512), dtype=np.float32)
>>> a0, :] = 1.0

>>> afll, :] = 0.1

>>> np.mean (a)

0.546875

Computing the mean in float64 is more accurate:

1.5. Standard array subclasses 145

NumPy Reference, Release 1.6.0

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy .nonzero (a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in
that dimension. The corresponding non-zero values can be obtained with:

a[nonzero (a)]

To group the indices by element, rather than dimension, use:

transpose (nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a: array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples
>>> x = np.eye(3)
>>> x
array ([[1., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)
>>> np.nonzero (x)
(array ([0, 1, 21), array ([0, 1, 2]))

>>> x[np.nonzero (x)]
array ([1., 1., 1.7)
>>> np.transpose (np.nonzero (x))
array ([[0, O],
(1, 11,
(2, 211)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array
a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the
indices of the a where the condition is true.

146 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.array([[1,2,3],[4,5,61,17,8,911)
>>> g > 3
array ([[False, False, False],
[True, True, True],
[True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array ([, 1, 1, 2, 2, 2]), array([O0, 1, 2, 0, 1, 21))

The nonzero method of the boolean array can also be called.

>>> (a > 3) .nonzero()
(array (1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

numpy . prod (a, axis=None, dtype=None, out=None)

Return the product of array elements over a given axis.

Parameters
a: array_like

Input data.
axis : int, optional

Axis over which the product is taken. By default, the product of all elements is calcu-
lated.

dtype : data-type, optional

The data-type of the returned array, as well as of the accumulator in which the elements
are multiplied. By default, if a is of integer type, dtype is the default platform integer.
(Note: if the type of a is unsigned, then so is dfype.) Otherwise, the dtype is the same
as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

Returns
product_along_axis : ndarray, see dfype parameter above.

An array shaped as a but with the specified axis removed. Returns a reference to out if
specified.

See Also:
ndarray.prod
equivalent method
numpy .doc.ufuncs
Section “Output arguments”
Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a
32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

1.5.

Standard array subclasses 147

NumPy Reference, Release 1.6.0

Examples
By default, calculate the product of all elements:

>>> np.prod([1l.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.]1,[3.,4.11)
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.1]1, axis=1)
array ([2., 12.1)

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.uint8)
>>> np.prod(x) .dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.int8)
>>> np.prod(x) .dtype == np.int
True

numpy . ptp (a, axis=None, out=None)
Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

Parameters
a: array_like

Input values.
axis : int, optional

Axis along which to find the peaks. By default, flatten the array.
out : array_like

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type of the output values will be cast if
necessary.

Returns
ptp : ndarray

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 1]

(2, 311

>>> np.ptp(x, axis=0)
array ([2, 2])

148 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.ptp(x, axis=1)
array ([1, 11)

numpy . put (a, ind, v, mode="raise’)
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.
ind : array_like

Target indices, interpreted as integers.
v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’ }, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

See Also:

putmask, place

Examples
>>> a = np.arange (5)
>>> np.put(a, [0, 21, [-44, -55])
>>> a

array ([—-44, 1, -55, 3, 47)

>>> a np.arange (5)
>>> np.put(a, 22, -5, mode='clip’)
>>> 3

array ([0, 1, 2, 3, =-5])
numpy . ravel (a, order="C’)
Return a flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

1.5.

Standard array subclasses 149

NumPy Reference, Release 1.6.0

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’F’, ‘A’, ‘K’ }, optional
The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.

‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size(),).

See Also:

ndarray. flat
1-D iterator over an array.

ndarray.flatten
1-D array copy of the elements of an array in row-major order.

Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be
generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for Fortran-, or column-major,
mode.

Examples
It is equivalent to reshape (-1, order=order).

>>> x = np.array([[1, 2, 31, [4, 5, 611)
>>> print np.ravel (x)
[1 2 345 6]

>>> print x.reshape(-1)
[1 2345 6]

>>> print np.ravel (x, order='F")
[1 42 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 42 5 3 6]

>>> print np.ravel(x.T, order='A")
[1 2 3 45 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order="K’)

array ([2, 1, 0])

150 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.arange(12) .reshape(2,3,2) .swapaxes(1,2); a
array ([[[0, 2, 41,

t1, 3, 511,

(t e, 8, 10],

L7, 9 11111)
>>> a.ravel (order='C")
array([O, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111)
>>> a.ravel (order="K’)
array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a: array_like

Input array.
repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.

See Also:

tile
Tile an array.

Examples

>>> x = np.array ([[1,2],13,4]1])
>>> np.repeat (x, 2)
array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 411])
[1, 2], axis=0)

>>> np.repeat (x,

array ([[1, 27,
(3, 41,
[3, 411)

numpy . reshape (a, newshape, order="C’)
Gives a new shape to an array without changing its data.

Parameters
a: array_like

Array to be reshaped.

newshape : int or tuple of ints

1.5.

Standard array subclasses 151

NumPy Reference, Release 1.6.0

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to
be raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))

A transpose make the array non-contiguous

>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the
initial object.

>>> ¢ = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

Examples

>>> a = np.array([[1,2,3], [4,5,6]11])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 61])

>>> np.reshape(a, 6, order="F’)
array ([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 27,

[3, 41,

[5, 611)

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note
that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of
a.

Parameters
a: array_like

Array to be resized.
new_shape : int or tuple of int

Shape of resized array.

152 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See Also:
ndarray.resize

resize an array in-place.
Examples

>>> a=np.array ([[0
>>> np.resize(a, (1
array ([[0, 1, 2, 3
>>> np.resize(a, (2
array ([[0, 1, 2, 3

[o, 1, 2, 3

numpy . searchsorted (a, v, side="left’)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a: 1-D array_like

Input array, sorted in ascending order.
v : array_like

Values to insert into a.
side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either O or N (where N is the length of
a).

Returns
indices : array of ints

Array of insertion points with the same shape as v.

See Also:
sort

Return a sorted copy of an array.
histogram

Produce histogram from 1-D data.
Notes
Binary search is used to find the required insertion points.

As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.

1.5.

Standard array subclasses 153

NumPy Reference, Release 1.6.0

Examples

>>> np.searchsorted([1,2,3,4,5], 3)

2

>>> np.searchsorted([1,2,3,4,5], 3,

3

>>> np.searchsorted([1,2,3,4,5]1, [-1
array ([0, 5,

21)

Return a sorted copy of an array.

Parameters
a: array_like

Array to be sorted.

axis : int or None, optional

numpy . sort (a, axis=-1, kind="quicksort’, order=None)

side="right’)

0, 10, 2, 31)

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

Returns

sorted_array : ndarray

Array of the same type and shape as a.

See Also:

ndarray.sort
Method to sort an array in-place.

argsort

Indirect sort.

lexsort

Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work
space size, and whether they are stable. A stable sort keeps items with the same key in the same relative

order. The three available algorithms have the following properties:

kind speed worst case work space | stable
‘quicksort’ 1 O(n"2) 0 no
‘mergesort” | 2 O(n*log(n)) | ~n/2 yes
‘heapsort’ 3 O(n*log(n)) | O no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Con-

sequently, sorting along the last axis is faster and uses less space than sorting along any other axis.

154

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then
the order is determined by the real parts except when they are equal, in which case the order is determined
by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour.
In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

eReal: [R, nan]
*Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to
the non-nan part if it exists. Non-nan values are sorted as before.

Examples
>>> a = np.array ([[1,4]1,I[13,1]11)
>>> np.sort (a) # sort along the last axis
array ([[1, 4],
(1, 311
>>> np.sort (a, axis=None) # sort the flattened array
array ([1, 1, 3, 4])
>>> np.sort (a, axis=0) # sort along the first axis
array ([[1, 117,
[3, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name’, 'S10"), (’height’, float), ("age’, int)]

>>> values = [('Arthur’, 1.8, 41), ('Lancelot’, 1.9, 38),

S (" Galahad’, 1.7, 38)]1

>>> a = np.array(values, dtype=dtype) # create a structured array

>>> np.sort (a, order="height’)
array ([(' Galahad’, 1.7, 38), ('Arthur’, 1.8, 41),
(" Lancelot’, 1.8999999999999999, 38)],
dtype=|[('name’, ’|S10’), ("height’, ’"<£f8’), ('age’, ’'<id’)])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age’, ’"height’])
array ([(' Galahad’, 1.7, 38), ('’Lancelot’, 1.8999999999999999, 38),
(Arthur’, 1.8, 41)],
dtype=[('name’, ’|S10’), ("height’, ’'<£8"), ('age’, ’'<id’)])

numpy . squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

Returns
squeezed : ndarray

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

1.5. Standard array subclasses 155

NumPy Reference, Release 1.6.0

Examples
>>> x = np.array ([[[0], [1], [2]11)
>>> x.shape
(L, 3, 1)
>>> np.squeeze (x) .shape
(3,)

numpy . std (a, axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements.

standard deviation is computed for the flattened array by default, otherwise over the specified axis.

The

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N — ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See Also:
var, mean

numpy .doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std
= sqgrt (mean (abs(x — x.mean())**2)).

The average squared deviation is normally calculated as x.sum () / N, where N = len (x). If, how-
ever, ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1
provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables. The standard deviation computed in
this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased
estimate of the standard deviation per se.

156

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always

real and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a

higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512x512), dtype=np.float32)

>>> af[0,:] = 1.0
>>> af[l,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

numpy . sum (a, axis=None, dtype=None, out=None)
Sum of array elements over a given axis.

Parameters
a: array_like

Elements to sum.

axis : integer, optional

Axis over which the sum is taken. By default axis is None, and all elements are summed.

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are
summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the default platform integer. In that case, the default plat-

form integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is
given, it must be of the appropriate shape (the shape of a with axis removed, i.e.,
numpy.delete (a.shape, axis)). Its type is preserved. See doc.ufuncs (Sec-
tion “Output arguments”) for more details.

Returns
sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, a scalar is returned. If an output array is specified, a reference to out

is returned.

1.5. Standard array subclasses

157

NumPy Reference, Release 1.6.0

See Also:
ndarray.sum
Equivalent method.

cumsum
Cumulative sum of array elements.

trapz
Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 511)
6
>>> np.sum([[0, 1], [0, 511, axis=0)

array ([0, 6])
>>> np.sum([[0, 1], [0, 511, axis=1)
array ([1, 51)

If the accumulator is too small, overflow occurs:

>>> np.ones (128, dtype=np.int8) .sum(dtype=np.int8)
-128

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.
axisl : int

First axis.
axis2 : int

Second axis.

Returns
a_swapped : ndarray

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

Examples
>>> x = np.array ([[1,2,3]1])
>>> np.swapaxes(x,0,1)
array ([[1],
(21,
[(311)

158 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x = np.array ([[[0,1],(2,3]],[[4,5],16,7111)

>>> np.swapaxes (x,0,2)
array ([[[0, 47,

[2, 6
[[1, 5
[3, 7

numpy . take (a, indices, axis=None, out=None, mode="raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be
easier to use if you need elements along a given axis.

Parameters
a: array_like

The source array.
indices : array_like

The indices of the values to extract.
axis : int, optional

The axis over which to select values. By default, the flattened input array is used.
out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’ }, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.

See Also:

ndarray.take
equivalent method

1.5.

Standard array subclasses 159

NumPy Reference, Release 1.6.0

Examples

>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array ([4, 3, 6])
In this example if @ is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a)
>>> al[indices]
array ([4, 3, 6])

numpy . trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements
al[i,i+offset] foralli.

If a has more than two dimensions, then the axes specified by axisl and axis2 are used to determine the
2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with
axis] and axis2 removed.

Parameters
a: array_like

Input array, from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axis1, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the diag-
onals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns
sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See Also:

diag,diagonal,diagflat

Examples

160 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.trace (np.eye(3))

3.0

>>> a = np.arange (8) .reshape((2,2,2))
>>> np.trace(a)

array ([6, 8])

>>> a = np.arange (24) .reshape((2,2,2,3))
>>> np.trace(a) .shape
(2, 3)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.
axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values
given.

Returns
p : ndarray

a with its axes permuted. A view is returned whenever possible.
See Also:

rollaxis

Examples

>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 17,

(2, 311

>>> np.transpose (x)
array ([[0, 2],

(1, 311
>>> x = np.ones ((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

numpy . var (a, axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is
computed for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

1.5. Standard array subclasses 161

NumPy Reference, Release 1.6.0

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom™: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs (x -
x.mean())*x*2).

The mean is normally calculated as x . sum () / N,where N = len (x). If, however, ddof is specified,
the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased
estimator of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real
and nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array([[1,2],103,411)
>>> np.var (a)
1.25

>>> np.var (a,0)
array ([1., 1.1)

>>> np.var(a, 1)
array ([0.25, 0.257)

In single precision, var() can be inaccurate:

162

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.zeros((2,512+«512), dtype=np.float32)
>>> a[0,:] = 1.0

>>> af[l,:] = 0.1

>>> np.var(a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932997387

>>> ((1-0.55)%%2 + (0.1-0.55)*%2)/2
0.20250000000000001

numpy .asmatrix (data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix (data, copy=False).

Parameters
data : array_like

Input data.

Returns
mat : matrix

data interpreted as a matrix.

Examples
>>> x = np.array ([[1, 2], [3, 41])
>>> m = np.asmatrix(x)
>>> x[0,0] =5
>>> m

matrix ([[5, 21,
[3, 411)

numpy . bmat (0bj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters
obj : str or array_like

Input data. Names of variables in the current scope may be referenced, even if 0bj is a
string.

Returns
out : matrix

Returns a matrix object, which is a specialized 2-D array.

See Also:

matrix

1.5. Standard array subclasses 163

NumPy Reference, Release 1.6.0

Examples
>>> A = np.mat ("1 1; 1 17)
>>> B = np.mat (2 2; 2 2")
>>> C = np.mat ('3 4; 5 6")
>>> D = np.mat ("7 8; 9 07)

All the following expressions construct the same block matrix:

>>> np.bmat ([[A, B], [C, DI1])
matrix ([[1, 1, 2, 2],

(r, 1, 2, 21,

[3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat (np.r_[np.c_[A, B], np.c_[C, DI])
matrix([[1, 1, 2, 2],

(1, 1, 2, 21,

[3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat ("A,B; C,D")
matrix ([[1, 1, 2, 2],

(r, 1, 2, 21,

[3, 4, 7, 8],

[5, 6, 9, 011)

Example 1: Matrix creation from a string

>>> g=mat ("1 2 3; 4 5 37)

>>> print (a*xa.T).I

[[0.2924 -0.1345]
[-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat ([[1,5,10],([1.0,3,43]11)
matrix ([[1.+0.3, 5.40.3, 10.40.4],
[1.40.3, 3.40.3, 0.+4.511)

Example 3: Matrix creation from an array

>>> mat (random.rand (3,3)).T

matrix([[0.7699, 0.7922, 0.3294],
[0.2792, 0.0101, 0.9219],
[0.3398, 0.7571, 0.819711)

1.5.3 Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout,
without reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data
buffer of the array. For small files, the over-head of reading the entire file into memory is typically not significant,
however for large files using memory mapping can save considerable resources.

Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): . flush ()
which must be called manually by the user to ensure that any changes to the array actually get written to disk.

Note: Memory-mapped arrays use the the Python memory-map object which (prior to Python 2.5) does not allow
files to be larger than a certain size depending on the platform. This size is always < 2GB even on 64-bit systems.

memmap Create a memory-map to an array stored in a binary file on disk.
memmap . flush() Write any changes in the array to the file on disk.

164 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

class numpy . memmap
Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire
file into memory. Numpy’s memmap’s are array-like objects. This differs from Python’s mmap module, which
uses file-like objects.

Parameters
filename : str or file-like object

The file name or file object to be used as the array data buffer.
dtype : data-type, optional
The data-type used to interpret the file contents. Default is uint§.

mode : {‘r+’, ‘r’, ‘w+’, ‘c’}, optional

The file is opened in this mode:

)

r Open existing file for reading only.

‘r+’ | Open existing file for reading and writing.

‘w+’| Create or overwrite existing file for reading and writing.

‘¢ | Copy-on-write: assignments affect data in memory, but changes are not saved
to disk. The file on disk is read-only.

Default is ‘r+’.
offset : int, optional

In the file, array data starts at this offset. Since offset is measured in bytes, it should be
a multiple of the byte-size of dfype. Requires shape=None. The default is 0.

shape : tuple, optional

The desired shape of the array. By default, the returned array will be 1-D with the
number of elements determined by file size and data-type.

order : {‘C’, ‘F’}, optional

Specify the order of the ndarray memory layout: C (row-major) or Fortran (column-
major). This only has an effect if the shape is greater than 1-D. The default order is
LC’-

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance (fp,
numpy .ndarray) returns True.

Memory-mapped arrays use the Python memory-map object which (prior to Python 2.5) does not allow files to
be larger than a certain size depending on the platform. This size is always < 2GB even on 64-bit systems.
Examples

>>> data = np.arange (12, dtype=’'float32’)

>>> data.resize ((3,4))
This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’

filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join (mkdtemp (), ’'newfile.dat’)

1.5. Standard array subclasses 165

NumPy Reference, Release 1.6.0

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap (filename, dtype=’float32’, mode='w+’, shape=(3,4))
>>> fp
memmap ([[0., 0., 0., 0.1,

[o., 0., 0., 0.1,

[0., 0., 0., 0.1], dtype=float32)

Write data to memmap array:

>>> fp[:] = datal:]
>>> fp
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap (filename, dtype='float32’, mode=’"r’, shape=(3,4))
>>> newfp
memmap ([[0., 1., 2., 3.1,

[4., 5., 6., 7.1,

[8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap (filename, dtype=’float32’, mode="r’, shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap (filename, dtype=’float32’, mode='c’, shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and
not written to disk:

>>> fpc
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]1], dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap ([[0., 0., 0., 0.1,

[8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap ([[0., 1., 2., 3.7,

166 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap (filename, dtype=’float32’, mode=’'r’, offset=106)

>>> fpo
memmap ([4., 5., 6., 7., 8., 9., 10., 11.]1, dtype=float32)
Attributes
filename | str | Path to the mapped file.
offset int | Offset position in the file.
mode str | File mode.
Methods

memmap . £flush ()
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters
None :

See Also:
memmap
Example:

>>> a = memmap ('newfile.dat’, dtype=float, mode="w+’, shape=1000)
>>> a[l0] = 10.0

>>> a[30] = 30.0

>>> del a

>>> b = fromfile(’newfile.dat’, dtype=float)

>>> print b[10], b[30]

10.0 30.0

>>> a = memmap ('newfile.dat’, dtype=float)
>>> print a[10], a[30]

10.0 30.0

1.5.4 Character arrays (numpy . char)

See Also:
Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new devel-
opment. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype object_,
string_ or unicode_, and use the free functions in the numpy . char module for fast vectorized string operations.

These are enhanced arrays of either string_ type or unicode_ type. These arrays inherit from the ndarray,
but specially-define the operations +, %, and % on a (broadcasting) element-by-element basis. These operations are
not available on the standard ndarray of character type. In addition, the chararray has all of the standard
string (and unicode) methods, executing them on an element-by-element basis. Perhaps the easiest way to create
a chararray is to use self.view (chararray) where self is an ndarray of str or unicode data-type. However, a
chararray can also be created using the numpy . chararray constructor, or via the numpy . char . array function:

1.5. Standard array subclasses 167

NumPy Reference, Release 1.6.0

chararray Provides a convenient view on arrays of string and unicode
values.
core.defchararray.array(obj[, itemsize, Create a chararray.

class numpy . chararray
Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of drype
object_, string_ or unicode_, and use the free functions in the numpy . char module for fast vectorized string
operations.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:
1.values automatically have whitespace removed from the end when indexed
2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+", "x",

"%")

chararrays should be created using numpy . char.array or numpy . char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer is None, then
constructs a new array with strides in “C order”, unless both 1en (shape) >= 2 and order=’'Fortran’,
in which case strides is in ‘“Fortran order”.

Parameters
shape : tuple

Shape of the array.
itemsize : int, optional

Length of each array element, in number of characters. Default is 1.
unicode : bool, optional

Are the array elements of type unicode (True) or string (False). Default is False.
buffer : int, optional

Memory address of the start of the array data. Default is None, in which case a new
array is created.

offset : int, optional

Fixed stride displacement from the beginning of an axis? Default is 0. Needs to be >=0.
strides : array_like of ints, optional

Strides for the array (see ndarray.strides for full description). Default is None.
order : {‘C’, ‘F’}, optional

The order in which the array data is stored in memory: ‘C’ -> “row major” order (the
default), ‘F* -> “column major” (Fortran) order.

Examples
>>> charar = np.chararray((3, 3))
>>> charar[:] = "a’
>>> charar
chararray([["a’, "a’, 'a']l,

168 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

["a", "a’, "a’l,
[(ra”, "a’", "a’'ll,
dtype=’|S1")

>>> charar = np.chararray (charar.shape, itemsize=5)
>>> charar([:] = "abc’
>>> charar
chararray ([["abc’, "abc’, ’"abc’],

["abc’, "abc’, ’'abc’],

["abc’, "abc’, ’'abc’]],

dtype=’|S5")

Methods

astype

argsort(a[, axis, kind, order])

copy(a)

count

decode

dump

dumps

encode

endswith

expandtabs

fill

find

flatten

getfield

index

isalnum

isalpha

isdecimal

isdigit

islower

isnumeric

isspace

istitle

isupper

item

join

ljust

lower

lstrip

nonzero(a)

put(a, ind, v[, mode])
ravel(a[, order])
repeat(a, repeats|, axis])
replace
reshape(a,
resize(a,
rfind
rindex
rjust

newshape[, order])
new_shape)

Returns the indices that would sort an array.
Return an array copy of the given object.

Return the indices of the elements that are non-zero.
Replaces specified elements of an array with given values.
Return a flattened array.

Repeat elements of an array.

Gives a new shape to an array without changing its data.
Return a new array with the specified shape.

Continued on next page

1.5. Standard array subclasses

169

NumPy Reference, Release 1.6.0

Table 1.4 — continued from previous page

rsplit

rstrip

searchsorted(a, v[, side]) Find indices where elements should be inserted to maintain order.
setfield

setflags

sort(al, axis, kind, order]) Return a sorted copy of an array.
split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays of equal size.
splitlines

squeeze(a) Remove single-dimensional entries from the shape of an array.
startswith

strip

swapaxes(a, axisl, axis2) Interchange two axes of an array.
swapcase

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
title

tofile

tolist

tostring

translate

transpose(al, axes)) Permute the dimensions of an array.

upper

view

zfill

numpy .argsort (a, axis=-1, kind="quicksort’, order=None)

Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a: array_like

Array to sort.
axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See Also:

170

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.
Notes
See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.

Examples
One dimensional array:

>>> x = np.array([3, 1, 21)
>>> np.argsort (x)
array ([1, 2, 0])

Two-dimensional array:

>>> x = np.array ([[0, 3], [2, 211])
>>> x
array ([[0, 3],

(2, 211

>>> np.argsort (x, axis=0)
array ([[0, 17,
(1, 011

>>> np.argsort (x, axis=1)
array ([[0, 171,
(0, 111

Sorting with keys:

>>> x = np.array ([(1, 0), (0, 1)1, dtype=[('x", '<id"), ('y’, '<i4")1])
>>> x
array ([(1, 0), (0, 1)1,

dtype=[("x", '<id"), ('y’, '<i4d’)])

>>> np.argsort (x, order=('x’,’y’))
array ([1, 01)

>>> np.argsort (x, order=("y’,’ x"))
array ([0, 11)

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

1.5. Standard array subclasses 171

NumPy Reference, Release 1.6.0

Array interpretation of a.

Notes
This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([1l, 2, 31])
>>> y = X
>>> 7z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[O0]
False

numpy .nonzero (a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in
that dimension. The corresponding non-zero values can be obtained with:

a[nonzero (a)]

To group the indices by element, rather than dimension, use:

transpose (nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a: array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

172 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x = np.eye(3)
>>> x
array ([[1., 0., 0
[0., 1., 0.]
[0., 0., 1
>>> np.nonzero (x)
(array ([0, 1, 21)

>>> x[np.nonzero (x)]
array ([1., 1., 1.1)
>>> np.transpose (np.nonzero (x))
array ([[0, 0],
(1, 11,
(2, 211

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array
a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the
indices of the a where the condition is true.

>>> a = np.array([[1,2,3],14,5,6],07,8,911)
>>> a > 3
array ([[False, False, False],
[True, True, Truel,
[True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array (1, 1, 1, 2, 2, 21), array ([0, 1, 2, 0, 1, 21))
The nonzero method of the boolean array can also be called.
>>> (a > 3).nonzero ()
(array([1, 1, 1, 2, 2, 2]), array([O, 1, 2, O, 1, 2]))
numpy . put (a, ind, v, mode="raise’)
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.
ind : array_like

Target indices, interpreted as integers.
v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around

* ‘clip’ — clip to the range

. Standard array subclasses 173

NumPy Reference, Release 1.6.0

‘clip” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

See Also:

putmask, place

Examples
>>> a = np.arange(5)
>>> np.put(a, [0, 2], [-44, -55])
>>> g

array ([-44, 1, =55, 3, 41)

>>> a = np.arange(5)

>>> np.put(a, 22, -5, mode='clip’)
>>> a

array ([0, 1, 2, 3, -5])

numpy . ravel (a, order="C’)
Return a flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’F’, ‘A’, ‘K’}, optional

The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.
‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size (),).
See Also:
ndarray. flat
1-D iterator over an array.
ndarray.flatten
1-D array copy of the elements of an array in row-major order.
Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be
generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for Fortran-, or column-major,
mode.

174 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
It is equivalent to reshape (-1, order=order).

>>> x = np.array ([[1l, 2, 31, [4, 5, 611)
>>> print np.ravel (x)
[1 2345 6]

>>> print x.reshape(-1)
[1 2345 6]

>>> print np.ravel (x, order='F’")
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 4 2 5 3 6]

>>> print np.ravel(x.T, order='A")
[1 2 345 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3) [::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order='K’)

array ([2, 1, 0])

>>> a = np.arange(1l2) .reshape(2,3,2) .swapaxes(1,2); a
array ([[[O, 2, 47,

[1, 3, 511,

[[6, 8, 1071,

L7, 9 11111)
>>> a.ravel (order='C")
array ([O, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111])
>>> a.ravel (order="K’)
array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a: array_like

Input array.
repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.

1.5.

Standard array subclasses 175

NumPy Reference, Release 1.6.0

See Also:

tile
Tile an array.

Examples

>>> x = np.array ([[1,2]1,[3,411)
>>> np.repeat (x, 2)
array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1)
array ([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 411)
[1, 2], axis=0)

>>> np.repeat (x,

array ([[1, 21,
[3, 41,
(3, 411)

numpy . reshape (a, newshape, order="C")
Gives a new shape to an array without changing its data.

Parameters
a: array_like

Array to be reshaped.
newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to

be raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))
A transpose make the array non-contiguous
>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the

initial object.

>>> c = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

176 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 61])

>>> np.reshape(a, 6, order='F’)
array ([1, 4, 2, 5, 3, 61)

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 217,

(3, 41,

[5, 611)

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note
that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of
a.

Parameters
a: array_like

Array to be resized.
new_shape : int or tuple of int
Shape of resized array.

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See Also:

ndarray.resize
resize an array in-place.

Examples

>>> a=np.array([[0,1],[2,3]11])
>>> np.resize(a, (1,4))
array ([[0, 1, 2, 311)
>>> np.resize(a, (2,4))
array ([[0, 1, 2, 31,
[0, 1, 2, 311)

numpy . searchsorted (a, v, side="left’)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a: 1-D array_like

Input array, sorted in ascending order.

v : array_like

1.5.

Standard array subclasses 177

NumPy Reference, Release 1.6.0

Values to insert into a.
side : {‘left’, ‘right’}, optional

If “left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either 0 or N (where N is the length of
a).

Returns
indices : array of ints

Array of insertion points with the same shape as v.

See Also:
sort

Return a sorted copy of an array.
histogram

Produce histogram from 1-D data.
Notes
Binary search is used to find the required insertion points.
As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.
Examples

>>> np.searchsorted([1,2,3,4,5], 3)

2

>>> np.searchsorted([1,2,3,4,5], 3, side="right’)
3

>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 31])
array ([0, 5, 1, 21])

numpy . sort (a, axis=-1, kind="quicksort’, order=None)
Return a sorted copy of an array.

Parameters
a: array_like

Array to be sorted.
axis : int or None, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See Also:

178 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.
Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work
space size, and whether they are stable. A stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following properties:

kind speed worst case work space | stable
‘quicksort’ 1 O(n"2) 0 no
‘mergesort’ | 2 O(n*log(n)) | ~n/2 yes
‘heapsort’ 3 O(n*log(n)) | O no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Con-
sequently, sorting along the last axis is faster and uses less space than sorting along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then
the order is determined by the real parts except when they are equal, in which case the order is determined
by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour.
In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

*Real: [R, nan]
*Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to
the non-nan part if it exists. Non-nan values are sorted as before.

Examples
>>> a = np.array ([[1,4]1,[3,111)
>>> np.sort (a) # sort along the last axis
array ([[1, 41,
(1, 311
>>> np.sort (a, axis=None) # sort the flattened array
array ([1, 1, 3, 4])
>>> np.sort (a, axis=0) # sort along the first axis
array ([[1, 17,
[3, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name’, 'S10"), (’'height’, float), ("age’, int)]

>>> values = [('Arthur’, 1.8, 41), ('Lancelot’, 1.9, 38),

S ("Galahad’, 1.7, 38)]

>>> a = np.array(values, dtype=dtype) # create a structured array

>>> np.sort (a, order="height’)
array ([(' Galahad’, 1.7, 38), ('Arthur’, 1.8, 41),
(" Lancelot’, 1.8999999999999999, 38)1,
dtype=[("name’, ’|S10’), ("height’, ’'<f8"), ('age’, ’'<id’)])

1.5. Standard array subclasses 179

NumPy Reference, Release 1.6.0

Sort by age, then height if ages are equal:

>>> np.sort(a, order=["age’, ’"height’])

array ([("Galahad’, 1.7, 38), (’Lancelot’, 1.8999999999999999, 38),
("Arthur’, 1.8, 41)],

dtype=[("name’, ’[S10’), ("height’, ’'<£f8"), ('age’, ’'<i4d’)])
numpy . split (ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays of equal size.
Parameters
ary : ndarray
Array to be divided into sub-arrays.
indices_or_sections : int or 1-D array

If indices_or_sections is an integer, N, the array will be divided into N equal arrays
along axis. If such a split is not possible, an error is raised.

If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along
axis the array is split. For example, [2, 3] would, for axis=0, result in

* ary[:2]

e ary[2:3]

e ary[3:]

If an index exceeds the dimension of the array along axis, an empty sub-array is returned
correspondingly.
axis : int, optional

The axis along which to split, default is 0.
Returns
sub-arrays : list of ndarrays
A list of sub-arrays.

Raises
ValueError :

If indices_or_sections is given as an integer, but a split does not result in equal division.
See Also:

array_split

Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an
equal division cannot be made.

hsplit

Split array into multiple sub-arrays horizontally (column-wise).
vsplit

Split array into multiple sub-arrays vertically (row wise).
dsplit

Split array into multiple sub-arrays along the 3rd axis (depth).

concatenate
Join arrays together.

180 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

hstack
Stack arrays in sequence horizontally (column wise).

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

Examples

>>> x = np.arange (9.0)
>>> np.split(x, 3)
[array ([O., 1., 2.1), array ([3., 4., 5.]1), array ([6., 7., 8.1)1]

>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])

[array ([0., 1., 2.1),
array ([3., 4.1y,
array ([5.1),

array ([6., 7.1),

array ([], dtype=float64d)]

numpy . squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

Returns
squeezed : ndarray

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

Examples
>>> x = np.array ([[[0], [11, [2111)
>>> x.shape
(1, 3, 1)
>>> np.squeeze (x) .shape
(3,)

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.
axisl : int

First axis.
axis2 : int

Second axis.

Returns
a_swapped : ndarray

. Standard array subclasses 181

NumPy Reference, Release 1.6.0

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

Examples

>>> x = np.array([[1,2,3]1])
>>> np.swapaxes (x,0,1)
array ([[1],

(21,

[311)
>>> x = np.array ([[[0,1],12,311,[[4,51,106,7111)
>>> x
array ([[[0, 11,

[2, 311,

(14, 51,

[6, 7111)

>>> np.swapaxes (x,0,2)
array ([[[0, 47,
1,

[2, 6]

[(r1, 51,

[3, 7111)

numpy . take (a, indices, axis=None, out=None, mode="raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be
easier to use if you need elements along a given axis.

Parameters
a : array_like

The source array.
indices : array_like

The indices of the values to extract.
axis : int, optional

The axis over which to select values. By default, the flattened input array is used.
out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’ }, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
 ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.

182 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:

ndarray.take
equivalent method

Examples
>>> a = [4, 3, 5, 7,
>>> indices = [0, 1,

>>> np.take(a, indices)

array ([4, 3, 6])

In this example if @ is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a)
>>> g[indices]
array ([4, 3, 6])

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.

axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values

given.

Returns
p : ndarray

a with its axes permuted. A view is returned whenever possible.

See Also:

rollaxis

Examples

>>> x = np.arange (4) .reshape ((2,2))

>>> x
array ([[0, 17,
(2, 311

>>> np.transpose (x)

array ([[0, 27,
(1, 311
>>> x = np.ones ((1,

>>> np.transpose (x,

(2, 1, 3)

numpy . core.defchararray.array (0bj, itemsize=None, copy=True, unicode=None, order=None)

Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type string_ or unicode_ and use the free functions in numpy . char for fast

vectorized string operations instead.

1.5. Standard array subclasses

183

NumPy Reference, Release 1.6.0

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:
1.values automatically have whitespace removed from the end when indexed
2.comparison operators automatically remove whitespace from the end when comparing values

3.vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +, =

%)

4

Parameters
obj : array of str or unicode-like

itemsize : int, optional

itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string
will be chunked into ifemsize pieces.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (ifemsize, unicode, order, etc.).

unicode : bool, optional

When true, the resulting chararray can contain Unicode characters, when false only
8-bit characters. If unicode is None and obj is one of the following:

* a chararray,

* an ndarray of type str or unicode

* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.
order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then
the returned array may be in any order (either C-, Fortran-contiguous, or even discon-
tiguous).

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by

Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

1.5.5 Record arrays (numpy . rec)

See Also:
Creating record arrays (numpy.rec), Data type routines, Data type objects (dtype).

Numpy provides the recarray class which allows accessing the fields of a record/structured array as attributes, and
a corresponding scalar data type object record.

recarray Construct an ndarray that allows field access using attributes.
record A data-type scalar that allows field access as attribute lookup.

184 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

class numpy . recarray
Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], whereeachentryinthearrayisapairof (int, float).Normally, these attributes
are accessed using dictionary lookups suchas arr [’ x’] and arr [’ y’]. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters
shape : tuple

Shape of output array.
dtype : data-type, optional

The desired data-type. By default, the data-type is determined from formats, names,
titles, aligned and byteorder.

formats : list of data-types, optional

A list containing the data-types for the different columns, e.g. [’14’, ’£8',
714" 1. formats does not support the new convention of using types directly, i.e.
(int, float, int). Note that formats must be a list, not a tuple. Given that
Jformats is somewhat limited, we recommend specifying dfype instead.

names : tuple of str, optional
The name of each column, e.g. ("x’, 'y’, "z').
buf : buffer, optional

By default, a new array is created of the given shape and data-type. If buf is specified
and is an object exposing the buffer interface, the array will use the memory from the
existing buffer. In this case, the offset and strides keywords are available.

Returns
rec : recarray

Empty array of the given shape and type.

Other Parameters
titles : tuple of str, optional

Aliases for column names. For example, if names were (' x’, ’'y’, ’z’) and
titles is (' x_coordinate’, ’y_coordinate’, ’z_coordinate’), then
arr[’x’] isequivalentto both arr.x and arr.x_coordinate.

byteorder : {‘<’, *>’, ‘="}, optional

Byte-order for all fields.
aligned : bool, optional

Align the fields in memory as the C-compiler would.
strides : tuple of ints, optional

Buffer (buf) is interpreted according to these strides (strides define how many bytes
each array element, row, column, etc. occupy in memory).

offset : int, optional
Start reading buffer (buf) from this offset onwards.

order : {‘C’, ‘F’}, optional

1.5. Standard array subclasses 185

NumPy Reference, Release 1.6.0

Row-major or column-major order.
See Also:
rec. fromrecords
Construct a record array from data.

record
fundamental data-type for recarray.

format_parser
determine a data-type from formats, names, titles.
Notes

This constructor can be compared to empt y: it creates a new record array but does not fill it with data. To create
arecord array from data, use one of the following methods:

1.Create a standard ndarray and convert it to a record array, using arr .view (np.recarray)
2.Use the buf keyword.

3.Use np.rec.fromrecords.

Examples
Create an array with two fields, x and y:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[(’x’, float), ('y’, int)])
>>> x
array ([(1.0, 2), (3.0, 4)1,

dtype=[("x", '<f8"), ('y’, '<i4")])

>>> x['x'"]
array ([1., 3.1)

View the array as a record array:

>>> x = x.view(np.recarray)
>>> X.X

array ([1., 3.1)

>>> x.y

array ([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
dtype=[('x", int), ('vy’, float), ('z’, int)])
rec.array ([(-1073741821, 1.2249118382103472e-301, 24547520),
(3471280, 1.2134086255804012e-316, 0)1,
dtype=[('x", ’'<i4"), ('y', '<f8"), ('z', '<i4d’")])

Methods
all(al, axis, out]) Test whether all array elements along a given axis evaluate to True.
anvy(al, axis, out]) Test whether any array element along a given axis evaluates to True.
argmax(a[, axis]) Indices of the maximum values along an axis.
argmin(al, axis]) Return the indices of the minimum values along an axis.

‘ Continued on next page |

186 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Table 1.5 — continued from previous page

argsort(a[, axis, kind, order])

astype
byteswap

choose(a, choices[, out, mode])
a_max|, out])
compress(condition, a[, axis, out])

clip(a, a_min,

conjx[, out])
conjugate(x][, out])
copy(a)

cumprod(al, axis, dtype, out])
cumsum(al, axis, dtype, out])
diagonal(a[, offset, axisl, axis2])

dot(a, b[, out])
dump

dumps

field

fill

flatten

getfield

item

itemset

max(al, axis, out])

mean(a[, axis, dtype, out])

min(al, axis, out])
newbyteorder
nonzero(a)

prod(a[, axis, dtype, out])

ptp(al, axis, out])
put(a, ind, v[, mode])
ravel(a[, order])
repeat(a, repeats|[, axis])
reshape(a,
resize(a, new_shape)
round(a[, decimals, out])
searchsorted(a, v[, side])
setasflat

setfield

setflags

sort(a[, axis, kind, order])

squeeze(a)

std(a[, axis, dtype, out, ddof])

sum(al, axis, dtype, out])
swapaxes(a, axisl, axis2)

take(a, indices[, axis, out, mode])

tofile
tolist
tostring

trace(al, offset, axis1, axis2, dtype, out])

transpose(al, axes])

var(a[, axis, dtype, out, ddof])

view

newshape|, order])

Returns the indices that would sort an array.

Construct an array from an index array and a set of arrays to choose from.
Clip (limit) the values in an array.

Return selected slices of an array along given axis.
Return the complex conjugate, element-wise.

Return the complex conjugate, element-wise.

Return an array copy of the given object.
Return the cumulative product of elements along a given axis.
Return the cumulative sum of the elements along a given axis.
Return specified diagonals.

Dot product of two arrays.

Return the maximum of an array or maximum along an axis.
Compute the arithmetic mean along the specified axis.
Return the minimum of an array or minimum along an axis.

Return the indices of the elements that are non-zero.
Return the product of array elements over a given axis.

Range of values (maximum - minimum) along an axis.
Replaces specified elements of an array with given values.
Return a flattened array.

Repeat elements of an array.

Gives a new shape to an array without changing its data.
Return a new array with the specified shape.
Round an array to the given number of decimals.
Find indices where elements should be inserted to maintain order.

Return a sorted copy of an array.

Remove single-dimensional entries from the shape of an array.
Compute the standard deviation along the specified axis.
Sum of array elements over a given axis.
Interchange two axes of an array.

Take elements from an array along an axis.

Return the sum along diagonals of the array.
Permute the dimensions of an array.
Compute the variance along the specified axis.

1.5. Standard array subclasses

187

NumPy Reference, Release 1.6.0

numpy .all (a, axis=None, out=None)
Test whether all array elements along a given axis evaluate to True.

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical AND is performed. The default (axis = None) is to perform
a logical AND over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as
the expected output and its type is preserved (e.g., if dtype (out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for more
details.

Returns
all : ndarray, bool

A new boolean or array is returned unless out is specified, in which case a reference to
out is returned.

See Also:
ndarray.all
equivalent method
any
Test whether any element along a given axis evaluates to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Z€ro.
Examples
>>> np.all([[True,False], [True,True]l])
False
>>> np.all([[True,False], [True,Truel]], axis=0)

array ([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])

>>> z=np.all([-1, 4, 5], out=o0)

>>> id(z), id(o), =z

(28293632, 28293632, array ([True], dtype=bool))

numpy . any (a, axis=None, out=None)
Test whether any array element along a given axis evaluates to True.

188 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns single boolean unless axis is not None

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical OR is performed. The default (axis = None) is to perform
a logical OR over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if it is of type float, then it will remain
so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See doc.ufuncs
(Section “Output arguments”) for details.

Returns
any : bool or ndarray

A new boolean or ndarray is returned unless out is specified, in which case a reference
to out is returned.

See Also:
ndarray.any
equivalent method
all
Test whether all elements along a given axis evaluate to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Zero.
Examples
>>> np.any ([[True, False], [True, Truell])
True
>>> np.any ([[True, False], [False, False]], axis=0)

array ([True, False], dtype=bool)

>>> np.any([-1, 0, 5])
True

>>> np.any (np.nan)
True

>>> o=np.array([False])

>>> z=np.any([-1, 4, 5], out=o0)

>>> 7z, O

(array ([True], dtype=bool), array ([True], dtype=bool))
>>> # Check now that z is a reference to o

>>> z is o

True

>>> id(z), 1d(o) # identity of z and o

(191614240, 191614240)

1.5. Standard array subclasses 189

NumPy Reference, Release 1.6.0

numpy .argmax (a, axis=None)
Indices of the maximum values along an axis.

Parameters
a: array_like

Input array.
axis : int, optional
By default, the index is into the flattened array, otherwise along the specified axis.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See Also:
ndarray.argmax, argmin

amax
The maximum value along a given axis.

unravel index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence
are returned.

Examples
>>> a = np.arange (6) .reshape (2, 3)
>>> g
array ([[0, 1, 21,
(3, 4, 511)
>>> np.argmax(a)

5

>>> np.argmax(a, axis=0)
array ([1, 1, 11)

>>> np.argmax(a, axis=1)
array ([2, 21])

>>> b = np.arange (6)

>>> b[l] = 5

>>> b

array ([0, 5, 2, 3, 4, 51])

>>> np.argmax (b) # Only the first occurrence 1s returned.
1

numpy .argmin (a, axis=None)
Return the indices of the minimum values along an axis.

See Also:

argmax
Similar function. Please refer to numpy . argmax for detailed documentation.

190 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

numpy .argsort (a, axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a: array_like

Array to sort.
axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
al[index_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.
Notes
See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.

Examples
One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort (x)
array ([1, 2, 0])

Two-dimensional array:

>>> x = np.array ([[0, 31, [2, 2]])
>>> x
array ([[0, 31,

(2, 211

1.5.

Standard array subclasses 191

NumPy Reference, Release 1.6.0

>>> np.argsort (x, axis=0)
array ([[0, 1],
(1, 011

>>> np.argsort (x, axis=1)
array ([[0, 17,
[0, 111)

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)1, dtype=[('x", '<i4’), ("y', ’'<i4")1)
>>> x
array ([(1, 0), (0, 1)1,

dtype=[('x", ’'<id4"), ('y’', '<i4’)1)

>>> np.argsort (x, order=('x',’vy’))
array ([1, 0])

>>> np.argsort(x, order=("y’,’ ' x"))
array ([0, 11)

numpy . choose (a, choices, out=None, mode="raise’)

Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality,
this function is less simple than it might seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([cl[a[I]][I] for I in ndi.ndindex(a.shape)l]).
But this omits some subtleties. Here is a fully general summary:

Given an “index” array (@) of integers and a sequence of n arrays (choices), a and each choice array are
first broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1
we have that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with
shape Ba . shape is created as follows:

*if node=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1]; now, suppose that i (in that range) is the value at the (jO, j1, ..., jm) position in Ba - then the
value at the same position in the new array is the value in Bchoices/[i] at that same position;

*if node=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to
map integers outside the range [0, n-1] back into that range; and then the new array is constructed as
above;

*if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped
to 0; values greater than n-/ are mapped to n-1/; and then the new array is constructed as above.
Parameters

a: int array

This array must contain integers in [0, n-1], where n is the number of choices, unless
mode=wrap or mode=clip, in which cases any integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the same shape. If
choices is itself an array (not recommended), then its outermost dimension (i.e., the one
corresponding to choices.shape [0]) is taken as defining the “sequence”.

out : array, optional

192

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’}, optional
Specifies how indices outside [0, n-1] will be treated:
* ‘raise’ : an exception is raised
* ‘wrap’ : value becomes value mod n
 ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array : array

The merged result.

Raises
ValueError: shape mismatch :

If a and each choice array are not all broadcastable to the same shape.
See Also:

ndarray.choose
equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported,
choices should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples

>>> choices = [[0O, 1, 2, 31, [10, 11, 12, 1371,
[20, 21, 22, 231, [30, 31, 32, 33]1]
>>> np.choose([2, 3, 1, 0], choices
the first element of the result will be the first element of the
third (2+1) "array" in choices, namely, 20; the second element
will be the second element of the fourth (3+1) choice array, i.e.,
31, etc.
o)
array ([20, 31, 12, 31)
>>> np.choose([2, 4, 1, 0], choices, mode="clip’) # 4 goes to 3 (4-1)
array ([20, 31, 12, 37)
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode="wrap’) # 4 goes to (4 mod 4)
array ([20, 1, 12, 37)
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>>a = [[1, O, 1], (O, 1, O], [1, O, 111

>>> choices = [-10, 10]
>>> np.choose(a, choices)
array([[10, -10, 107,

[-10, 10, -1017,
[10, -10, 10]1)

1.5. Standard array subclasses 193

NumPy Reference, Release 1.6.0

>>> # With thanks to

Anne Archibald

>>> a = np.array ([0, 1]).reshape((2,1,1))
>>> cl = np.array([1l, 2, 3]).reshape((1,3,1))
>>> ¢c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (cl, c2)) # result is 2x3x5, res[0,:,:]=cl, res[1,:,:]=c2
array ([[[1, 1, 1, 1, 1],
[z, 2, 2, 2, 21,
[3, 3, 3, 3, 311,
(-1, -2, -3, -4, -51,
[-1, -2, -3, -4, =571,
[-1, -2, -3, -4, -5111)

numpy .clip (a, a_min, a_max, out=None)

Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval

of [0, 1] isspecified, values smaller than O become 0, and values larger than 1 become 1.

Parameters
a : array_like

Array containing elements to clip.
a_min : scalar or array_like
Minimum value.

a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the

shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and

those > a_max with a_max.

See Also:

numpy .doc.ufuncs

Section “Output arguments”

Examples

>>> a = np.arange (10)

>>> np.clip(a, 1, 8)

array([1, 1, 2, 3, 4, 5, 6, 7, 8, 81])
>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)

array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4]

; 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 81])

194

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

numpy . compress (condition, a, axis=None, out=None)
Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condi-
tion evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition : 1-D array of bools

Array that selects which entries to return. If len(condition) is less than the size of a
along the given axis, then output is truncated to the length of the condition array.

a: array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the flattened array.
out : ndarray, optional
Output array. Its type is preserved and it must be of the right shape to hold the output.

Returns
compressed_array : ndarray

A copy of a without the slices along axis for which condition is false.
See Also:
take, choose, diag,diagonal, select

ndarray.compress
Equivalent method.

numpy .doc.ufuncs
Section “Output arguments”

Examples
>>> a = np.array ([[1, 2], [3, 41, [5, 611])
>>> a
array ([[1, 21,
[3, 41,
[5, 611)
>>> np.compress ([0, 1], a, axis=0)
array ([[3, 411)
>>> np.compress ([False, True, True], a, axis=0)
array ([[3, 41,
[5, 611)
>>> np.compress ([False, True], a, axis=1)
array ([[2],
[41,
[611)

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress ([False, True], a)
array ([2])

numpy .conj (x[, out])
Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

. Standard array subclasses 195

NumPy Reference, Release 1.6.0

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples
>>> np.conjugate (1+23)

(1-23)

>>> x = np.eye(2) + 1j » np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.71,

[0.-0.3, 1.-1.31D)

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

Array interpretation of a.

Notes
This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array X, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = x
>>> z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[0]
False

numpy . cumprod (a, axis=None, dtype=None, out=None)

Return the cumulative product of elements along a given axis.

Parameters
a: array_like

Input array.

196

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

axis : int, optional
Axis along which the cumulative product is computed. By default the input is flattened.
dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which the elements are
multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the
default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type of the resulting values will be cast if
necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1,2,3])

>>> np.cumprod(a) # intermediate results 1, 1#2
total product 1#+2+3 = 6
array ([1, 2, 6])
>>> a = np.array ([[1l, 2, 31, [4, 5, 611)

>>> np.cumprod(a, dtype=float) # specify type of output
array ([1., 2., 6., 24., 120., 720.1)

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[1, 2, 31,
[4, 10, 1811)

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod (a,axis=1)
array ([[1, 2, 6],
[4, 20, 12011)

numpy . cumsum (a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a: array_like

Input array.

axis : int, optional

1.5.

Standard array subclasses 197

NumPy Reference, Release 1.6.0

Axis along which the cumulative sum is computed. The default (None) is to compute
the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments’) for more details.

Returns
cumsum_along_axis : ndarray.

A new array holding the result is returned unless out is specified, in which case a ref-
erence to out is returned. The result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See Also:

sum
Sum array elements.

trapz
Integration of array values using the composite trapezoidal rule.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> a
array ([[1, 2, 31,
(4, 5, 611)
>>> np.cumsum(a)
array ([1, 3, 6, 10, 15, 211])

>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array ([1., 3., 6., 10., 15., 21.71)
>>> np.cumsum(a, axis=0) # sum over rows for each of the 3 columns
array ([[1, 2, 31,

(5, 7, 911)
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array ([[1, 3, 6],

[4, 9, 1511)

numpy .diagonal (a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form
ali, i+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are
used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can
be determined by removing axis! and axis2 and appending an index to the right equal to the size of the
resulting diagonals.

198

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Array from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axisl : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns
array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned. If the dimension of a is
larger, then an array of diagonals is returned, “packed” from left-most dimension to
right-most (e.g., if a is 3-D, then the diagonals are “packed” along rows).

Raises
ValueError :

If the dimension of a is less than 2.
See Also:
diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

trace
Sum along diagonals.

Examples
>>> a = np.arange (4) .reshape (2, 2)
>>> a
array ([[0, 11,

[2, 311
>>> a.diagonal ()
array ([0, 31)
>>> a.diagonal (1)
array ([1])

A 3-D example:

>>> a = np.arange(8) .reshape(2,2,2); a
array ([[[0, 11,

[2, 311,

[[4, 51,

[6, 7111)

>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and

. Standard array subclasses 199

NumPy Reference, Release 1.6.0

1) # the "middle" (row) axis first.
4
(1, 711

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> al:,:,0] # main diagonal is [0 6]

array ([[0, 27,

[4, 611)
>>> al:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

numpy .dot (a, b, out=None)
Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors
(without complex conjugation). For N dimensions it is a sum product over the last axis of a and the
second-to-last of b:

dot (a, b)I[i,3,k,m] = sum(ali,J,:] = blk,:,m])

Parameters
a: array_like

First argument.
b : array_like

Second argument.
out : ndarray, optional

Output argument. This must have the exact kind that would be returned if it was not
used. In particular, it must have the right type, must be C-contiguous, and its dtype
must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

Returns
output : ndarray

Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays then a
scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises
ValueError :

If the last dimension of a is not the same size as the second-to-last dimension of b.
See Also:
vdot

Complex-conjugating dot product.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

200 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> np.dot (3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot ([23, 331, [23, 331)
(=134+07)

For 2-D arrays it’s the matrix product:

>>>a = [[1, 0], [0, 11]
>>> b = [[4, 11, [2, 2]]
>>> np.dot (a, b)
array ([[4, 1],

(2, 211)

>>> a = np.arange (3%x4%x5%6) .reshape((3,4,5,6))

>>> b = np.arange (3%x4%x5%6) [::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]

499128

>>> sum(al[2,3,2,:] = b[l,2,:,2])

499128

numpy .mean (a, axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:

average
Weighted average

. Standard array subclasses 201

NumPy Reference, Release 1.6.0

Notes
The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 411)
>>> np.mean(a)

2.5

>>> np.mean(a, axis=0)

array ([2., 3.1)

>>> np.mean(a, axis=1)

array ([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512x512), dtype=np.float32)

>>> a[0, :] = 1.0
>>> afll, :] = 0.1
>>> np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy .nonzero (a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in
that dimension. The corresponding non-zero values can be obtained with:

a[nonzero (a)]

To group the indices by element, rather than dimension, use:

transpose (nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a: array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

202 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

count_nonzero
Counts the number of non-zero elements in the input array.

Examples
>>> x = np.eye(3)
>>> x
array ([[1., 0., -1y

0
[0., 1., 0.]
[0., 0., 1
>>> np.nonzero (x)
(array ([0, 1, 2]), array([0, 1, 2]))
>>> x[np.nonzero (x)]
array ([1., 1., 1.1)
>>> np.transpose (np.nonzero (x))
array ([[0, 01,
(1, 11,
(2, 2]11)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array
a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the
indices of the a where the condition is true.

>>> a = np.array([[1,2,31,104,5,61,17,8,911)
>>> a > 3
array ([[False, False, False],
[True, True, Truel,
[True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array (1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the boolean array can also be called.
>>> (a > 3) .nonzero ()
(array([1, 1, 1, 2, 2, 21), array([O, 1, 2, 0, 1, 21))
numpy . prod (a, axis=None, dtype=None, out=None)
Return the product of array elements over a given axis.

Parameters
a: array_like

Input data.
axis : int, optional

Axis over which the product is taken. By default, the product of all elements is calcu-
lated.

dtype : data-type, optional

The data-type of the returned array, as well as of the accumulator in which the elements
are multiplied. By default, if a is of integer type, dtype is the default platform integer.
(Note: if the type of a is unsigned, then so is dtype.) Otherwise, the dtype is the same
as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

1.5.

Standard array subclasses 203

NumPy Reference, Release 1.6.0

Returns
product_along_axis : ndarray, see dtype parameter above.

An array shaped as a but with the specified axis removed. Returns a reference to out if
specified.

See Also:
ndarray.prod
equivalent method
numpy .doc.ufuncs
Section “Output arguments”
Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a
32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 5368709107])
>>> np.prod(x) #random
16

Examples

By default, calculate the product of all elements:

>>> np.prod([1l.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.1])
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.1]1, axis=1)
array ([2., 12.1)

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.uint8)
>>> np.prod(x) .dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.int8)
>>> np.prod(x) .dtype == np.int
True

numpy . ptp (a, axis=None, out=None)
Range of values (maximum - minimum) along an axis.
The name of the function comes from the acronym for ‘peak to peak’.

Parameters
a: array_like

Input values.

axis : int, optional

204 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Axis along which to find the peaks. By default, flatten the array.
out : array_like

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type of the output values will be cast if
necessary.

Returns
ptp : ndarray

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

Examples
>>> x = np.arange (4) .reshape((2,2))
>>> x
array ([[0, 1]

(2, 311

>>> np.ptp(x, axis=0)
array ([2, 21)

>>> np.ptp(x, axis=1)
array ([1, 11)

numpy . put (a, ind, v, mode="raise’)
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.
ind : array_like

Target indices, interpreted as integers.
v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

1.5.

Standard array subclasses 205

NumPy Reference, Release 1.6.0

See Also:

putmask, place

Examples
>>> a = np.arange (5)
>>> np.put(a, [0, 2], [-44, -55])
>>> a

array ([—-44, 1, =55, 3, 41)

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip’)
>>> g

array ([O, 1, 2, 3, =-51)

numpy . ravel (a, order="C’)

Return a flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’F’, ‘A’, ‘K’}, optional
The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.

‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size(),).
See Also:
ndarray. flat
1-D iterator over an array.
ndarray.flatten
1-D array copy of the elements of an array in row-major order.
Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be
generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for Fortran-, or column-major,
mode.

Examples
It is equivalent to reshape (-1, order=order).

>>> x = np.array([[1, 2, 31, [4, 5, 611)
>>> print np.ravel (x)
[1 2 3 45 6]

206

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> print x.reshape(-1)
(12345 6]

>>> print np.ravel (x, order='F’)
[1 4 2 5 3 6]

When order is ‘A’ it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 42 5 3 6]

>>> print np.ravel(x.T, order='A")
[1 2 3 45 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a np.arange(3) [::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order='K’)

array ([2, 1, 0])

>>> a np.arange (12) .reshape (2, 3,2) .swapaxes (1,2); a
array ([[[O, 2, 47,

1, 3, 511,

([6, 8, 1071,

L7, 9 11111)
>>> a.ravel (order="C")
array ([O, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111)
>>> a.ravel (order="K’)
array ([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a: array_like

Input array.
repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.

See Also:

tile
Tile an array.

1.5.

Standard array subclasses 207

NumPy Reference, Release 1.6.0

Examples

>>> x = np.array ([[1,2]1,[3,411)
>>> np.repeat (x, 2)
array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1)
array ([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 411)
[1, 21, axis=0)

>>> np.repeat (x,

array ([[1, 2],
[3, 41,
[3, 4]11)

numpy . reshape (a, newshape, order="C’)
Gives a new shape to an array without changing its data.

Parameters
a: array_like

Array to be reshaped.
newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to
be raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))

A transpose make the array non-contiguous

>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the
initial object.

>>> ¢ = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

Examples

>>> a = np.array([[1,2,31, [4,5,611)
>>> np.reshape (a, 6)
array ([1, 2, 3, 4, 5, 6])

208 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.reshape(a, 6, order="F’)
array ([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 27,

[3, 41,

[5, 611)

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note
that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of
a.

Parameters
a: array_like

Array to be resized.
new_shape : int or tuple of int
Shape of resized array.

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See Also:
ndarray.resize

resize an array in-place.
Examples

>>> a=np.array ([[0
>>> np.resize(a, (1
array ([[0, 1, 2, 3
>>> np.resize(a, (2
array ([[0, 1, 2, 3

(o, 1, 2, 3

numpy . searchsorted (a, v, side="left’)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a: 1-D array_like

Input array, sorted in ascending order.
v : array_like
Values to insert into a.

side : {‘left’, ‘right’}, optional

1.5.

Standard array subclasses 209

NumPy Reference, Release 1.6.0

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either O or N (where N is the length of
a).

Returns
indices : array of ints

Array of insertion points with the same shape as v.

See Also:
sort

Return a sorted copy of an array.
histogram

Produce histogram from 1-D data.
Notes
Binary search is used to find the required insertion points.

As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.

Examples
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side="right’)
3

>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 31])
array ([0, 5, 1, 21)

numpy . sort (a, axis=-1, kind="quicksort’, order=None)
Return a sorted copy of an array.

Parameters
a : array_like

Array to be sorted.
axis : int or None, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See Also:

ndarray.sort
Method to sort an array in-place.

210 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.
Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work
space size, and whether they are stable. A stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following properties:

kind speed | worst case | work space | stable
‘quicksort’” | 1 On"2) 0 no
‘mergesort’ | 2 O(n*log(n)) | ~n/2 yes
‘heapsort’ 3 O(n*log(n)) | O no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Con-
sequently, sorting along the last axis is faster and uses less space than sorting along any other axis.

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then
the order is determined by the real parts except when they are equal, in which case the order is determined
by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour.
In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

eReal: [R, nan]
*Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to
the non-nan part if it exists. Non-nan values are sorted as before.

Examples
>>> a = np.array ([[1,4],[3,111])
>>> np.sort (a) # sort along the last axis
array ([[1, 4],
(1, 311
>>> np.sort (a, axis=None) # sort the flattened array
array ([1, 1, 3, 4])
>>> np.sort (a, axis=0) # sort along the first axis
array ([[1, 17,
[3, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name’, ’S10"), (’height’, float), ("age’, int)]
>>> values = [('Arthur’, 1.8, 41), ('Lancelot’, 1.9, 38),
(" Galahad’, 1.7, 38)]
>>> a = np.array (values, dtype=dtype) # create a structured array

>>> np.sort (a, order="height’)
array ([(' Galahad’, 1.7, 38), ('Arthur’, 1.8, 41),
("Lancelot’, 1.8999999999999999, 38)1,
dtype=[("name’, ’|S10’), ("height’, ’'<£f8"), ('age’, '<id’)])

Sort by age, then height if ages are equal:

1.5. Standard array subclasses 211

NumPy Reference, Release 1.6.0

>>> np.sort (a, order=["age’, "height’])
array ([("Galahad’, 1.7, 38), (’Lancelot’, 1.8999999999999999, 38),
("Arthur’, 1.8, 41)],
dtype=[('name’, ’|S10’), ("height’, ’'<f8"), ('age’, ’'<id’)])

numpy . squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

Returns
squeezed : ndarray

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

Examples
>>> x = np.array ([[[0], [1], [2]11)
>>> x.shape
(1, 3, 1)
>>> np.squeeze (x) .shape
(3,)

numpy . std (a, axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements.

standard deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

The

212 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:

var, mean

numpy .doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std
= sqgrt (mean (abs(x — x.mean())**x2)).

The average squared deviation is normally calculated as x. sum () / N, where N = len (x). If, how-
ever, ddof is specified, the divisor N — ddof is used instead. In standard statistical practice, ddof=1
provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables. The standard deviation computed in
this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased
estimate of the standard deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always
real and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.51)

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> af0,:] = 1.0

>>> afl,:] = 0.1

>>> np.std(a)

0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

numpy . sum (a, axis=None, dtype=None, out=None)
Sum of array elements over a given axis.

Parameters
a: array_like

Elements to sum.
axis : integer, optional
Axis over which the sum is taken. By default axis is None, and all elements are summed.

dtype : dtype, optional

1.5. Standard array subclasses 213

NumPy Reference, Release 1.6.0

The type of the returned array and of the accumulator in which the elements are
summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the default platform integer. In that case, the default plat-
form integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is
given, it must be of the appropriate shape (the shape of a with axis removed, i.e.,
numpy.delete (a.shape, axis)). Its type is preserved. See doc.ufuncs (Sec-
tion “Output arguments”) for more details.

Returns
sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, a scalar is returned. If an output array is specified, a reference to out
is returned.

See Also:
ndarray.sum
Equivalent method.

cumsum
Cumulative sum of array elements.

trapz
Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 511)
6
>>> np.sum([[0, 1], [0, 511, axis=0)

array ([0, 6])
>>> np.sum([[0, 1], [0, 511, axis=1)
array ([1, 51)

If the accumulator is too small, overflow occurs:

>>> np.ones (128, dtype=np.int8) .sum(dtype=np.int8)
-128

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.

214 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

axisl : int
First axis.

axis2 : int
Second axis.

Returns
a_swapped : ndarray

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

Examples

>>> x = np.array ([[1,2,3]1])
>>> np.swapaxes (x,0,1)
array ([[1],

(21,

[(311)
>>> x = np.array ([[[0,11,02,311,[[4,51,106,7111)
>>> x
array ([[[0, 17,

[2, 311,

(4, 51,

(6, 7111

>>> np.swapaxes (x,0,2)
array ([[[0, 4],
:|’

[2, 6]

[[1, 51,

[3, 7111)

numpy . take (a, indices, axis=None, out=None, mode="raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be
easier to use if you need elements along a given axis.

Parameters
a : array_like

The source array.
indices : array_like

The indices of the values to extract.
axis : int, optional

The axis over which to select values. By default, the flattened input array is used.
out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’}, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)

* ‘wrap’ — wrap around

1.5.

Standard array subclasses 215

NumPy Reference, Release 1.6.0

* ‘clip’ — clip to the range

‘clip” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.
See Also:
ndarray.take
equivalent method
Examples

>>> a = [4, 3, 5, 7, 6,
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array ([4, 3, 6])

8]

In this example if @ is an ndarray, “fancy” indexing can be used.

>>> a = np.array (a)
>>> al[indices]
array ([4, 3, 6])

numpy . trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements
al[i,i+offset] foralli.

If @ has more than two dimensions, then the axes specified by axisl and axis2 are used to determine the
2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with
axis] and axis2 removed.

Parameters
a: array_like

Input array, from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axisl, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the diag-
onals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

216 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns
sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See Also:
diag,diagonal,diagflat

Examples

>>> np.trace (np.eye (3))

3.0

>>> a = np.arange (8) .reshape((2,2,2))
>>> np.trace(a)

array ([6, 8])

>>> a = np.arange(24) .reshape((2,2,2,3))
>>> np.trace(a) .shape
(2, 3)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.
axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values

given.
Returns
p : ndarray
a with its axes permuted. A view is returned whenever possible.
See Also:
rollaxis
Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> X
array ([[0, 1]

(2, 311

>>> np.transpose (x)
array ([[0, 21,
(1, 311

>>> x = np.ones ((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

1.5.

Standard array subclasses

217

NumPy Reference, Release 1.6.0

numpy . var (a, axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is
computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is floar32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom™: the divisor used in the calculation is N — ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs(x -
x.mean ()) *x2).

The mean is normally calculated as x . sum () / N,where N = len (x). If, however, ddof is specified,
the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased
estimator of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real
and nonnegative.

218 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

For floating-point input, the variance is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples

>>> a = np.array([[1,2],([3,4]1])

>>> np.var (a)
1.25

>>> np.var(a,0)
array ([1., 1.1)
>>> np.var(a, 1)
array ([0.25,

0.251])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512x512), dtype=np.float32)

>>> af[0,:] = 1.0
>>> afl,:] = 0.1
>>> np.var(a)
0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>> np.var (a, dtype=np.float64)

0.20249999932997387

>>> ((1-0.55)**x2 + (0.1-0.55)%x%2)/2

0.20250000000000001

class numpy . record

A data-type scalar that allows field access as attribute lookup.

Methods
all(al, axis, out]) Test whether all array elements along a given axis evaluate to True.
anvy(al, axis, out]) Test whether any array element along a given axis evaluates to True.
argmax(a[, axis]) Indices of the maximum values along an axis.
argmin(al, axis]) Return the indices of the minimum values along an axis.
argsort(a[, axis, kind, order]) Returns the indices that would sort an array.
astype
byteswap
choose(a, choices[, out, mode]) Construct an array from an index array and a set of arrays to choose from.

clip(a, a_min, a_max|, out])
compress(condition, a[, axis, out])
conJx[, out])
conjugate(x][, out])
copy(a)
cumprod(al, axis,
cumsum(al, axis,
diagonal(a[, offset,
dump

dumps

fill

flatten

getfield

item

dtype, out])
dtype, out])
axisl, axis2])

Clip (limit) the values in an array.
Return selected slices of an array along given axis.
Return the complex conjugate, element-wise.
Return the complex conjugate, element-wise.

Return an array copy of the given object.
Return the cumulative product of elements along a given axis.
Return the cumulative sum of the elements along a given axis.
Return specified diagonals.

Continued on next page ‘

1.5. Standard array subclasses

219

NumPy Reference, Release 1.6.0

Table 1.6 — continued from previous page

itemset

max(a[, axis, out])
mean(a[, axis, dtype, out])
min(al, axis, out])
newbyteorder

nonzero(a)

pprint

prod(a[, axis, dtype, out])
ptp(al, axis, out])
put(a, ind, v[, mode])
ravel(a[, order])
repeat(a, repeats|, axis])
reshape(a, newshape|, order])
resize(a, new_shape)
round(al, decimals, out])
searchsorted(a, v[, side])
setfield

setflags

sort(a[, axis, kind, order])
squeeze(a)

std(a[, axis, dtype, out, ddof])
sum(al, axis, dtype, out])
swapaxes(a, axisl, axis2)

take(a, indices[, axis, out, mode])
tofile

tolist

tostring

trace(al, offset, axis1, axis2, dtype, out])
transpose(al, axes])

var(a[, axis, dtype, out, ddof])
view

Return the maximum of an array or maximum along an axis.
Compute the arithmetic mean along the specified axis.
Return the minimum of an array or minimum along an axis.

Return the indices of the elements that are non-zero.
Support to pretty-print lists, tuples, & dictionaries recursively.
Return the product of array elements over a given axis.

Range of values (maximum - minimum) along an axis.
Replaces specified elements of an array with given values.
Return a flattened array.

Repeat elements of an array.

Gives a new shape to an array without changing its data.
Return a new array with the specified shape.
Round an array to the given number of decimals.
Find indices where elements should be inserted to maintain order.

Return a sorted copy of an array.

Remove single-dimensional entries from the shape of an array.
Compute the standard deviation along the specified axis.
Sum of array elements over a given axis.
Interchange two axes of an array.

Take elements from an array along an axis.

Return the sum along diagonals of the array.
Permute the dimensions of an array.
Compute the variance along the specified axis.

numpy .all (a, axis=None, out=None)

Test whether all array elements along a given axis evaluate to True.

Parameters
a: array_like

Input array or object that can be converted to an array.

axis : int, optional

Axis along which a logical AND is performed. The default (axis = None) is to perform
a logical AND over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as
the expected output and its type is preserved (e.g., if dtype (out) is float, the result
will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for more

details.

Returns
all : ndarray, bool

220

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A new boolean or array is returned unless out is specified, in which case a reference to
out is returned.

See Also:
ndarray.all
equivalent method
any
Test whether any element along a given axis evaluates to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Z€ero.
Examples
>>> np.all([[True,False], [True,True]])
False
>>> np.all([[True,False], [True,Truel], axis=0)

array ([True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])

>>> z=np.all([-1, 4, 5], out=o0)

>>> id(z), id(o), =z

(28293632, 28293632, array ([True], dtype=bool))

numpy . any (a, axis=None, out=None)
Test whether any array element along a given axis evaluates to True.
Returns single boolean unless axis is not None

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which a logical OR is performed. The default (axis = None) is to perform
a logical OR over a flattened input array. axis may be negative, in which case it counts
from the last to the first axis.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output and its type is preserved (e.g., if it is of type float, then it will remain
so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See doc.ufuncs
(Section “Output arguments’) for details.

Returns
any : bool or ndarray

1.5. Standard array subclasses 221

NumPy Reference, Release 1.6.0

A new boolean or ndarray is returned unless out is specified, in which case a reference
to out is returned.

See Also:
ndarray.any
equivalent method
all
Test whether all elements along a given axis evaluate to True.
Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to

Z€ero.
Examples
>>> np.any ([[True, False], [True, Truell)
True
>>> np.any ([[True, False], [False, False]], axis=0)

array ([True, False], dtype=bool)

>>> np.any ([-1, 0, 51])
True

>>> np.any (np.nan)
True

>>> o=np.array ([False]

>>> z=np.any([-1, 4, 5], out=o0)

>>> 7, O

(array ([True], dtype=bool), array([True], dtype=bool))
>>> # Check now that z 1is a reference to o

>>> z is o

True

>>> id(z), id(o) # identity of z and o

(191614240, 191614240)

numpy .argmax (a, axis=None)
Indices of the maximum values along an axis.

Parameters
a: array_like

Input array.
axis : int, optional
By default, the index is into the flattened array, otherwise along the specified axis.

Returns
index_array : ndarray of ints

Array of indices into the array. It has the same shape as a.shape with the dimension
along axis removed.

See Also:

ndarray.argmax, argmin

222 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

amax
The maximum value along a given axis.

unravel_index
Convert a flat index into an index tuple.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence
are returned.

Examples
>>> a = np.arange (6) .reshape (2, 3)
>>> a
array ([[0, 1, 21,
[3, 4, 511)
>>> np.argmax(a)

5

>>> np.argmax(a, axis=0)
array ([1, 1, 11)

>>> np.argmax(a, axis=1)
array ([2, 2])

>>> b = np.arange (6)
>>> b[l] = 5
>>> Db

array ([0, 5, 2, 3, 4, 51)
>>> np.argmax (b) # Only the first occurrence is returned.
1

numpy .argmin (a, axis=None)
Return the indices of the minimum values along an axis.
See Also:

argmax
Similar function. Please refer to numpy . argmax for detailed documentation.

numpy .argsort (a, axis=-1, kind="quicksort’, order=None)
Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns
an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a: array_like

Atrray to sort.
axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is
used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.

order : list, optional

1.5. Standard array subclasses 223

NumPy Reference, Release 1.6.0

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
al[index_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.
Notes
See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.

Examples
One dimensional array:

>>> x = np.array([3, 1, 21)
>>> np.argsort (x)
array ([1, 2, 0])

Two-dimensional array:

>>> x = np.array ([[0, 31, [2, 2]11])
>>> x
array ([[0, 3],

(2, 211

>>> np.argsort (x, axis=0)
array ([[0, 11,
(1, 011

>>> np.argsort (x, axis=1)
array ([[0, 1],
[0, 111)

Sorting with keys:

>>> x = np.array ([(1, 0), (0, 1)1, dtype=[('x", '<id"), ('vy’', '<id’)])
>>> x
array ([(1, 0), (0, 1)1,

dtype=[("x', ’'<id"), ('y’', '<i4’')1])

>>> np.argsort (x, order=('x’,’y’))
array ([1, 0])

224 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.argsort (x, order=("y’,’ ’x"))
array ([0, 17)

numpy . choose (a, choices, out=None, mode="raise’)

Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality,
this function is less simple than it might seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([cl[al[I]]l[I] for I in ndi.ndindex(a.shape)l]).
But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are
first broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,...,n-1
we have that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with
shape Ba . shape is created as follows:

*if node=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1]; now, suppose that i (in that range) is the value at the (jO, j1, ..., jm) position in Ba - then the
value at the same position in the new array is the value in Bchoices[i] at that same position;

*if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to
map integers outside the range [0, n-1] back into that range; and then the new array is constructed as
above;

*if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped
to O; values greater than n-/ are mapped to n-1; and then the new array is constructed as above.
Parameters

a: int array

This array must contain integers in [0, n-1], where n is the number of choices, unless
mode=wrap or mode=clip, in which cases any integers are permissible.

choices : sequence of arrays

Choice arrays. a and all of the choices must be broadcastable to the same shape. If
choices is itself an array (not recommended), then its outermost dimension (i.e., the one
corresponding to choices.shape [0]) is taken as defining the “sequence”.

out : array, optional

If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.

mode : {‘raise’ (default), ‘wrap’, ‘clip’ }, optional
Specifies how indices outside [0, n-1] will be treated:
* ‘raise’ : an exception is raised
* ‘wrap’ : value becomes value mod n
 ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array : array

The merged result.

Raises
ValueError: shape mismatch :

1.5.

Standard array subclasses 225

NumPy Reference, Release 1.6.0

If a and each choice array are not all broadcastable to the same shape.

See Also:

ndarray.choose
equivalent method

Notes

To reduce the chance of mi

sinterpretation, even though the following “abuse” is nominally supported,

choices should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples

>>> choices = [[0
[20, 21, 22
>>> np.choose([2,
the first e
third (2+1)
will be the
31,

S)
array ([20, 31, 12
>>> np.choose([2,
array ([20, 31, 12
>>> # because the

etc.

>>> np.choose([2,
array ([20, 1, 12
>> # i.e., 0

1, 2, 31, [10, 11,
231, [30, 31, 32,
3, 1, 0], choices
lement of the result will be the first element of the
20; the second element

second element of the fourth (3+1) choice array,

12,
3311

131,

14

4

"array" in choices, namely,

i.e.,

, 31)
4, 1, 0], choices, mode="clip’) # 4 goes to 3 (4-1)
, 31)
re are 4 choice arrays
4, 1, 0], choices, mode="wrap’) # 4 goes to (4 mod 4)
31)

’

A couple examples illustrating how choose broadcasts:

>>> a = [[1, 0, 1
>>> choices = [-1
>>> np.choose (a,
array ([[10, =10,
[-10, 10,
[10, -10,
>>> # With thanks
>>> a = np.array (
>>> cl = np.array
>>> c2 = np.array
>>> np.choose (a,
array ([[[1, 1,
[2/ 2[
[3, 3,
[[711 72/
[_1/ _21
-1, -2,

nunpy .clip (a, a_min, a_max,

1, [0,
0, 10]
choices)
107,
-107,
1011)

1, 01, [1, O, 111

to Anne Archibald

[0, 1]).reshape((2,1,1))
({1, 2, 31).reshape((1,3,1))
(-1, -2, -3, -4, -51).reshape((1,1,5))
(cl, c2)) # result is 2x3x5, res([0,:,:]=cl, res[l,:,:]=c2
i, 1, 17,
2, 2, 2],
3, 3, 311,
-3, -4, -5],
-3, -4, -5],
-3, -4, -5111)
out=None)

Clip (limit) the values in an array.

Given an interval, values out
of [0,

Parameters
a: array_like

side the interval are clipped to the interval edges. For example, if an interval

1] is specified, values smaller than O become 0, and values larger than 1 become 1.

226

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Examples

>>> a = np.arange (10)

>>> np.clip(a, 1, 8)

array ([, 1, 2, 3, 4, 5, 6, 7, 8, 8])

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])

>>> np.clip(a, 3, 6, out=a)

array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

>>> a = np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy . compress (condition, a, axis=None, out=None)

Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in output for each index where condi-
tion evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition : 1-D array of bools

Array that selects which entries to return. If len(condition) is less than the size of a
along the given axis, then output is truncated to the length of the condition array.

a: array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the flattened array.

out : ndarray, optional

1.5.

Standard array subclasses 227

NumPy Reference, Release 1.6.0

Output array. Its type is preserved and it must be of the right shape to hold the output.

Returns
compressed_array : ndarray

A copy of a without the slices along axis for which condition is false.
See Also:
take, choose, diag,diagonal, select

ndarray.compress
Equivalent method.

numpy .doc.ufuncs
Section “Output arguments”

Examples
>>> a = np.array ([[1, 2], [3, 4], [5, 611)
>>> a
array ([[1, 217,
(3, 41,
[5, 611)
>>> np.compress ([0, 1], a, axis=0)
array ([[3, 4]1)
>>> np.compress ([False, True, True], a, axis=0)
array([[3, 41,
[5, 611)

>>> np.compress ([False, Truel], a, axis=1)
array ([[2],

(41,

[611)

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress ([False, Truel], a)
array ([2])

numpy .conj (x[, out])
Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate (1+273)
(1-23)

>>> x = np.eye(2) + 13 * np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.71,

[0.-0.3, 1.-1.311)

228 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

Array interpretation of a.

Notes
This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array X, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = x
>>> z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[0]
False

numpy . cumprod (a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters
a: array_like

Input array.
axis : int, optional

Axis along which the cumulative product is computed. By default the input is flattened.
dtype : dtype, optional

Type of the returned array, as well as of the accumulator in which the elements are
multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the
default platform integer is used instead.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type of the resulting values will be cast if
necessary.

Returns
cumprod : ndarray

1.5.

Standard array subclasses

229

NumPy Reference, Release 1.6.0

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

See Also:

numpy .doc.ufuncs
Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1,2,3])

>>> np.cumprod(a) # intermediate results 1, 1#2
total product 1#2%3 = 6
array ([1l, 2, 6])
>>> a = np.array([[1l, 2, 31, [4, 5, 611)

>>> np.cumprod(a, dtype=float) # specify type of output
array ([1., 2., 6., 24., 120., 720.1)

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array ([[1, 2, 31,
[4, 10, 18]11])

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array ([[1, 2, 6],
[4, 20, 12011)

numpy . cumsum (a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a: array_like

Input array.
axis : int, optional

Axis along which the cumulative sum is computed. The default (None) is to compute
the cumsum over the flattened array.

dtype : dtype, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary. See doc.ufuncs
(Section “Output arguments”) for more details.

Returns
cumsum_along_axis : ndarray.

230 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A new array holding the result is returned unless out is specified, in which case a ref-
erence to out is returned. The result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

See Also:

sum
Sum array elements.

trapz
Integration of array values using the composite trapezoidal rule.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array ([[1,2,3], [4,5,6]])
>>> a
array ([[1, 2, 31,
[4, 5, 6]1)
>>> np.cumsum(a)
array ([1, 3, 6, 10, 15, 211])

>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array ([1., 3., 6., 10., 15., 21.1)
>>> np.cumsum(a, axis=0) # sum over rows for each of the 3 columns
array ([[1, 2, 31,

(5, 7, 911)
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array ([[1, 3, 6],

[4, 9, 1511)

numpy .diagonal (a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form
ali, i+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are
used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can
be determined by removing axis! and axis2 and appending an index to the right equal to the size of the
resulting diagonals.

Parameters
a: array_like

Array from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to
main diagonal (0).

axisl : int, optional

Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should
be taken. Defaults to first axis (0).

axis2 : int, optional

Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

1.5. Standard array subclasses 231

NumPy Reference, Release 1.6.0

Returns
array_of_diagonals : ndarray

If a is 2-D, a 1-D array containing the diagonal is returned. If the dimension of a is
larger, then an array of diagonals is returned, “packed” from left-most dimension to
right-most (e.g., if a is 3-D, then the diagonals are “packed” along rows).

Raises
ValueError :

If the dimension of a is less than 2.
See Also:
diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

trace
Sum along diagonals.

Examples
>>> a = np.arange (4) .reshape (2, 2)
>>> a
array ([[0, 1],

(2, 311
>>> a.diagonal ()
array ([0, 31)
>>> a.diagonal (1)
array ([1])

A 3-D example:

>>> a = np.arange(8) .reshape(2,2,2); a
array ([[[0, 11,

[2, 311,

[[4, 51,

[6, 7111)

>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and
1) # the "middle" (row) axis first.

(1, 711

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> af:,:,0] # main diagonal is [0 6]
array ([[0, 2]

[4, 611)
>>> af:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

numpy .mean (a, axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

232 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns the average of the array elements. The average is taken over the flattened array by default, other-
wise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default is None; if provided, it
must have the same shape as the expected output, but the type will be cast if necessary.
See doc.ufuncs for details.

Returns
m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
average

Weighted average
Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-precision accumulator using the dfype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> np.mean (a)
2.5

>>> np.mean(a, axis=0)
array ([2., 3.1)

>>> np.mean(a, axis=1)
array ([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512%«512), dtype=np.float32)

>>> a[0, :] = 1.0
>>> af[l, :] = 0.1
>>> np.mean (a)
0.546875

1.5.

Standard array subclasses 233

NumPy Reference, Release 1.6.0

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

numpy .nonzero (a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in
that dimension. The corresponding non-zero values can be obtained with:

a[nonzero(a)]

To group the indices by element, rather than dimension, use:

transpose (nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters
a: array_like

Input array.

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples
>>> x = np.eye(3)
>>> x
array ([[1., 0., 0.7,
[0., 1., 0.1,
[0., 0., 1.11)

>>> np.nonzero (x)
(array ([0, 1, 2]), array ([0, 1, 2]))

>>> x[np.nonzero (x)]
array ([1., 1., 1.])
>>> np.transpose (np.nonzero (x))
array ([[0, O],
(1, 11,
(2, 211)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array
a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the
indices of the a where the condition is true.

234 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.array([[1,2,3],[4,5,61,17,8,911)
>>> g > 3
array ([[False, False, False],
[True, True, True],
[True, True, True]], dtype=bool)
>>> np.nonzero(a > 3)
(array ([, 1, 1, 2, 2, 2]), array([O0, 1, 2, 0, 1, 21))

The nonzero method of the boolean array can also be called.

>>> (a > 3) .nonzero()
(array (1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

numpy . prod (a, axis=None, dtype=None, out=None)

Return the product of array elements over a given axis.

Parameters
a: array_like

Input data.
axis : int, optional

Axis over which the product is taken. By default, the product of all elements is calcu-
lated.

dtype : data-type, optional

The data-type of the returned array, as well as of the accumulator in which the elements
are multiplied. By default, if a is of integer type, dtype is the default platform integer.
(Note: if the type of a is unsigned, then so is dfype.) Otherwise, the dtype is the same
as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output, but the type of the output values will be cast if necessary.

Returns
product_along_axis : ndarray, see dfype parameter above.

An array shaped as a but with the specified axis removed. Returns a reference to out if
specified.

See Also:
ndarray.prod
equivalent method
numpy .doc.ufuncs
Section “Output arguments”
Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a
32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

1.5.

Standard array subclasses 235

NumPy Reference, Release 1.6.0

Examples
By default, calculate the product of all elements:

>>> np.prod([1l.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.]1,[3.,4.11)
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.1]1, axis=1)
array ([2., 12.1)

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.uint8)
>>> np.prod(x) .dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1l, 2, 3], dtype=np.int8)
>>> np.prod(x) .dtype == np.int
True

numpy . ptp (a, axis=None, out=None)
Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for ‘peak to peak’.

Parameters
a: array_like

Input values.
axis : int, optional

Axis along which to find the peaks. By default, flatten the array.
out : array_like

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output, but the type of the output values will be cast if
necessary.

Returns
ptp : ndarray

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 1]

(2, 311

>>> np.ptp(x, axis=0)
array ([2, 2])

236 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.ptp(x, axis=1)
array ([1, 11)

numpy . put (a, ind, v, mode="raise’)
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters
a : ndarray

Target array.
ind : array_like

Target indices, interpreted as integers.
v : array_like

Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode : {‘raise’, ‘wrap’, ‘clip’ }, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

See Also:

putmask, place

Examples
>>> a = np.arange (5)
>>> np.put(a, [0, 21, [-44, -55])
>>> a

array ([—-44, 1, -55, 3, 47)

>>> a np.arange (5)
>>> np.put(a, 22, -5, mode='clip’)
>>> 3

array ([0, 1, 2, 3, =-5])
numpy . ravel (a, order="C’)
Return a flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

1.5.

Standard array subclasses 237

NumPy Reference, Release 1.6.0

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’F’, ‘A’, ‘K’ }, optional
The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.

‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size(),).

See Also:

ndarray. flat
1-D iterator over an array.

ndarray.flatten
1-D array copy of the elements of an array in row-major order.

Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be
generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for Fortran-, or column-major,
mode.

Examples
It is equivalent to reshape (-1, order=order).

>>> x = np.array([[1, 2, 31, [4, 5, 611)
>>> print np.ravel (x)
[1 2 345 6]

>>> print x.reshape(-1)
[1 2345 6]

>>> print np.ravel (x, order='F")
[1 42 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 42 5 3 6]

>>> print np.ravel(x.T, order='A")
[1 2 3 45 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order="K’)

array ([2, 1, 0])

238 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.arange(12) .reshape(2,3,2) .swapaxes(1,2); a
array ([[[0, 2, 41,

t1, 3, 511,

(t e, 8, 10],

L7, 9 11111)
>>> a.ravel (order='C")
array([O, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111)
>>> a.ravel (order="K’)
array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a: array_like

Input array.
repeats : {int, array of ints}

The number of repetitions for each element. repeats is broadcasted to fit the shape of
the given axis.

axis : int, optional

The axis along which to repeat values. By default, use the flattened input array, and
return a flat output array.

Returns
repeated_array : ndarray

Output array which has the same shape as a, except along the given axis.

See Also:

tile
Tile an array.

Examples

>>> x = np.array ([[1,2],13,4]1])
>>> np.repeat (x, 2)
array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 411])
[1, 2], axis=0)

>>> np.repeat (x,

array ([[1, 27,
(3, 41,
[3, 411)

numpy . reshape (a, newshape, order="C’)
Gives a new shape to an array without changing its data.

Parameters
a: array_like

Array to be reshaped.

newshape : int or tuple of ints

1.5.

Standard array subclasses 239

NumPy Reference, Release 1.6.0

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to
be raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))

A transpose make the array non-contiguous

>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the
initial object.

>>> ¢ = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

Examples

>>> a = np.array([[1,2,3], [4,5,6]11])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 61])

>>> np.reshape(a, 6, order="F’)
array ([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 27,

[3, 41,

[5, 611)

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note
that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of
a.

Parameters
a: array_like

Array to be resized.
new_shape : int or tuple of int

Shape of resized array.

240 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out
the required number of elements. The data are repeated in the order that they are stored
in memory.

See Also:
ndarray.resize

resize an array in-place.
Examples

>>> a=np.array ([[0
>>> np.resize(a, (1
array ([[0, 1, 2, 3
>>> np.resize(a, (2
array ([[0, 1, 2, 3

[o, 1, 2, 3

numpy . searchsorted (a, v, side="left’)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
a: 1-D array_like

Input array, sorted in ascending order.
v : array_like

Values to insert into a.
side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last
such index. If there is no suitable index, return either O or N (where N is the length of
a).

Returns
indices : array of ints

Array of insertion points with the same shape as v.

See Also:
sort

Return a sorted copy of an array.
histogram

Produce histogram from 1-D data.
Notes
Binary search is used to find the required insertion points.

As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced
sort order is documented in sort.

1.5.

Standard array subclasses 241

NumPy Reference, Release 1.6.0

Examples

>>> np.searchsorted([1,2,3,4,5], 3)

2

>>> np.searchsorted([1,2,3,4,5], 3,

3

>>> np.searchsorted([1,2,3,4,5]1, [-1
array ([0, 5,

21)

Return a sorted copy of an array.

Parameters
a: array_like

Array to be sorted.

axis : int or None, optional

numpy . sort (a, axis=-1, kind="quicksort’, order=None)

side="right’)

0, 10, 2, 31)

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

Sorting algorithm. Default is ‘quicksort’.

order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

Returns

sorted_array : ndarray

Array of the same type and shape as a.

See Also:

ndarray.sort
Method to sort an array in-place.

argsort

Indirect sort.

lexsort

Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work
space size, and whether they are stable. A stable sort keeps items with the same key in the same relative

order. The three available algorithms have the following properties:

kind speed worst case work space | stable
‘quicksort’ 1 O(n"2) 0 no
‘mergesort” | 2 O(n*log(n)) | ~n/2 yes
‘heapsort’ 3 O(n*log(n)) | O no

All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Con-

sequently, sorting along the last axis is faster and uses less space than sorting along any other axis.

242

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then
the order is determined by the real parts except when they are equal, in which case the order is determined
by the imaginary parts.

Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour.
In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

eReal: [R, nan]
*Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to
the non-nan part if it exists. Non-nan values are sorted as before.

Examples
>>> a = np.array ([[1,4]1,I[13,1]11)
>>> np.sort (a) # sort along the last axis
array ([[1, 4],
(1, 311
>>> np.sort (a, axis=None) # sort the flattened array
array ([1, 1, 3, 4])
>>> np.sort (a, axis=0) # sort along the first axis
array ([[1, 117,
[3, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name’, 'S10"), (’height’, float), ("age’, int)]

>>> values = [('Arthur’, 1.8, 41), ('Lancelot’, 1.9, 38),

S (" Galahad’, 1.7, 38)]1

>>> a = np.array(values, dtype=dtype) # create a structured array

>>> np.sort (a, order="height’)
array ([(' Galahad’, 1.7, 38), ('Arthur’, 1.8, 41),
(" Lancelot’, 1.8999999999999999, 38)],
dtype=|[('name’, ’|S10’), ("height’, ’"<£f8’), ('age’, ’'<id’)])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age’, ’"height’])
array ([(' Galahad’, 1.7, 38), ('’Lancelot’, 1.8999999999999999, 38),
(Arthur’, 1.8, 41)],
dtype=[('name’, ’|S10’), ("height’, ’'<£8"), ('age’, ’'<id’)])

numpy . squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

Returns
squeezed : ndarray

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

1.5. Standard array subclasses 243

NumPy Reference, Release 1.6.0

Examples
>>> x = np.array ([[[0], [1], [2]11)
>>> x.shape
(L, 3, 1)
>>> np.squeeze (x) .shape
(3,)

numpy . std (a, axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements.

standard deviation is computed for the flattened array by default, otherwise over the specified axis.

The

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N — ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See Also:
var, mean

numpy .doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std
= sqgrt (mean (abs(x — x.mean())**2)).

The average squared deviation is normally calculated as x.sum () / N, where N = len (x). If, how-
ever, ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1
provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum
likelihood estimate of the variance for normally distributed variables. The standard deviation computed in
this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased
estimate of the standard deviation per se.

244

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always

real and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a

higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512x512), dtype=np.float32)

>>> af[0,:] = 1.0
>>> af[l,:] = 0.1
>>> np.std(a)
0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

numpy . sum (a, axis=None, dtype=None, out=None)
Sum of array elements over a given axis.

Parameters
a: array_like

Elements to sum.

axis : integer, optional

Axis over which the sum is taken. By default axis is None, and all elements are summed.

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are
summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the default platform integer. In that case, the default plat-

form integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is
given, it must be of the appropriate shape (the shape of a with axis removed, i.e.,
numpy.delete (a.shape, axis)). Its type is preserved. See doc.ufuncs (Sec-
tion “Output arguments”) for more details.

Returns
sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array,
or if axis is None, a scalar is returned. If an output array is specified, a reference to out

is returned.

1.5. Standard array subclasses

245

NumPy Reference, Release 1.6.0

See Also:
ndarray.sum
Equivalent method.

cumsum
Cumulative sum of array elements.

trapz
Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 511)
6
>>> np.sum([[0, 1], [0, 511, axis=0)

array ([0, 6])
>>> np.sum([[0, 1], [0, 511, axis=1)
array ([1, 51)

If the accumulator is too small, overflow occurs:

>>> np.ones (128, dtype=np.int8) .sum(dtype=np.int8)
-128

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.
axisl : int

First axis.
axis2 : int

Second axis.

Returns
a_swapped : ndarray

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

Examples
>>> x = np.array ([[1,2,3]1])
>>> np.swapaxes(x,0,1)
array ([[1],
(21,
[(311)

246 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x = np.array ([[[0,1],(2,3]],[[4,5],16,7111)

>>> np.swapaxes (x,0,2)
array ([[[0, 47,

[2, 6
[[1, 5
[3, 7

numpy . take (a, indices, axis=None, out=None, mode="raise’)
Take elements from an array along an axis.

This function does the same thing as “fancy” indexing (indexing arrays using arrays); however, it can be
easier to use if you need elements along a given axis.

Parameters
a: array_like

The source array.
indices : array_like

The indices of the values to extract.
axis : int, optional

The axis over which to select values. By default, the flattened input array is used.
out : ndarray, optional

If provided, the result will be placed in this array. It should be of the appropriate shape
and dtype.

mode : {‘raise’, ‘wrap’, ‘clip’ }, optional
Specifies how out-of-bounds indices will behave.
e ‘raise’ —raise an error (default)
* ‘wrap’ — wrap around
* ‘clip’ — clip to the range

‘clip’” mode means that all indices that are too large are replaced by the index that ad-
dresses the last element along that axis. Note that this disables indexing with negative
numbers.

Returns
subarray : ndarray

The returned array has the same type as a.

See Also:

ndarray.take
equivalent method

1.5.

Standard array subclasses 247

NumPy Reference, Release 1.6.0

Examples

>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array ([4, 3, 6])
In this example if @ is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a)
>>> al[indices]
array ([4, 3, 6])

numpy . trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements
al[i,i+offset] foralli.

If a has more than two dimensions, then the axes specified by axisl and axis2 are used to determine the
2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of a with
axis] and axis2 removed.

Parameters
a: array_like

Input array, from which the diagonals are taken.
offset : int, optional

Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axis1, axis2 : int, optional

Axes to be used as the first and second axis of the 2-D sub-arrays from which the diag-
onals should be taken. Defaults are the first two axes of a.

dtype : dtype, optional

Determines the data-type of the returned array and of the accumulator where the ele-
ments are summed. If dtype has the value None and a is of integer type of precision less
than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out : ndarray, optional

Array into which the output is placed. Its type is preserved and it must be of the right
shape to hold the output.

Returns
sum_along_diagonals : ndarray

If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then an
array of sums along diagonals is returned.

See Also:

diag,diagonal,diagflat

Examples

248 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.trace (np.eye(3))

3.0

>>> a = np.arange (8) .reshape((2,2,2))
>>> np.trace(a)

array ([6, 8])

>>> a = np.arange (24) .reshape((2,2,2,3))
>>> np.trace(a) .shape
(2, 3)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.
axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values
given.

Returns
p : ndarray

a with its axes permuted. A view is returned whenever possible.
See Also:

rollaxis

Examples

>>> x = np.arange (4) .reshape ((2,2))
>>> x
array ([[0, 17,

(2, 311

>>> np.transpose (x)
array ([[0, 2],

(1, 311
>>> x = np.ones ((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

numpy . var (a, axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is
computed for the flattened array by default, otherwise over the specified axis.

Parameters
a : array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

1.5. Standard array subclasses 249

NumPy Reference, Release 1.6.0

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom™: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs (x -
x.mean())*x*2).

The mean is normally calculated as x . sum () / N,where N = len (x). If, however, ddof is specified,
the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased
estimator of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood
estimate of the variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real
and nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending
on the input data, this can cause the results to be inaccurate, especially for float32 (see example below).
Specifying a higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array([[1,2],103,411)
>>> np.var (a)
1.25

>>> np.var (a,0)
array ([1., 1.1)

>>> np.var(a, 1)
array ([0.25, 0.257)

In single precision, var() can be inaccurate:

250

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.zeros((2,512+«512), dtype=np.float32)
>>> a[0,:] = 1.0

>>> af[l,:] = 0.1

>>> np.var(a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932997387

>>> ((1-0.55)%%2 + (0.1-0.55)*%2)/2
0.20250000000000001

1.5.6 Masked arrays (numpy .ma)

See Also:

Masked arrays

1.5.7 Standard container class

For backward compatibility and as a standard “container ‘“class, the UserArray from Numeric has been brought over to
NumPy and named numpy . 1ib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the
ndarray itself and so it is included by default. It is not documented here beyond mentioning its existence because you
are encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(datal,...])

class numpy.lib.user_array.container (data, dtype=None, copy=True)

1.5.8 Array lterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter
is an iterator object, then the Python code:

for val in myiter:
some code involving val

callsval = myiter.next () repeatedly until StopIteration israised by the iterator. There are several ways
to iterate over an array that may be useful: default iteration, flat iteration, and N-dimensional enumeration.

Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in xrange (arr.shape([0]):
val = arr[i]

1.5. Standard array subclasses 251

http://docs.python.org/dev/library/exceptions.html#StopIteration

NumPy Reference, Release 1.6.0

This default iterator selects a sub-array of dimension N — 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires N for-loops.

>>> a = arange (24) .reshape(3,2,4)+10
>>> for val in a:
ce print ’'item:’, val
item: [[10 11 12 13]
[14 15 16 17]]
item: [[18 19 20 21]
[22 23 24 25]]
item: [[26 27 28 29]
[30 31 32 33]]

Flat iteration

ndarray.flat A 1-D iterator over the array.

ndarray.flat
A 1-D iterator over the array.

Thisis a numpy . flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See Also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter
Examples
>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 31,
[4, 5, 6]1)
>>> x.flat[3]
4
>>> x.T
array ([[1, 47,
[2, 51,
[3, 611)
>>> x.T.flat[3]
5

>>> type(x.flat)
<type ’'numpy.flatiter’>

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 31,
(3, 3, 311
>>> x.flat[[1,4]1] = 1; x
array ([[3, 1, 31,
(3, 1, 311

As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

252 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> for i, val in enumerate(a.flat):
.. if i%5 == 0: print i, val

0 10
5 15
10 20
15 25
20 30

Here, I've used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

class numpy . ndenumerate (arr)
Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

Parameters
a : ndarray

Input array.
See Also:

ndindex, flatiter

Examples

>>> a = np.array([[1, 2], [3, 411)
>>> for index, x in np.ndenumerate(a):
print index, x

(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4
Methods
next

Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate(a):

. if sum(i)%5 == 0: print i, val
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

~

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy .broadcast
Produce an object that mimics broadcasting.

1.5. Standard array subclasses 253

NumPy Reference, Release 1.6.0

Parameters
inl, in2, ... : array_like

Input parameters.

Returns
b : broadcast object

Broadcast the input parameters against one another, and return an object that encapsu-
lates the result. Amongst others, it has shape and nd properties, and may be used as
an iterator.

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array([[1], [2], [311)
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast (x, y)

>>> out = np.empty (b.shape)

>>> out.flat = [u+v for (u,v) in Db]
>>> out
array ([[5., 6., 7.1,

[6., 7., 8.1,

[7., 8., 9.11)

Compare against built-in broadcasting:

>>> x + y
array ([[5, 6, 71,

[6 14 7 14 8] r
[7, 8, 911)
Methods
next
reset

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes
N objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the
broadcasted result.

>>> for val in broadcast ([[1,0],[2,31]1,[0,1]):
ce print val

(1, 0)

(0, 1)

(2, 0)

(3, 1)

1.6 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

254 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

1.6.1 The numpy.ma module

Rationale

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor
may have failed to record a data, or recorded an invalid value. The numpy . ma module provides a convenient way to
address this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy . ndarray and a mask. A mask is either noma sk, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).

The package ensures that masked entries are not used in computations.
As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1l, 2, 3, -1, 5])

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean ()
2.75

The numpy . ma module

The main feature of the numpy . ma module is the MaskedArray class, which is a subclass of numpy .ndarray.
The class, its attributes and methods are described in more details in the MaskedArray class section.

The numpy . ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

>>> y = ma.array([1l, 2, 3], mask = [0, 1, O])

To create a masked array where all values close to 1.e20 are invalid, we would do:

>>> z = masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1.6. Masked arrays 255

NumPy Reference, Release 1.6.0

1.6.2 Using numpy.ma
Constructing masked arrays

There are several ways to construct a masked array.
* A first possibility is to directly invoke the MaskedArray class.

* A second possibility is to use the two masked array constructors, array and masked_array.

array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
masked_array An array class with possibly masked values.

numpy .ma .array (data, dtype=None, copy=False, order=False, mask=False, fill_value=None,

keep_mask=True, hard_mask="False, shrink=True, subok="True, ndmin=0)
An array class with possibly masked values.

Masked values of True exclude the corresponding element from any computation.
Construction:

x = MaskedArray (data, mask=nomask, dtype=None,
copy=False, subok=True, ndmin=0, fill_value=None,
keep_mask=True, hard_mask=None, shrink=True)

Parameters
data : array_like

Input data.
mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same shape as data. True
indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output. If dtype is None, the type of the data argument (data.dtype)
is used. If drype is not None and different from data .dtype, a copy is performed.

copy : bool, optional
Whether to copy the input data (True), or to use a reference instead. Default is False.
subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a plain MaskedArray.
Default is True.

ndmin : int, optional
Minimum number of dimensions. Default is 0.
fill_value : scalar, optional

Value used to fill in the masked values when necessary. If None, a default based on the
data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any (True), or to use only
mask for the output (False). Default is True.

hard_mask : bool, optional

256 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Whether to use a hard mask or not. With a hard mask, masked values cannot be un-

masked. Default is False.

shrink : bool, optional

Whether to force compression of an empty mask. Default is True.

numpy .ma .masked_array
alias of MaskedArray

* A third option is to take the view of an existing array. In that case, the mask of the view is set to nomask if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([1l, 2, 31])
>>> x.view (ma.MaskedArray)
masked_array(data = [1 2 3],
mask = False,
fill_value = 999999)

>>> x = np.array ([(1, 1.), (2, 2.

>>> x.view(ma.MaskedArray)

masked_array(data = [(1, 1.0) (2,
mask = [(False,
fill_value = (999999,
dtype = [("a’, ’'<id’"),

False
le+20

)1, dtype=[("a’,int), ('b’, float)])
2.0)1,
) (False, False)],
)/
("b", "<£8")1)

* Yet another possibility is to use any of the following functions:

asarray(al, dtype, order])
asanyarray(al, dtype])
fix_invalid(a[, mask, copy, fill_value])

masked_equal(x, value[, copy])
masked_greater(x, value[, copy])
masked_greater_equal(x, valuel,
copyl)

masked_inside(x, vl, v2[, copy])
masked_invalid(a[, copy])
masked_less(x, value[, copy])
masked_less_equal(x, value[, copy])
masked_not_equal(x, value[, copy])
masked_object(x, value[, copy, shrink])
masked_outside(x, vl, v2[, copy])
masked_values(x, value[, rtol, atol,

copy, -..])
masked_where(condition, a[, copy])

Convert the input to a masked array of the given data-type.
Convert the input to a masked array, conserving subclasses.
Return input with invalid data masked and replaced by a fill
value.

Mask an array where equal to a given value.

Mask an array where greater than a given value.

Mask an array where greater than or equal to a given value.

Mask an array inside a given interval.

Mask an array where invalid values occur (NaNs or infs).
Mask an array where less than a given value.

Mask an array where less than or equal to a given value.
Mask an array where not equal to a given value.

Mask the array x where the data are exactly equal to value.
Mask an array outside a given interval.

Mask using floating point equality.

Mask an array where a condition is met.

numpy .ma .asarray (a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray, a base class

MaskedArray is returned.

Parameters
a: array_like

Input data, in any form that can be converted to a masked array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype : dtype, optional

1.6. Masked arrays

257

NumPy Reference, Release 1.6.0

By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

Masked array interpretation of a.

See Also:

asanyarray
Similar to asarray, but conserves subclasses.

Examples
>>> x = np.arange (10.) .reshape (2, 5)
>>> X
array ([[O., 1., 2., 3.,]

4.1,
[5., 6., 7., 8., 9.11)
>>> np.ma.asarray (x)
masked_array(data =
[(r 0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.11,
mask =
False,
fill value = 1le+20)
>>> type (np.ma.asarray(x))
<class ’'numpy.ma.core.MaskedArray’>

numpy .ma .asanyarray (a, dtype=None)

Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an
ndarray.

Parameters
a: array_like

Input data, in any form that can be converted to an array.
dtype : dtype, optional

By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

MaskedArray interpretation of a.
See Also:

asarray
Similar to asanyarray, but does not conserve subclass.

258 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
>>> X = np.arange
>>> X
array ([[O., 1.,

[5., 6.,

(10.) .reshape (2, 5)

2., 3., 4.1,
7., 8., 9.11)

>>> np.ma.asanyarray (x)

masked_array (data

((0. 1. 2. 3.

[5. 6. 7. 8.
mask

False,
fill_value

9.11,

= 1le+20)

>>> type (np.ma.asanyarray (x))

<class

"numpy.ma.core.MaskedArray’ >

numpy .ma . £ix_invalid (a, mask=False, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.

Parameters
a: array_like

Input array, a (subclass of) ndarray.

copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False). Default is True.

fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which casethe a.fill_value

is used.

Returns
b : MaskedArray

The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples
>>> x = np.ma.array([l., -1, np.nan, np.inf], mask=[1] + [0]=*3)
>>> x
masked_array(data = [-— -1.0 nan inf],

mask
fill value

= [True False False False],

= 1le+20)

>>> np.ma.fix_invalid(x)

masked_array (data
mask
fill_value

>>> fixed = np.ma
>>> fixed.data
array ([

1.00000000e+00,

= [—— -1
= [True
= 1le+20)

0 == =1,

False True True],

.fix_invalid(x)

-1.00000000e+00, 1.00000000e+20,

1.00000000e+207)

>>> x.data

array ([1., -1.

, NaN,

Inf])

1.6.

Masked arrays

259

NumPy Reference, Release 1.6.0

numpy .ma .masked_equal (x, value, copy=True)
Mask an array where equal to a given value.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays,
consider using masked_values (x, value).

See Also:
masked_where
Mask where a condition is met.

masked values
Mask using floating point equality.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a

array ([0, 1, 2, 31)
>>> ma.masked_equal (a, 2)
masked_array(data = [0 1 —-— 37,
mask = [False False True False],
fill_value=999999)

numpy .ma .masked_greater (x, value, copy=True)
Mask an array where greater than a given value.
This function is a shortcut to masked_where, with condition = (x > value).
See Also:

masked where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a3

array ([0, 1, 2, 31)
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 —-1,
mask = [False False False True],
fill_value=999999)

numpy .ma .masked_greater_equal (x, value, copy=True)
Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x >= value).

See Also:

masked where
Mask where a condition is met.

Examples

260 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> import numpy.ma as ma

>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)

>>> ma.masked_greater_equal (a, 2)

masked_array(data = [0 1 —— ——1,
mask = [False False
fill_value=999999)

True True],

numpy .ma .masked_inside (x, v1, v2, copy=True)
Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (vl <= x <= v2).

The boundaries v/ and v2 can be given in either order.

See Also:

masked where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 —— —— -0.4 -1.17,
mask = [False False True True False False],
fill _value=1le+20)
The order of vI and v2 doesn’t matter.
>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 —— -——-— -0.4 -1.1],
mask = [False False True True False False],

fill_value=1le+20)

numpy .ma .masked_invalid (a, copy=True)
Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask
is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types),

but accepts any array_like object.

See Also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.arange (5, dtype=np.float)
>>> af[2] = np.NaN

>>> a[3] = np.PINF

>>> a3

1.6. Masked arrays

261

NumPy Reference, Release 1.6.0

array ([0., 1., NaN, Inf, 4.7)
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 —— —— 4.0],
mask = [False False True True False],

fill_value=1e+20)

numpy .ma .masked_1less (x, value, copy=True)

Mask an array where less than a given value.

This function is a shortcut to masked_where, with condition = (x < value).

See Also:

masked where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a3

array ([0, 1, 2, 31)
>>> ma.masked_less (a, 2)
masked_array(data = [-— —— 2 3],
mask = [True True False False],
fill_value=999999)

numpy .ma .masked_less_equal (x, value, copy=True)

Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x <= value).

See Also:

masked_where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> 3

array ([0, 1, 2, 31)
>>> ma.masked_less_equal (a, 2)
masked_array(data = [-— -—- —— 37,
mask = [True True True False],
fill_value=999999)

numpy .ma .masked_not_equal (x, value, copy=True)

Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with condition = (x != value).

See Also:

masked_where
Mask where a condition is met.

262

Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> import numpy.ma as ma

>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)

>>> ma.masked_not_equal (a, 2)

masked_array(data = [-— -—— 2 -1,
mask = [True True False True],
fill_value=999999)

numpy .ma .masked_obiject (x, value, copy=True, shrink=True)

Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use

masked_values instead.

Parameters
x : array_like

Array to mask

value : object
Comparison value

copy : {True, False}, optional
Whether to return a copy of x.

shrink : {True, False}, optional

Whether to collapse a mask full of False to nomask

Returns
result : MaskedArray

The result of masking x where equal to value.
See Also:
masked where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

masked values
Mask using floating point equality.

Examples

>>> import numpy.ma as ma

>>> food = np.array([’green_eggs’, ’"'ham’], dtype=object)

>>> # don’t eat spoiled food

>>> eat = ma.masked_object (food, ’'green_eggs’)

>>> print eat
[-= ham]
>>> # plain ol‘ ham is boring

>>> fresh_food = np.array ([’ cheese’, "ham’, ’'pineapple’],

>>> eat = ma.masked_object (fresh_food,
>>> print eat
[cheese ham pineapple]

"green_eggs’)

dtype=object)

1.6.

Masked arrays

263

NumPy Reference, Release 1.6.0

Note that mask is set to nomask if possible.

>>> eat

masked_array (data = [cheese ham pineapple],
mask = False,
fill value=?)

numpy .ma .masked_outside (x, vI, v2, copy=True)
Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v])I(x > v2).
The boundaries v/ and v2 can be given in either order.

See Also:
masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-— -- 0.01 0.2 —— —-],
mask = [True True False False True True]l,
fill_value=1e+20)

The order of v/ and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [--— -- 0.01 0.2 -—— —-],
mask = [True True False False True Truel,
fill value=1le+20)

numpy .ma .masked_values (x, value, rtol=1.0000000000000001e-05, atol=1e-08, copy=True,

shrink=True)
Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, i.e. where the
following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if possible. For integers, consider using
masked_equal.

Parameters
x : array_like

Array to mask.
value : float
Masking value.
rtol : float, optional
Tolerance parameter.

atol : float, optional

264 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Tolerance parameter (1e-8).
copy : bool, optional
Whether to return a copy of x.
shrink : bool, optional
Whether to collapse a mask full of False to nomask.

Returns
result : MaskedArray

The result of masking x where approximately equal to value.

See Also:

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 31)
>>> ma.masked_values (x, 1.1)
masked_array(data = [1.0 -—— 2.0 —— 3.0],
mask = [False True False True False],
fill value=1.1)

Note that mask is set to nomask if possible.

1.5)

>>> ma.masked_values (x,
1. 1.1 2. 1.1 3.1,

(x
masked_array(data = [
mask = False,

fill value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange (5)

>>> x

array ([0, 1, 2, 3, 41)

>>> ma.masked_values (x, 2)

masked_array(data = [0 1 -—- 3 47,
mask = [False False True False False],
fill value=2)

>>> ma.masked_equal (x, 2)

masked_array(data = [0 1 -—- 3 4],
mask = [False False True False False],
fill_value=999999)

numpy .ma .masked_where (condition, a, copy=True)
Mask an array where a condition is met.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked
in the output.

Parameters
condition : array_like

Masked arrays 265

NumPy Reference, Release 1.6.0

Masking condition. When condition tests floating point values for equality, consider

using masked_values instead.
a: array_like
Array to mask.

copy : bool

If True (default) make a copy of a in the result. If False modify a in place and return a

View.

Returns
result : MaskedArray

The result of masking a where condition is True.
See Also:
masked values
Mask using floating point equality.

masked_equal
Mask where equal to a given value.

masked_not_equal
Mask where not equal to a given value.

masked less_equal
Mask where less than or equal to a given value.

masked_greater_equal
Mask where greater than or equal to a given value.

masked_less
Mask where less than a given value.

masked_greater
Mask where greater than a given value.

masked_inside
Mask inside a given interval.

masked outside
Mask outside a given interval.

masked_invalid
Mask invalid values (NaNs or infs).

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a

array ([0, 1, 2, 31)
>>> ma.masked_where (a <= 2, a)
masked_array(data = [-— —— —— 31,
mask = [True True True False],
fil1l_value=999999)

Mask array b conditional on a.

266 Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

>>> b = ["a’, 'b’, 'c’, 'd"]
>>> ma.masked_where(a == 2, Db)
masked_array(data = [a b —— dJ,

mask = [False False True False],

fill _value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)

>>> ¢

masked_array(data = [-— —— —— 31,
mask = [True True True False],
fill_value=999999)

>>> ¢c[0] = 99

>>> ¢

masked_array(data = [99 ——- —— 37,
mask = [False True True False],

fill_value=999999)
>>> a
array ([0, 1, 2, 31)
>>> ¢ = ma.masked_where(a <= 2, a, copy=False)

>>> c[0] = 99
>>> ¢
masked_array (data = [99 -- -- 3],
mask = [False True True False]l,

fil1l_value=999999)
>>> a
array ([99, 1, 2, 31)

When condition or a contain masked values.

>>> a = np.arange (4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data = [0 1 —— 37,
mask = [False False True False],
fill_value=999999)
>>> b = np.arange (4)
>>> b = ma.masked_where (b == 0, Db)
>>> Db
masked_array(data = [-— 1 2 37,
mask = [True False False False],
fill _value=999999)
>>> ma.masked_where (a == 3, b)
masked_array(data = [-—— 1 —— ——-1,
mask = [True False True Truel,

fill_value=999999)

Accessing the data

The underlying data of a masked array can be accessed in several ways:

* through the data attribute. The output is a view of the array as a numpy . ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

e throughthe _ array__ method. The output is then a numpy . ndarray.

* by directly taking a view of the masked array as a numpy .ndarray or one of its subclass (which is actually
what using the data attribute does).

1.6. Masked arrays 267

NumPy Reference, Release 1.6.0

* by using the getdata function.

None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule,
where a representation of the array is required without any masked entries, it is recommended to fill the array with the
filled method.

Accessing the mask

The mask of a masked array is accessible through its mask attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.

Another possibility is to use the getmask and getmaskarray functions. getmask (x) outputs the mask of x if
x is a masked array, and the special value nomask otherwise. getmaskarray (x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with
as many elements as x.

Accessing only the valid entries
To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be
calculated with the numpy . logical_not function or simply with the ~ operator:

>>> x = ma.array([[1l, 2], [3, 4]], mask=[[0, 1], [1, O]])
>>> x[~x.mask]

masked_array (data = [1 4],
mask = [False False],
fill_value = 999999)

Another way to retrieve the valid data is to use the compressed method, which returns a one-dimensional ndarray
(or one of its subclasses, depending on the value of the baseclass attribute):

>>> x.compressed ()
array ([1, 41])

Note that the output of compressed is always 1D.

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special
value masked to them:

>>> x = ma.array([1l, 2, 31)
>>> x[0] = ma.masked
>>> x
masked_array(data = [-— 2 3],
mask = [True False False],
fill_value = 999999)
>>> y = ma.array ([[1, 2, 31, [4, 5, 61, [7, 8, 911)
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array (data =
[[1 -- 3]
[4 5 —-]
[-—— 8 911,

mask

268 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

[[False True False]
[False False True]
[True False Falsel],
fill_value = 999999)
>>> z = ma.array([1l, 2, 3, 4])
>>> z[:-2] = ma.masked
>>> 7z
masked_array(data = [-— -- 3 4],
mask = [True True False False],
fill_value 999999)

A second possibility is to modify the mask directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the
special value noma sk, that corresponds roughly to the boolean False. Trying to set an element of noma sk will fail
with a TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> x = ma.array([l, 2, 3], mask=[0, 0, 1])

>>> x.mask = True
>>> x
masked_array(data = [-—— —— ——1,
mask = [True True Truel,

fill value 999999)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans:

>>> x = ma.array([1l, 2, 31)
>>> x.mask = [0, 1, 0]
>>> x
masked_array(data = [1 —-- 3],
mask = [False True False],

fill value = 999999)

Unmasking an entry
To unmask one or several specific entries, we can just assign one or several new valid values to them:

>>> x = ma.array([l, 2, 31, mask=[0, O, 17])

>>> x
masked_array(data = [1 2 —-],
mask = [False False True],
fill_value = 999999)
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],
mask = [False False False],

fill value = 999999)

Note: Unmasking an entry by direct assignment will silently fail if the masked array has a hard mask, as shown by
the hardmask attribute. This feature was introduced to prevent overwriting the mask. To force the unmasking of an
entry where the array has a hard mask, the mask must first to be softened using the soften_mask method before the
allocation. It can be re-hardened with harden mask:

>>> x = ma.array([1l, 2, 3], mask=[0, 0, 1], hard_mask=True)
>>> x
masked_array(data = [1 2 —-],
mask = [False False True],
fill_value = 999999)

1.6. Masked arrays 269

http://docs.python.org/dev/library/exceptions.html#TypeError

NumPy Reference, Release 1.6.0

>>> x[-1] = 5
>>> x
masked_array(data = [1 2 —-],
mask = [False False True],

fill_value = 999999)
>>> x.soften_mask ()
>>> x[-1] = 5

>>> x
masked_array(data = [1 2 5],
mask = [False False False],

fill_value = 999999)
>>> x.harden_mask ()

To unmask all masked entries of a masked array (provided the mask isn’t a hard mask), the simplest solution is to
assign the constant nomask to the mask:

>>> x = ma.array([l, 2, 3], mask=[0, O, 17])
>>> x
masked_array(data = [1 2 —--],
mask = [False False True],
fill_value = 999999)
>>> x.mask = ma.nomask
>>> x
masked_array(data = [1 2 3],
mask = [False False False],

fill value = 999999)

Indexing and slicing

As aMaskedArray is a subclass of numpy . ndarray, it inherits its mechanisms for indexing and slicing.

When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding
entry of the mask is False) or the special value masked (if the corresponding entry of the mask is True):

>>> x = ma.array([l, 2, 3], mask=[0, 0, 17])

>>> x[0]

1

>>> x[-1]

masked_array (data = ——,
mask = True,

fill _value = 1e+20)
>>> x[-1] is ma.masked
True

If the masked array has named fields, accessing a single entry returns a numpy . void object if none of the fields are
masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.

>>> y = ma.masked_array ([(1,2), (3, 4)1,
mask=[(0, 0), (0, 1)1,

C.. dtype=[("a’, int), ('b’, int)])
>>> y[0]

(1, 2)
>>> y[-1]
masked_array (data = (3, —-),
mask = (False, True),
fill_value = (999999, 999999),
dtype = [("a’, ’'<i4"), ('b’, "'<id’")])

270 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

When accessing a slice, the output is a masked array whose dat a attribute is a view of the original data, and whose
mask is either nomask (if there was no invalid entries in the original array) or a copy of the corresponding slice of the
original mask. The copy is required to avoid propagation of any modification of the mask to the original.

>>> x = ma.array([1l, 2, 3, 4, 5], mask=[0, 1, O, 0, 11)

>>> mx = x[:3]
>>> mx
masked_array (data = [1 -- 3],
mask = [False True False],
fill_value = 999999)
>>> mx[1] = -1
>>> mx
masked_array(data = [1 -1 3],
mask = [False True False],

fill_value = 999999)
>>> x.mask
array ([False, True, False, False, True], dtype=bool)
>>> x.data
array ([1, -1, 3, 4, 57)

Accessing a field of a masked array with structured datatype returns a MaskedArray.

Operations on masked arrays

Arithmetic and comparison operations are supported by masked arrays. As much as possible, invalid entries of a
masked array are not processed, meaning that the corresponding dat a entries should be the same before and after the
operation.

Warning: We need to stress that this behavior may not be systematic, that masked data may be affected by the
operation in some cases and therefore users should not rely on this data remaining unchanged.

The numpy . ma module comes with a specific implementation of most ufuncs. Unary and binary functions that have a
validity domain (such as 1 og or divide) return the masked constant whenever the input is masked or falls outside
the validity domain:

>>> ma.log([-1, 0, 1, 21)
masked_array(data = [-— —— 0.0 0.69314718056],
mask [True True False False],

fill value = 1e+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is
masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If
the ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments
and its domain), the context is processed and entries of the output masked array are masked wherever the corresponding
input fall outside the validity domain:

>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, O, O, 0, 11)
>>> np.log(x)
masked_array (data [-— —— 0.0 0.69314718056 —-1,
mask = [True True False False True],
fill_value = 1le+20)

1.6. Masked arrays 271

NumPy Reference, Release 1.6.0

1.6.3 Examples

Data with a given value representing missing data

Let’s consider a list of elements, x, where values of -9999. represent missing data. We wish to compute the average
value of the data and the vector of anomalies (deviations from the average):

>>> import numpy.ma as ma

>>> x = [0.,1.,-9999.,3.,4.]

>>> mx = ma.masked_values (x, —-9999.)
>>> print mx.mean ()

2.0

>>> print mx - mx.mean ()

[-2.0 -1.0 == 1.0 2.0]

>>> print mx.anom()

[-2.0 -1.0 —— 1.0 2.0]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print mx.filled (mx.mean())
[0. 1. 2. 3. 4.]

Numerical operations
Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots
of negative numbers, etc.:

>>> import numpy as np, numpy.ma as ma

>>> x = ma.array([(l., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,01)
>>> y = ma.array([l., 2., 0., 4., 5., 6.1, mask=[0,0,0,0,0,11)
>>> print np.sqrt (x/y)

[1.0 —— —— 1.0 —— —-]

Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second
from the division by zero, and the last two where the inputs were masked.

Ignoring extreme values
Let’s consider an array d of random floats between 0 and 1. We wish to compute the average of the values of d while
ignoring any data outside the range [0.1, 0.9]:

>>> print ma.masked_outside(d, 0.1, 0.9).mean()

1.6.4 Constants of the numpy .ma module

In addition to the MaskedArray class, the numpy . ma module defines several constants.

numpy .ma .masked
The masked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to
test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

272 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x = ma.array([l, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked

True
>>> x[-1] = ma.masked
>>> x
masked_array(data = [1 —— ——-1,
mask = [False True True],

fill _value = 999999)

numpy .ma.nomask
Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations
when the mask is not needed.

numpy .ma .masked_print_options
String used in lieu of missing data when a masked array is printed. By default, this stringis " ——".

1.6.5 The MaskedArray class

class numpy .ma .MaskedArray

A subclass of ndarray designed to manipulate numerical arrays with missing data.
An instance of MaskedArray can be thought as the combination of several elements:
e The data, as a regular numpy . ndarray of any shape or datatype (the data).

* A boolean mask with the same shape as the data, where a True value indicates that the corresponding element
of the data is invalid. The special value noma sk is also acceptable for arrays without named fields, and indicates
that no data is invalid.

e A fill_value, a value that may be used to replace the invalid entries in order to return a standard
numpy .ndarray.

Attributes and properties of masked arrays

See Also:
Array Attributes

MaskedArray.data
Returns the underlying data, as a view of the masked array. If the underlying data is a subclass of
numpy .ndarray, it is returned as such.

>>> x = ma.array(np.matrix([[1, 2], [3, 411), mask=[[0, 1], [1, O011)
>>> x.data
matrix ([[1, 21,

[3, 411)

The type of the data can be accessed through the baseclass attribute.

MaskedArray.mask
Returns the underlying mask, as an array with the same shape and structure as the data, but where all fields are
atomically booleans. A value of True indicates an invalid entry.

MaskedArray.recordmask
Returns the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans
where entries are True if all the fields are masked, False otherwise:

1.6. Masked arrays 273

NumPy Reference, Release 1.6.0

>>> x = ma.array ([(1, 1), (2, 2), (3, 3), (4, 4), (5, 51,
mask=[(0, O0), (1, 0), (1, 1), (O, 1), (0, O0)1,

. dtype=[("a’, int), ('b’, int)])

>>> x.recordmask

array ([False, False, True, False, False], dtype=bool)

MaskedArray.fill_value
Returns the value used to fill the invalid entries of a masked array. The value is either a scalar (if the masked
array has no named fields), or a 0-D ndarray with the same dt ype as the masked array if it has named fields.

The default filling value depends on the datatype of the array:

datatype default
bool True

int 999999
float 1.20
complex 1.e20+0j
object “r

string ‘N/IA

MaskedArray.baseclass
Returns the class of the underlying data.

>>> x = ma.array(np.matrix([[1, 2], [3, 4]11), mask=[[0, 0], [1, 0O11)
>>> x.baseclass
<class 'numpy.matrixlib.defmatrix.matrix’>

MaskedArray.sharedmask
Returns whether the mask of the array is shared between several masked arrays. If this is the case, any modifi-
cation to the mask of one array will be propagated to the others.

MaskedArray.hardmask
Returns whether the mask is hard (True) or soft (False). When the mask is hard, masked entries cannot be
unmasked.

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a
ndarray instance.

MaskedArray.base Base object if memory is from some other object.

MaskedArray.ctypes An object to simplify the interaction of the array with the ctypes
module.

MaskedArray.dtype Data-type of the array’s elements.

MaskedArray.flags Information about the memory layout of the array.

MaskedArray.itemsize Length of one array element in bytes.

MaskedArray.nbytes Total bytes consumed by the elements of the array.

MaskedArray.ndim Number of array dimensions.

MaskedArray.shape Tuple of array dimensions.

MaskedArray.size Number of elements in the array.

MaskedArray.strides Tuple of bytes to step in each dimension when traversing an array.

MaskedArray.imag Imaginary part.

MaskedArray.real Real part

MaskedArray.flat Flat version of the array.

MaskedArray.__array_priority_

MaskedArray.base
Base object if memory is from some other object.

274 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

MaskedArray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None :

Returns
¢ : Python object

Possessing attributes data, shape, strides, etc.
See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

edata: A pointer to the memory area of the array as a Python integer. This memory area may contain data
that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_[’data’][0].

eshape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype(‘p’) on this platform. This base-type could be c_int, c_long, or c_longlong depending
on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the
shape of the underlying array.

estrides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the

shape attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

edata_as(obj): Return the data pointer cast to a particular c-types object. For example, calling
self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as
a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

eshape_as(obj): Return the shape tuple as an array of some other c-types type. For example:
self.shape_as(ctypes.c_short).

estrides_as(obj): Return the strides tuple as an array of some other c-types type. For example:
self.strides_as(ctypes.c_longlong).

1.6. Masked arrays 275

NumPy Reference, Release 1.6.0

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For
example, calling (a+b) .ctypes.data_as (ctypes.c_void_p) returns a pointer to memory that is
invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this
problem using either c=a+b or ct= (a+b) .ctypes. In the latter case, ct will hold a reference to the array
until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but
ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as
parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 11,
(2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at O0xOlFFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x0lFCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

MaskedArray.dtype
Data-type of the array’s elements.

Parameters
None :

Returns
d : numpy dtype object

See Also:

numpy .dtype

Examples

>>> x
array ([[0, 17,

(2, 311
>>> x.dtype
dtype (' int32")
>>> type (x.dtype)
<type ’numpy.dtype’>

MaskedArray.flags
Information about the memory layout of the array.

276 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Notes

The flags object can be accessed dictionary-like (as in a.flags [/ WRITEABLE']), or by using lowercased
attribute names (asin a. flags.writeable). Short flag names are only supported in dictionary access.

Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct assign-
ment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
*UPDATEIFCOPY can only be set False.
*ALIGNED can only be set True if the data is truly aligned.

*WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Attributes

MaskedArray.itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1,2,3], dtype=np.complexl128)
>>> x.itemsize

16

MaskedArray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl128)
>>> x.nbytes

480

>>> np.prod(x.shape) *» x.itemsize

480

MaskedArray.ndim
Number of array dimensions.

Examples

>>> x = np.array([1l, 2, 31)
>>> x.ndim

1

>>> y = np.zeros((2, 3, 4))
>>> y.ndim

3

MaskedArray.shape
Tuple of array dimensions.

1.6. Masked arrays 277

NumPy Reference, Release 1.6.0

Notes

May be used to “reshape” the array, as long as this would not require a change in the total number of elements

Examples
>>> x = np.array([1l, 2, 3, 41)
>>> x.shape
(4,)

>>> y = np.zeros((2, 3, 4))
>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array([[0., ©0., 0., 0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0., 0., 0., 0.1,
r o., 0., 0., 0., 0., 0., 0., 0.1D1)

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged

MaskedArray.size

Number of elements in the array.

Equivalent to np.prod (a.shape), i.e., the product of the array’s dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

MaskedArray.strides

Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element (1 [0], i[1], ..., i[n]) inanarrayais:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:

numpy.lib.stride_tricks.as_strided

Notes
Imagine an array of 32-bit integers (each 4 bytes):

X = np.array([([0, 1, 2, 3, 41,
[5, 6! T, 8/ 9}], dtype:np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

278

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> y = np.reshape (np.arange (2+x3%4), (2,3,4))
>>> vy
array ([[[O, 1, 2, 3
4, 5, 6, 1
[8 9, 10, 11
[[12, 13, 14, 15

[16, 17, 18, 197,

[20, 21, 22, 23111)
>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange (5x6%«7%x8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)

>>> i = np.array(I[3,5,2,2])

>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]

813

>>> offset / x.itemsize

813

MaskedArray.imag
Imaginary part.

MaskedArray.real
Real part

MaskedArray.flat
Flat version of the array.

1.6.6 MaskedArray methods

See Also:

Array methods

1.6. Masked arrays 279

NumPy Reference, Release 1.6.0

Conversion
MaskedArray._ float_ () Convert to float.
MaskedArray._ hex_ () <==>hex(x)
MaskedArray.__int_ () Convert to int.

MaskedArray.__long__ () <==>long(x)
MaskedArray.__oct__ () <==>oct(x)

MaskedArray.view(dtype=None[, type]) New view of array with the same data.
MaskedArray.astype(newtype) Returns a copy of the MaskedArray cast to given newtype.
MaskedArray.byteswap(inplace) Swap the bytes of the array elements
MaskedArray.compressed() Return all the non-masked data as a 1-D array.
MaskedArray.filled(fill_value=None) Return a copy of self, with masked values filled with a given
value.
MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
MaskedArray.toflex() Transforms a masked array into a flexible-type array.
MaskedArray.tolist(fill_value=None) Return the data portion of the masked array as a hierarchical
Python list.
MaskedArray.torecords() Transforms a masked array into a flexible-type array.
MaskedArray.tostring(fill_value=None[, Return the array data as a string containing the raw bytes in
order]) the array.

MaskedArray._ _float_ ()
Convert to float.

MaskedArray._ _hex () <==> hex(x)

MaskedArray.__int_ ()
Convert to int.

MaskedArray.__long__ () <==> long(x)

MaskedArray.__oct__ () <==> oct(x)

MaskedArray.view (dtype=None, type=None)
New view of array with the same data.

Parameters
dtype : data-type, optional

Data-type descriptor of the returned view, e.g., float32 or int16. The default, None,
results in the view having the same data-type as a.

type : Python type, optional

Type of the returned view, e.g., ndarray or matrix. Again, the default None results in
type preservation.

Notes
a.view () isused two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view (type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

280 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> x = np.array([(1, 2)], dtype=[("a’, np.int8), ('b’, np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print type (y)

<class ’"numpy.matrixlib.defmatrix.matrix’>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[("a’, np.int8), ('b’, np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)

>>> XV

array ([[1, 2],
[3, 4]1], dtype=int8)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a

array ([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

MaskedArray.astype (newtype)
Returns a copy of the MaskedArray cast to given newtype.

Returns
output : MaskedArray

A copy of self cast to input newtype. The returned record shape matches self.shape.

Examples

>>> x = np.ma.array([[1,2,3.1],14,5,61,07,8,9]1], mask=[0] + [1,0]%4)
>>> print x
[[1.0 —— 3.1]
[-—— 5.0 ——]
[7.0 —— 9.011
>>> print x.astype (int32)
[[1 —— 3]

MaskedArray .byteswap (inplace)
Swap the bytes of the array elements

1.6. Masked arrays 281

NumPy Reference, Release 1.6.0

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place.

Parameters
inplace: bool, optional :

If True, swap bytes in-place, defaultis False.

Returns
out: ndarray :

The byteswapped array. If inplace is True, this is a view to self.
Examples

>>> A = np.array([1l, 256, 8755], dtype=np.intl6)
>>> map (hex, A)

[70x1", "0x100", ’'0x2233"]

>>> A.byteswap (True)

array ([256, 1, 13090], dtype=intl6)
>>> map (hex, A)

[70x100", "0x1", ’'0x3322"]

Arrays of strings are not swapped

>>> A = np.array([’'ceg’, ’"fac’])

>>> A.byteswap ()

array ([’ceg’, ’'fac’],
dtype=’|S5S3")

MaskedArray.compressed ()
Return all the non-masked data as a 1-D array.

Returns
data : ndarray

A new ndarray holding the non-masked data is returned.
Notes

The result is not a MaskedArray!

Examples

>>> X

np.ma.array(np.arange(5), mask=[0]*2 + [1]%3)
>>> x.compressed ()

array ([0, 117)

>>> type (x.compressed())

<type ’numpy.ndarray’>

MaskedArray.filled (fill_value=None)
Return a copy of self, with masked values filled with a given value.

Parameters

fill_value : scalar, optional

The value to use for invalid entries (None by default). If None, the fill_value attribute
of the array is used instead.

Returns
filled_array : ndarray

282 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A copy of self with invalid entries replaced by fill_value (be it the function argument
or the attribute of self.
Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], f£ill value=-999)
>>> x.filled()

array ([1l, 2, =999, 4, -9991])

>>> type(x.filled())

<type ’numpy.ndarray’>

Subclassing is preserved. This means that if the data part of the masked array is a matrix, filled returns a matrix:

>>> x = np.ma.array(np.matrix([[1, 2], [3, 41]1), mask=[[0, 1], [1, 011])
>>> x.filled()
matrix ([[1, 999999],

[999999, 411)

MaskedArray.tofile (fid, sep="", format="%s’)
Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

Raises
NotImplementedError :

When rofile is called.

MaskedArray.toflex ()
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:
*the _data field stores the _data part of the array.

°the _mask field stores the _mask part of the array.

Parameters
None :

Returns
record : ndarray

A new flexible-type ndarray with two fields: the first element containing a value, the
second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (f111_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,31,104,5,6]1,[7,8,911, mask=[0] + [1,0]%4)
>>> print x
[[1r —— 31

1.6. Masked arrays 283

NumPy Reference, Release 1.6.0

[-—— 5 ——]
[7 —— 91]
>>> print x.toflex()
[[(1, False) (2, True) (3,

False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)]]

MaskedArray.tolist (fill_value=None)

Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value. If
fill_value is None, the corresponding entries in the output list will be None.

Parameters
fill_value : scalar, optional

The value to use for invalid entries. Default is None.
Returns
result : list

The Python list representation of the masked array.
Examples

>>> X

= np.ma.array ([[1,2,3], [4,5,6],
>>> x.tolist ()

[[1, None, 3], [None, 5,
>>> x.tolist (-999)

[f1, -999, 31, [-999, 5, -999], [T,

[7,8,911, mask=[0] + [1,0]x4)

None], [7, None, 9]]

-999, 9]]
MaskedArray.torecords ()
Transforms a masked array into a flexible-type array.
The flexible type array that is returned will have two fields:
ethe _data field stores the _data part of the array.
sthe _mask field stores the _mask part of the array.
Parameters
None :

Returns
record : ndarray

A new flexible-type ndarray with two fields: the first element containing a value, the

second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (£111_value,
...) will be lost.

Examples

>>> X =

= np.ma.array ([[1,2,3],14,5,61,17,8,9]11, mask=[0] + [1,0]%4)
>>> print x
[[1 — 3]

[-= 5 -]

284

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

[7 —— 91]

>>> print x.toflex()

[[(1, False) (2, True) (3, False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)l]

MaskedArray.tostring (fill_value=None, order="C")
Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.

Parameters
fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which case MaskedAr-
ray.fill_value is used.

order : {‘C’F’A’}, optional
Order of the data item in the copy. Default is ‘C’.
e ‘C’ — C order (row major).
e ‘F’ — Fortran order (column major).
* ‘A’ — Any, current order of array.
* None — Same as ‘A’.
See Also:
ndarray.tostring,tolist,tofile
Notes
As for ndarray.tostring, information about the shape, dtype, etc., but also about fill_value, will be lost.
Examples
>>> x = np.ma.array(np.array([[1l, 2], [3, 4]11), mask=[[0, 11, [1, O]])

>>> x.tostring()
"\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00"

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

MaskedArray. flatten(order=) Return a copy of the array collapsed into one dimension.

MaskedArray.ravel() Returns a 1D version of self, as a view.

MaskedArray.reshape(¥s, **kwargs) Give a new shape to the array without changing its data.

MaskedArray.resize(newshape[, refcheck,

order])

MaskedArray.squeeze() Remove single-dimensional entries from the shape of a.

MaskedArray.swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2
interchanged.

MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

MaskedArray.T

MaskedArray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

1.6. Masked arrays 285

NumPy Reference, Release 1.6.0

Parameters
order : {‘C’, ‘F’, ‘A’}, optional
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the

C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,41])
>>> a.flatten ()

array ([1, 2, 3, 41])
>>> a.flatten (')
array ([1, 3, 2, 41])

MaskedArray.ravel ()
Returns a 1D version of self, as a view.

Returns
MaskedArray :

Output view is of shape (self.size,) (or
(np.ma.product (self.shape),)).

Examples

>>> x = np.ma.array([[1,2,31,[4,5,6]1,[7,8,911, mask=[0] + [1,0]%4)
>>> print x

[[1 —- 3]
[-—— 5 ——]
[7 —— 91]
>>> print x.ravel ()
[l ——3 —5 — 7 — 9]

MaskedArray.reshape (*s, **kwargs)
Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape. The result is a view on the original
array; if this is not possible, a ValueError is raised.

Parameters
shape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer is supplied,
then the result will be a 1-D array of that length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C (row-major) or FORTRAN
(column-major) order.

286 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
reshaped_array : array

A new view on the array.
See Also:
reshape
Equivalent function in the masked array module.

numpy . ndarray . reshape
Equivalent method on ndarray object.

numpy . reshape
Equivalent function in the NumPy module.

Notes
The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use
a.shape = s
Examples

>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])

>>> print x

[[-- 2]

(3 —=11
>>> x = x.reshape((4,1))

>>> print x
(-]

(2]
(3]
(——11]

MaskedArray.resize (newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own
its data and therefore cannot safely be resized in place. Use the numpy . ma . resize function instead.

This method is difficult to implement safely and may be deprecated in future releases of NumPy.

MaskedArray.squeeze ()
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.
See Also:

numpy . squeeze
equivalent function

MaskedArray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

1.6. Masked arrays 287

NumPy Reference, Release 1.6.0

MaskedArray.transpose (*axes)

Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a ma-
trix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order in-

dicates how the axes are permuted (see Examples). If axes are not provided and a . shape = (1[0], i[1l],
i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], 1i[n-2], ... if[11],
i[01]).
Parameters

axes : None, tuple of ints, or n ints
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a
array ([[1, 2],
(3, 411)
>>> a.transpose ()
array ([[1, 3],
(2, 411)
>>> a.transpose ((1, 0))
array ([[1, 3],
(2, 411)
>>> a.transpose (1, 0)
array ([[1, 3],
(2, 411)

MaskedArray.T

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

288

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

MaskedArray.

fill_value, out])

MaskedArray.

fill_value, out])

argmax(axis=None[,

argmin(axis=None[,

Returns array of indices of the maximum values along the
given axis.

Return array of indices to the minimum values along the given
axis.

Return an ndarray of indices that sort the array along the

Copy an element of an array to a standard Python scalar and

Return the indices of unmasked elements that are not zero.

Find indices where elements of v should be inserted in a to

MaskedArray.argsort(axis=None[, kind,
)] specified axis.
MaskedArray.choose(choices|, out, Use an index array to construct a new array from a set of
mode]) choices.
MaskedArray.compress(condition[, axis, = Return a where condition is True.
out])
MaskedArray.diagonal(offset=0[, axisl, Return specified diagonals.
axis2])
MaskedArray.fill(value) Fill the array with a scalar value.
MaskedArray.item(*args)
return it.
MaskedArray.nonzero()
MaskedArray.put(indices, values[, mode]) Set storage-indexed locations to corresponding values.
MaskedArray.repeat(repeats[, axis]) Repeat elements of an array.
MaskedArray.searchsorted(v], side])
maintain order.
MaskedArray .sort(axis=-1[, kind, order, Sort the array, in-place
)]
MaskedArray .take(indices[, axis, out,
mode])

MaskedArray.argmax (axis=None, fill_value=None, out=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis

fill_value : {var}, optional

Value used to fill

in the masked values.

If None, the output of maxi-

mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the

right shape to hold the output.

Returns
index_array : {integer_array}

Examples

>>> a =

>>> a.argmax ()

5

>>> a.argmax (0)

array([1, 1,

171)

>>> a.argmax (1)

array ([2,

21)

np.arange (6) .reshape (2, 3)

MaskedArray.argmin (axis=None, fill_value=None, out=None)
Return array of indices to the minimum values along the given axis.

1.6. Masked arrays

289

NumPy Reference, Release 1.6.0

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis
fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of mini-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

Returns
{ndarray, scalar} :

If multi-dimension input, returns a new ndarray of indices to the minimum values along
the given axis. Otherwise, returns a scalar of index to the minimum values along the
given axis.

Examples

>>> x = np.ma.array(arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> print x

[[—]

[2 311

>>> print x.argmin(axis=0, fill_value=-1)
[0 0]

>>> print x.argmin(axis=0, fill_value=9)
[1 1]

MaskedArray.argsort (axis=None, kind="quicksort’, order=None, fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
Sfill_value.

Parameters
axis : int, optional

Axis along which to sort. The default is -1 (last axis). If None, the flattened array is
used.

fill_value : var, optional

Value used to fill the array before sorting. The default is the fill_value attribute of the
input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
al[index_array] yields a sorted a.

290 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.
Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.ma.array([3,2,1], mask=[False, False, Truel)
>>> a
masked_array(data = [3 2 —-],
mask = [False False True]l,

fill_value = 999999)
>>> a.argsort ()
array ([1, 0, 21)

MaskedArray .choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.
See Also:

numpy . choose
equivalent function

MaskedArray.compress (condition, axis=None, out=None)
Return a where condition is True.
If condition is a MaskedArray, missing values are considered as False.

Parameters
condition : var

Boolean 1-d array selecting which entries to return. If len(condition) is less than the
size of a along the axis, then output is truncated to length of condition array.

axis : {None, int}, optional
Axis along which the operation must be performed.
out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
result : MaskedArray

A MaskedArray object.

1.6. Masked arrays 291

NumPy Reference, Release 1.6.0

Notes

Please note the difference with compressed ! The output of compress has a mask, the output of
compressed does not.

Examples

>>> x = np.ma.array([[1,2,31,[4,5,6]1,[7,8,911, mask=[0] + [1,0]%4)
>>> print x

[[1 -- 3]
[~ 5 —]
[7 —— 911
>>> x.compress([1l, O, 11)
masked_array(data = [1 3],
mask = [False False],

fill_value=999999)

>>> x.compress([1l, 0, 1], axis=1)
masked_array (data =
[[1 3]
[—— —]
(7 911,
mask =
[[False False]
[True True]
[False Falsel],
fill_value=999999)

MaskedArray.diagonal (offset=0, axisl=0, axis2=1)
Return specified diagonals.
Refer to numpy .diagonal for full documentation.
See Also:

numpy .diagonal
equivalent function

MaskedArray.£ill (value)
Fill the array with a scalar value.

Parameters
value : scalar

All elements of a will be assigned this value.

Examples
>>> a = np.array([1l, 21)
>>> a.fil11(0)
>>> a

array ([0, 0])

>>> a = np.empty (2)
>>> a.fill (1)

>>> a

array ([1., 1.1)

MaskedArray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

292 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (a.size == I), which
element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument is
interpreted as an nd-index into the array.

Returns
z : Standard Python scalar object

A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can
be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using
Python’s optimized math.

Examples

>>> x = np.random.randint (9, size=(3, 3))

>>> x

array ([[3, 1, 71,
(2, 8, 31,
[8, 5, 311

>>> x.item(3)

2

>>> x.item(7)

5

>>> x.item((0, 1))

1

>>> x.item((2, 2))

3

MaskedArray.nonzero ()

Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

ala.nonzero ()]

To group the indices by element, rather than dimension, use instead:

np.transpose (a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None :

Returns
tuple_of_arrays : tuple

1.6.

Masked arrays 293

NumPy Reference, Release 1.6.0

Indices of elements that are non-zero.

See Also:

numpy . nonzero
Function operating on ndarrays.

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(data =
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.11,
mask

False,
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 1, 21), array ([0, 1, 21))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array (data =
[[1.0 0.0 0.0]
[0.0 —— 0.0]
[0.0 0.0 1.0171,
mask =
[[False False False]
[False True False]
[False False False]],
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose (x.nonzero())
array ([[0, 0],
(2, 211)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array([[1,2,3],1[4,5,61,17,8,911)
>>> a > 3
masked_array (data =

294 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

[[False False False]
[True True True]
[True True Truell,
mask =
False,
fil1l_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array (1, 1, 1, 2, 2, 2]), array([O, 1, 2, 0, 1, 21))

MaskedArray .put (indices, values, mode="raise’)
Set storage-indexed locations to corresponding values.

Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat. If
values has some masked values, the initial mask is updated in consequence, else the corresponding values are
unmasked.

Parameters
indices : 1-D array_like

Target indices, interpreted as integers.
values : array_like

Values to place in self._data copy at target indices.
mode : {‘raise’, ‘wrap’, ‘clip’}, optional

Specifies how out-of-bounds indices will behave. ‘raise’ : raise an error. ‘wrap’ : wrap
around. ‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> x = np.ma.array([[1,2,3],1[4,5,6]1,107,8,9]1, mask=[0] + [1,0]%4)
>>> print x
[[1 -- 3]
[-= 5 --]
[7 == 911
>>> x.put([0,4,8],[10,20,307)
>>> print x
[[10 —— 3]
[-— 20 —-]
[7 —— 3011

>>> x.put (4,999)
>>> print x
[[10 —= 3]

[-— 999 —-]

[7 —— 3011

MaskedArray . repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

1.6. Masked arrays 295

NumPy Reference, Release 1.6.0

See Also:

numpy . repeat
equivalent function

MaskedArray.searchsorted (v, side="left’)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy . searchsorted
See Also:

numpy . searchsorted
equivalent function

MaskedArray.sort (axis=-1, kind="quicksort’, order=None, endwith=True, fill_value=None)

Sort the array, in-place

Parameters
a: array_like

Array to be sorted.
axis : int, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices (at the end of the
array) (True) or lower indices (at the beginning).

fill_value : {var}, optional

Value used internally for the masked values. If fi111_value is not None, it supersedes
endwith.

Returns
sorted_array : ndarray

Array of the same type and shape as a.
See Also:
ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

296

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

searchsorted
Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([l, 2, 5, 4, 3],mask=[0, 1, O, 1, 01)
>>> # Default

>>> a.sort ()

>>> print a

[1 35— —]

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0O, 1, 01)
>>> # Put missing values in the front

>>> a.sort (endwith=False)

>>> print a

[-—— — 1 3 5]

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01)
>>> # fill value takes over endwith

>>> a.sort (endwith=False, fill_value=3)

>>> print a

[l —— —— 3 5]

MaskedArray.take (indices, axis=None, out=None, mode="raise’)

Pickling and copy

MaskedArray.copy(order=) Return a copy of the array.
MaskedArray .dump(file) Dump a pickle of the array to the specified file.
MaskedArray.dumps() Returns the pickle of the array as a string.

MaskedArray.copy (order="C’)

Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

By default, the result is stored in C-contiguous (row-major) order in memory. If order is
F, the result has ‘Fortran’ (column-major) order. If order is ‘A’ (‘Any’), then the result
has the same order as the input.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order="F’)

>>> y = x.copy()

>>> x.£111(0)

>>> x
array ([[0, 0, O]

1.6.

Masked arrays

297

NumPy Reference, Release 1.6.0

array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags[’C_CONTIGUOUS’]
True

MaskedArray.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file : str

A string naming the dump file.

MaskedArray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters
None :

298 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Calculations

MaskedArray.
MaskedArray.

dtype])
MaskedArray

out])

MaskedArray.
MaskedArray.
. cumprod(axis=None[,

MaskedArray
dtype, out])

MaskedArray.

dtype, out])

MaskedArray.

fill_value])

MaskedArray.

dtype, out])

MaskedArray.

fill_value])

MaskedArray.

dtype, out])

MaskedArray.

dtype, out])

MaskedArray.

fill_value])

MaskedArray.

out])

MaskedArray.

out, ddof])

MaskedArray.

out])

MaskedArray.

axis2, ...])

MaskedArray.

out, ddof])

all(axis=None[, out])
anom(axis=None[,

. any(axis=None[, out])
MaskedArray.

clip(a_min, a_max],
conj()

conjugate()
cumsum(axis=None|,
ma x(axis=None[, out,
mean(axis=None[,
min(axis=None[, out,
prod(axis=None],
product(axis=None[,
ptp(axis=None[, out,
round(decimals=0[,
std(axis=None][, dtype,
sum(axis=None[, dtype,
trace(offset=0[, axis1,

var(axis=Nonel[, dtype,

Check if all of the elements of a are true.

Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Check if any of the elements of a are true.

Return an array whose values are limited to [a_min, a_max].

Complex-conjugate all elements.

Return the complex conjugate, element-wise.

Return the cumulative product of the elements along the given axis.
Return the cumulative sum of the elements along the given axis.
Return the maximum along a given axis.

Returns the average of the array elements.

Return the minimum along a given axis.

Return the product of the array elements over the given axis.
Return the product of the array elements over the given axis.
Return (maximum - minimum) along the the given dimension (i.e.
Return a with each element rounded to the given number of
decimals.

Compute the standard deviation along the specified axis.

Return the sum of the array elements over the given axis.

Return the sum along diagonals of the array.

Compute the variance along the specified axis.

MaskedArray.all (axis=None, out=None)

Check if all of the elements of a are true.

Performs a 1ogical_and over the given axis and returns the result. Masked values are considered as True
during computation. For convenience, the output array is masked where ALL the values along the current axis
are masked: if the output would have been a scalar and that all the values are masked, then the output is masked.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array.
out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See Also:

all

1.6.

Masked arrays 299

NumPy Reference, Release 1.6.0

equivalent function

mask=True)

Examples
>>> np.ma.array ([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3],
>>> (a.all() is np.ma.masked)
True

MaskedArray .anom (axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

MaskedArray .any (axis=None, out=None)

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened
array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See Also:

mean
Compute the mean of the array.

Examples

>>> a = np.ma.array([1l,2,3])

>>> a.anomf()
masked_array (data

mask
fill_value

[-1.
False,
1le+20)

0.

Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result. Masked values are considered as False during
computation.

Parameters

axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array and return a

scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See Also:

any

equivalent function

300

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

MaskedArray.eclip (a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].

Refer to numpy . c11ip for full documentation.
See Also:

numpy.clip
equivalent function

MaskedArray.conj ()
Complex-conjugate all elements.
Refer to numpy . conjugate for full documentation.
See Also:

numpy . conjugate
equivalent function

MaskedArray.conjugate ()
Return the complex conjugate, element-wise.

Refer to numpy . con jugate for full documentation.

See Also:

numpy .conjugate
equivalent function

MaskedArray .cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis. The cumulative product is taken over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the product is computed. The default (axis = None) is to compute
over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are multiplied. If dtype has the value None and the type of a is an integer type
of precision less than the default platform integer, then the default platform integer
precision is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

1.6. Masked arrays 301

NumPy Reference, Release 1.6.0

Notes
The mask is lost if out is not a valid MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

MaskedArray.cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the
flattened array by default, otherwise over the specified axis.

Masked values are set to O internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array. axis may be negative, in which case it counts from the last to the
first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumsum : ndarray.

A new array holding the result is returned unless out is specified, in which case a
reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[(0,0,0,1,1,1,0,0,0,01)
>>> print marr.cumsum()
[01 3 -— —-— -9 16 24 33]

MaskedArray.max (axis=None, out=None, fill_value=None)
Return the maximum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.
out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

302 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Value used to fill in the masked values. If None, use the output of maxi-
mum_fill_value().

Returns
amax : array_like

New array holding the result. If out was specified, out is returned.
See Also:

maximum f£ill wvalue
Returns the maximum filling value for a given datatype.

MaskedArray .mean (axis=None, dtype=None, out=None)
Returns the average of the array elements.

Masked entries are ignored. The average is taken over the flattened array by default, otherwise over the specified
axis. Refer to numpy . mean for the full documentation.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point, inputs it is the same as the input dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
numpy .ma.mean
Equivalent function.

numpy . mean
Equivalent function on non-masked arrays.

numpy .ma.average

Weighted average.
Examples
>>> a = np.ma.array([1l,2,3], mask=[False, False, Truel)
>>> a
masked_array(data = [1 2 —--],
mask = [False False True],

1.6. Masked arrays 303

NumPy Reference, Release 1.6.0

fill_value = 999999)
>>> a.mean ()
1.5

MaskedArray.min (axis=None, out=None, fill_value=None)
Return the minimum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.
out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional
Value used to fill in the masked values. If None, use the output of minimum_fill_value.

Returns
amin : array_like

New array holding the result. If out was specified, out is returned.

See Also:

minimum £ill wvalue
Returns the minimum filling value for a given datatype.

MaskedArray.prod (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dt ype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See Also:

304 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.prod([1l.,2.])
2.0
>>> np.prod([l.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.]1,[3.,4.1])
24.0
>>> np.prod([[1.,2.],[3.,4.1]1, axis=1)
array ([2., 12.1)

MaskedArray.product (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dt ype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See Also:

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> np.prod([1l.,2.])
2.0
>>> np.prod([l.,2.], dtype=np.int32)

1.6. Masked arrays 305

NumPy Reference, Release 1.6.0

2

>>> np.prod([[1.,2.],[3.,4.11)

24.0

>>> np.prod([[1.,2.]1,[3.,4.1]1, axis=l)
array ([2., 12.1)

MaskedArray .ptp (axis=None, out=None, fill_value=None)
Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value).

Parameters
axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the flattened array is used.
out : {None, array_like}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

fill_value : {var}, optional
Value used to fill in the masked values.

Returns
ptp : ndarray.

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

MaskedArray . round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.
See Also:

numpy .around
equivalent function

MaskedArray.std (axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

306 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See Also:

var, mean

numpy .doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqrt (mean (abs(x — x.mean())**2)).

The average squared deviation is normally calculated as x.sum () / N, where N = len (x). If, however,
ddof is specified, the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddo£=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> a0, :] 1.0

>>> all,:] 0.1

>>> np.std(a)

0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

MaskedArray.sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis. Masked elements are set to O internally.

1.6. Masked arrays 307

NumPy Reference, Release 1.6.0

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are summed. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified axis removed. If self is a 0-d
array, or if axis is None, a scalar is returned. If an output array is specified, a reference
to out is returned.

Examples

>>> x = np.ma.array([[1,2,3],[4,5,6]1,17,8,9]], mask=[0] + [1,0]x4)
>>> print x

[[1 - 3]
[~ 5 —]
(7 —— 91]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]

>>> print type(x.sum(axis=0, dtype=np.int64) [0])
<type ’numpy.int64’>

MaskedArray.trace (offset=0, axisl=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy .trace
equivalent function

MaskedArray .var (axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

308 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, ie., var = mean (abs(x -
x.mean ()) *x2).

The mean is normally calculated as x.sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1,2]1,[3,411)
>>> np.var(a)
1.25
>>> np.var (a,0)
array ([1., 1.1)

>>> np.var(a,l)
array ([0.25, 0.25])

1.6. Masked arrays 309

NumPy Reference, Release 1.6.0

In single precision, var() can be inaccurate:

>>>
>>>
>>>
>>>

a = np.zeros((2,512%x512), dtype=np.float32)
al0,:]1 = 1.0

all,:] 0.1

np.var (a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>>

np.var (a, dtype=np.float64)

0.20249999932997387

>>>

((1-0.55)%%x2 + (0.1-0.55)%%2)/2

0.20250000000000001

Arithmetic and comparison operations

Comparison operators:

MaskedArray._ 1t

_ It (y) <==>x<y

X.
MaskedArray._ le_ x.__le_ (y) <==>x<=y
X.

MaskedArray.__gt___

_ gt (y)<==>x>y

MaskedArray.__ge_ X.__ge_ (y) <==>x>=y
MaskedArray.__eq__ (other) Check whether other equals self elementwise
MaskedArray.__ne__ (other) Check whether other doesn’t equal self elementwise

MaskedArray._ lt_ ()
X.__lt__(y) <==>x<y

MaskedArray._ le_ ()
X.__le_ (y) <==>x<=y

MaskedArray.__gt__ ()

X._ gt

(y) <==> x>y

MaskedArray._ ge_ ()
X.__ge (y)<==>x>=y

MaskedArray.__eq__ (other)
Check whether other equals self elementwise

MaskedArray.__ne__ (other)
Check whether other doesn’t equal self elementwise

Truth value of an array (bool):

MaskedArray._ nonzero__ X._ nonzero_ ()<==>x!=0

MaskedArray.__nonzero__ ()
X.__nonzero_ () <==>x1=0

310

Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

Arithmetic:

MaskedArray.__abs

MaskedArray._
MaskedArray.
MaskedArray._
MaskedArray._

MaskedArray.__mu
_ _rmul__ (other)

MaskedArray.

___radd

_ () <==>abs(x)
add__ (other)

__ (other)
sub__ (other)
rsub__ (other)

1__ (other)

Add other to self, and return a new masked array.
Add other to self, and return a new masked array.
Subtract other to self, and return a new masked array.
Subtract other to self, and return a new masked array.

Multiply other by self, and return a new masked array.
Multiply other by self, and return a new masked array.

MaskedArray._ div__ (other) Divide other into self, and return a new masked array.
MaskedArray._ rdiv___ X.__rdiv__(y) <==>y/x

MaskedArray.__truediv__ (other) Divide other into self, and return a new masked array.
MaskedArray.__rtruediv__ (other) Divide other into self, and return a new masked array.
MaskedArray.__ floordiv__ (other) Divide other into self, and return a new masked array.

MaskedArray._ rfloordiv__ (other) Divide other into self, and return a new masked array.

MaskedArray._ _mod___ X.__mod__(y) <==>x%y
MaskedArray._ rmod_ X.__rmod__(y) <==> y%x
MaskedArray.__divmod__ (y)<==>divmod(x,

y)

MaskedArray.__ rdivmod_ (y) <==>

divmod(y, x)

MaskedArray.__ pow__ (other) Raise self to the power other, masking the potential

NaNs/Infs
MaskedArray.__rpow__ (other) Raise self to the power other, masking the potential

NaNs/Infs
MaskedArray._ lshift_ X.__Ishift__ (y) <==>x<<y
MaskedArray.__rlshift X.__rlshift__ (y) <==> y<<x
MaskedArray.__ rshift_ X.__rshift__(y) <==>x>>y
MaskedArray.__rrshift__ X.__rrshift__(y) <==> y>>x
MaskedArray.__and___ X.__and__(y) <==>x&y
MaskedArray._ rand_ X.__rand__(y) <==>y&x
MaskedArray._ or_ X.__or__(y) <==>xly
MaskedArray.__ror___ X.__ r_(y) <==>ylx
MaskedArray.__Xor___ X.__Xor__(y) <==>x"y
MaskedArray.___rxor___ X.__rxor__(y) <==> y~x

MaskedArray.__abs__ () <==> abs(x)

MaskedArray.__add__ (other)
Add other to self, and return a new masked array.

MaskedArray.__radd__ (other)
Add other to self, and return a new masked array.

MaskedArray.__ sub__ (other)
Subtract other to self, and return a new masked array.

MaskedArray.__rsub__ (other)
Subtract other to self, and return a new masked array.

MaskedArray._ _mul__ (other)
Multiply other by self, and return a new masked array.

MaskedArray.__rmul__ (other)
Multiply other by self, and return a new masked array.

MaskedArray._ div__ (other)

1.6. Masked arrays 311

NumPy Reference, Release 1.6.0

Divide other into self, and return a new masked array.

MaskedArray.__rdiv__ ()
X.__rdiv__(y) <==>y/x

MaskedArray.__truediv__ (other)
Divide other into self, and return a new masked array.

MaskedArray._ rtruediv__ (other)
Divide other into self, and return a new masked array.

MaskedArray.__ floordiv__ (other)
Divide other into self, and return a new masked array.

MaskedArray.__ rfloordiv__ (other)
Divide other into self, and return a new masked array.

MaskedArray._ mod__ ()
X.__mod__(y) <==>x%y

MaskedArray.__rmod__ ()
X.__rtmod__(y) <==> y%x

MaskedArray.__divmod__ (y) <==> divmod(x,y)

MaskedArray.__rdivmod__ (y) <==> divmod(y, x)

MaskedArray.__pow__ (other)
Raise self to the power other, masking the potential NaNs/Infs

MaskedArray.__rpow___ (other)
Raise self to the power other, masking the potential NaNs/Infs

MaskedArray.__1lshift__ ()
X.__Ishift__(y) <==> x<<y

MaskedArray._ rlshift_ ()
x.__rlshift__(y) <==> y<<x

MaskedArray.__rshift__ ()
X.__rshift_ (y) <==>x>>y

MaskedArray._ _rrshift_ ()
x._rrshift_(y) <==> y>>x

MaskedArray.__and__ ()
X.__and__(y) <==>x&y

MaskedArray.__rand ()
X.__rand__(y) <==>y&x

MaskedArray._ or__ ()
X.__or__(y) <==>xly

MaskedArray.__ror__ ()
X.__ror__(y) <==>ylx

MaskedArray._ xor__ ()
X.__xor__(y) <==>x"y

MaskedArray.__rxor__ ()
X.__rxor__(y) <==>y”x

312

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Arithmetic, in-place:

MaskedArray.__iadd__(other)
MaskedArray._ isub__(other)
MaskedArray._ _imul__ (other)
MaskedArray.__ idiv__ (other)
MaskedArray.__itruediv__ (other)
MaskedArray.__ifloordiv__ (other)
MaskedArray._ imod_
MaskedArray._ ipow__ (other)
MaskedArray.__ilshift_
MaskedArray.__irshift___
MaskedArray.__iand___
MaskedArray.__ior_
MaskedArray._ ixor_

Add other to self in-place.
Subtract other from self in-place.
Multiply self by other in-place.
Divide self by other in-place.

True divide self by other in-place.
Floor divide self by other in-place.
X.__imod__(y) <==> x%y

Raise self to the power other, in place.

x.__ilshift__(y) <==>x<<y
X.__irshift_ (y) <==>x>>y
X.__dand__(y) <==> x&y
X.__dor__(y) <==>xly
X.__ixor__(y) <==>x\y

MaskedArray._ iadd__ (other)
Add other to self in-place.

MaskedArray.__isub__ (other)
Subtract other from self in-place.

MaskedArray._ _imul__ (other)
Multiply self by other in-place.

MaskedArray._ idiv__ (other)
Divide self by other in-place.

MaskedArray.__itruediv__ (other)
True divide self by other in-place.

MaskedArray._ ifloordiv__ (other)
Floor divide self by other in-place.

MaskedArray._ _imod__ ()
X.__imod__(y) <==> x%y

MaskedArray.__ipow___ (other)
Raise self to the power other, in place.

MaskedArray._ _ilshift__ ()
X.__ilshift__(y) <==> x<<y

MaskedArray._ _irshift__ ()
X.__irshift__(y) <==>x>>y

MaskedArray._ _iand__ ()
X.__land__(y) <==> x&y

MaskedArray._ _dior_ ()
X.__lor__(y) <==>xly

MaskedArray.__ixor__ ()
X.__ixor__(y) <==>x"y

1.6. Masked arrays

313

NumPy Reference, Release 1.6.0

Representation

MaskedArray._ repr_ () Literal string representation.
MaskedArray._ str_ () String representation.
MaskedArray.ids() Return the addresses of the data and mask areas.

MaskedArray.iscontiguous() Return a boolean indicating whether the data is contiguous.

MaskedArray.__repr__ ()
Literal string representation.

MaskedArray.__str__ ()
String representation.

MaskedArray.ids ()
Return the addresses of the data and mask areas.

Parameters
None :

Examples

>>> x = np.ma.array([l, 2, 3], mask=[0, 1, 17])
>>> x.1ds ()
(166670640, 166659832)

If the array has no mask, the address of nomask is returned. This address is typically not close to the data in
memory:

>>> x = np.ma.array ([1, 2, 31)
>>> x.ids ()
(166691080, 3083169284L)

MaskedArray.iscontiguous ()
Return a boolean indicating whether the data is contiguous.

Parameters
None :

Examples

>>> x = np.ma.array([1l, 2, 31)
>>> x.iscontiguous ()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False

Special methods

For standard library functions:

314 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

MaskedArray.__ copy__ ([order]) Return a copy of the array.

MaskedArray.__deepcopy__ (memo=None)

MaskedArray.__getstate_ () Return the internal state of the masked array, for pickling

MaskedArray.__reduce_ () Return a 3-tuple for pickling a MaskedArray.

MaskedArray.__setstate_ (state) Restore the internal state of the masked array, for pickling
purposes.

MaskedArray.__copy__ ([order])
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

If order is ‘C’ (False) then the result is contiguous (default). If order is ‘Fortran’ (True)
then the result has fortran order. If order is ‘Any’ (None) then the result has fortran
order only if the array already is in fortran order.

MaskedArray.__deepcopy___ (memo=None)

MaskedArray.__getstate_ ()
Return the internal state of the masked array, for pickling purposes.

MaskedArray._ reduce_ ()
Return a 3-tuple for pickling a MaskedArray.

MaskedArray.__setstate__ (state)
Restore the internal state of the masked array, for pickling purposes. state is typically the output of the
__getstate__ output, and is a 5-tuple:

eclass name

«a tuple giving the shape of the data
«a typecode for the data

ea binary string for the data

*a binary string for the mask.

Basic customization:

MaskedArray.__new

MaskedArray.__array_ a.__array__(ldtype) -> reference if type unchanged, copy
otherwise.

MaskedArray.__array_wrap__(obj[, Special hook for ufuncs.

context])

MaskedArray.__array__ ()
a.__array__(ldtype) -> reference if type unchanged, copy otherwise.

Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

MaskedArray.__array_wrap__ (obj, context=None)
Special hook for ufuncs. Wraps the numpy array and sets the mask according to context.

Container customization: (see /ndexing)

1.6. Masked arrays 315

NumPy Reference, Release 1.6.0

MaskedArray._ len_ () <==>len(x)

MaskedArray._ _getitem__ (indx) X.__getitem__(y) <==> x[y]
MaskedArray.__setitem__ (indx, value) x.__setitem__ (i, y) <==> X[i]=y
MaskedArray.__delitem_ X.__delitem__(y) <==> del x[y]
MaskedArray.__getslice_ (i,]) x.__getslice__ (i, j) <==> x[i]]
MaskedArray.__setslice_ (i,], value) x.__setslice__(i, j, value) <==> x[i:j]=value
MaskedArray.__ contains_ X.__contains__(y) <==>yinx

MaskedArray._ len_ () <==>len(x)

MaskedArray._ getitem__ (indx)
X.__getitem__(y) <==>x[y]

Return the item described by i, as a masked array.

MaskedArray.__setitem _ (indx, value)
x.__setitem__(i, y) <==> x[i]=y

Set item described by index. If value is masked, masks those locations.

MaskedArray.__delitem ()
X.__delitem__(y) <==> del x[y]

MaskedArray.__getslice__ (i,j)
x.__getslice__(i, j) <==> x[i]]

Return the slice described by (i, j). The use of negative indices is not supported.

MaskedArray.__setslice_ (i, j, value)
x.__setslice__(i, j, value) <==> x[i:j]=value

Set the slice (i,j) of a to value. If value is masked, mask those locations.

MaskedArray.__contains__ ()
X.__contains__(y) <==>yin X

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.__setmask__(mask[, copy]) Set the mask.

MaskedArray.harden_mask() Force the mask to hard.
MaskedArray.soften_mask() Force the mask to soft.
MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.
MaskedArray.shrink_mask() Reduce a mask to nomask when possible.

MaskedArray.__setmask__ (mask, copy=False)

Set the mask.

MaskedArray.harden_mask ()
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask sets
hardmask to True.

See Also:

hardmask

316

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

MaskedArray.soften_mask ()
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask sets
hardmask to False.

See Also:
hardmask

MaskedArray.unshare_mask ()
Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from the sharedmask property. unshare_mask
ensures the mask is not shared. A copy of the mask is only made if it was shared.

See Also:
sharedmask

MaskedArray.shrink_mask ()
Reduce a mask to nomask when possible.

Parameters
None :

Returns
None :

Examples

>>> x = np.ma.array ([[1,2 1, [3, 4]], mask=[0]+4)
>>> x.mask
array ([[False, False],
[False, False]], dtype=bool)
>>> x.shrink_mask ()
>>> x.mask
False

Handling the fill_value

MaskedArray.get_fill_value() Return the filling value of the masked array.
MaskedArray.set_fill wvalue(value=None) Set the filling value of the masked array.

MaskedArray.get_£fill wvalue ()
Return the filling value of the masked array.

Returns
fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complexl28]:
np.ma.array ([0, 1], dtype=dt).get_fill value()

999999

999999

le+20
(le+20+07)

1.6. Masked arrays 317

NumPy Reference, Release 1.6.0

>>> x = np.ma.array ([0, 1.], fill_value=-np.inf)
>>> x.get_fill _value()
—-inf

MaskedArray.set_£fill_ wvalue (value=None)
Set the filling value of the masked array.

Parameters
value : scalar, optional

The new filling value. Default is None, in which case a default based on the data type
is used.

See Also:

ma.set_fill value
Equivalent function.

Examples

>>> x = np.ma.array ([0, 1.], fill_value=-np.inf)
>>> x.fill_value

—-inf

>>> x.set_fill_value (np.pi)

>>> x.fill_value

3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fi1ll_value
le+20

Counting the missing elements

MaskedArray.count(axis=None) Count the non-masked elements of the array along the given axis.

MaskedArray.count (axis=None)
Count the non-masked elements of the array along the given axis.

Parameters

axis : int, optional

Axis along which to count the non-masked elements. If axis is None, all non-masked
elements are counted.

Returns
result : int or ndarray

If axis is None, an integer count is returned. When axis is not None, an array with shape
determined by the lengths of the remaining axes, is returned.

See Also:

count_masked
Count masked elements in array or along a given axis.

Examples

318 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> import numpy.ma as ma
>>> a = ma.arange (6) .reshape ((2, 3))
>>> af[l, :] = ma.masked
>>> a
masked_array(data =

[[0 1 2]

[—— — —-11,

mask =
[[False False False]
[True True True]ll],
fill_value = 999999)

>>> a.count ()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array ([1, 1, 11)
>>> a.count (axis=1)
array ([3, 0])

1.6.7 Masked array operations

Constants

ma.MaskType Numpy’s Boolean type. Character code: 2. Alias: bool8

numpy .ma .MaskType
alias of bool

Creation

From existing data

ma.masked_array An array class with possibly masked values.
ma . array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
ma.copy copy

ma . frombuf fer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.

ma . fromfunction(function, shape, **kwargs) Construct an array by executing a function over each coordinate.

ma.MaskedArray.copy(order=) Return a copy of the array.

numpy .ma .masked_array
alias of MaskedArray

numpy .ma.array (data, dtype=None, copy=False, order=False, mask=False, fill_value=None,

keep_mask=True, hard_mask=False, shrink=True, subok="True, ndmin=0)
An array class with possibly masked values.

Masked values of True exclude the corresponding element from any computation.
Construction:

x = MaskedArray(data, mask=nomask, dtype=None,
copy=False, subok=True, ndmin=0, fill_value=None,
keep_mask=True, hard_mask=None, shrink=True)

1.6. Masked arrays

NumPy Reference, Release 1.6.0

Parameters
data : array_like

Input data.
mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same shape as data. True
indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output. If drype is None, the type of the data argument (data .dtype)
is used. If drype is not None and different from data . dtype, a copy is performed.

copy : bool, optional
Whether to copy the input data (True), or to use a reference instead. Default is False.
subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a plain MaskedArray.
Default is True.

ndmin : int, optional
Minimum number of dimensions. Default is 0.
fill_value : scalar, optional

Value used to fill in the masked values when necessary. If None, a default based on the
data-type is used.

keep_mask : bool, optional

Whether to combine mask with the mask of the input data, if any (True), or to use only
mask for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values cannot be un-
masked. Default is False.

shrink : bool, optional
Whether to force compression of an empty mask. Default is True.
numpy .ma . copy
copy a.copy(order="C’)
Return a copy of the array.
Parameters
order : {‘C’, ‘F’, ‘A’}, optional

By default, the result is stored in C-contiguous (row-major) order in memory. If order is
F, the result has ‘Fortran’ (column-major) order. If order is ‘A’ (‘Any’), then the result
has the same order as the input.

Examples

>>> x = np.array([[1,2,3]1,1[4,5,6]1], order="F")

>>> y = x.copy()

320 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> x.£111(0)

>>> x
array ([[0, 0, 01,

[0, O, 011)
>>> y

array ([[1, 2, 3],
(4, 5, 611)

>>> y.flags[’C_CONTIGUOUS']
True

numpy .ma . frombuf fer (buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.

Parameters
buffer : buffer_like

An object that exposes the buffer interface.
dtype : data-type, optional

Data-type of the returned array; default: float.
count : int, optional

Number of items to read. —1 means all data in the buffer.
offset : int, optional

Start reading the buffer from this offset; default: 0.

Notes
If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype (int)
>>> dt = dt.newbyteorder (’'>")
>>> np.frombuffer (buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = "hello world’
>>> np.frombuffer (s, dtype=’"S1l’, count=5, offset=6)
array(['w", "o, 'x’, 1", 'd"1],

dtype=’|S1")

numpy .ma . fromfunction (function, shape, **kwargs)
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn (x, y, z) atcoordinate (x, y, z).

Parameters
function : callable

The function is called with N parameters, each of which represents the coordinates of
the array varying along a specific axis. For example, if shape were (2, 2), then the
parameters would be two arrays, [[0, 0], [1, 1]]and [[O, 1], [O, 111.
function must be capable of operating on arrays, and should return a scalar value.

1.6. Masked arrays 321

NumPy Reference, Release 1.6.0

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of the coordinate arrays
passed to function.

dtype : data-type, optional
Data-type of the coordinate arrays passed to function. By default, dtype is float.

Returns
out : any

The result of the call to function is passed back directly. Therefore the type and shape
of out is completely determined by function.

See Also:

indices, meshgrid

Notes

Keywords other than shape and dtype are passed to function.

Examples
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array ([[True, False, False],

[False, True, False],
[False, False, True]], dtype=bool)

>>> np.fromfunction(lambda i, j: i + J, (3, 3), dtype=int)
array ([[0, 1, 21,

[, 2, 31,

[2, 3, 411)

MaskedArray.copy (order="C’)
Return a copy of the array.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

By default, the result is stored in C-contiguous (row-major) order in memory. If order is
F, the result has ‘Fortran’ (column-major) order. If order is ‘A’ (‘Any’), then the result
has the same order as the input.

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order="F")

>>> y = x.copy()

>>> x.£111(0)

>>> x
array ([[0, O, 01,
(0, 0, 011)

>>> y
array ([[1, 2, 3]

322 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> y.flags[’C_CONTIGUOUS']
True

Ones and zeros

ma . empt y(shape[, dtype, order])
ma.empty_1ike(a[, dtype, order, subok])
ma .masked_all(shape[, dtype])
ma.masked_all_like(arr)

ma . ones(shapel, dtype, order])

ma . zeros(shape[, dtype, order])

Return a new array of given shape and type, without initializing entries.
Return a new array with the same shape and type as a given array.
Empty masked array with all elements masked.

Empty masked array with the properties of an existing array.

Return a new array of given shape and type, filled with ones.

Return a new array of given shape and type, filled with zeros.

numpy .ma . empty (shape, dtype=float, order="C")
Return a new array of given shape and type, without initializing entries.

Parameters
shape : int or tuple of int

Shape of the empty array
dtype : data-type, optional

Desired output data-type.
order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in C (row-major) or Fortran (column-major)
order in memory.

See Also:

empty_like, zeros, ones

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other
hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty ([2, 2])

array ([[—-9.74499359e+001, 6.69583040e-30917,

[2.13182611e-314, 3.06959433e-30911) #random
>>> np.empty ([2, 2], dtype=int)
array ([[-1073741821, -1067949133],

[496041986, 1924976011) #random

numpy .ma.empty_ like (a, dtype=None, order="K’, subok=True)
Return a new array with the same shape and type as a given array.

Parameters
a: array_like

The shape and data-type of a define these same attributes of the returned array.
dtype : data-type, optional

Overrides the data type of the result.
order : {‘C’, ‘F’, ‘A’, or ‘K’ }, optional

1.6. Masked arrays 323

NumPy Reference, Release 1.6.0

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a
as closely as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of uninitialized (arbitrary) data with the same shape and type as a.
See Also:
ones_like
Return an array of ones with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.
Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be
marginally faster than the functions that do set the array values.

Examples
>>> a = ([1,2,3], [4,5,61) # a is array-like
>>> np.empty_like (a)
array ([[-1073741821, -1073741821, 3] #random

[0, 0, -107374182111)

>>> a = np.array([[1l., 2., 3.]1,[4.,5.,6.1])

>>> np.empty_like (a)

array ([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000], #random
[4.38791518e-305, -2.00000715e+000, 4.17269252e-30911)

numpy .ma .masked_all (shape, dtype=<type ‘float’>)
Empty masked array with all elements masked.
Return an empty masked array of the given shape and dtype, where all the data are masked.

Parameters
shape : tuple

Shape of the required MaskedArray.
dtype : dtype, optional
Data type of the output.

Returns
a : MaskedArray

324 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A masked array with all data masked.

See Also:

masked all like
Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all ((3, 3))
masked_array (data =

[[-—— — —1

[[True True True]

[True True True]

[True True True]ll],
fill_value=1e+20)

The dtype parameter defines the underlying data type.

>>> a = ma.masked_all ((3, 3))

>>> a.dtype

dtype (' float64’)

>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype

dtype (" int32")

numpy .ma .masked_all_like (arr)
Empty masked array with the properties of an existing array.

Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked.

Parameters
arr : ndarray

An array describing the shape and dtype of the required MaskedArray.

Returns
a : MaskedArray

A masked array with all data masked.

Raises
AttributeError :

If arr doesn’t have a shape attribute (i.e. not an ndarray)

See Also:

masked _all
Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma

>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr

array ([[O., 0., 0.1,

1.6. Masked arrays

325

NumPy Reference, Release 1.6.0

[0., 0., 0.]11, dtype=float32)
>>> ma.masked_all_like (arr)
masked_array (data =

[~ - =]

[-= —= —=11,
mask =

[[True True True]

[True True Truell,
fill _value=1le+20)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype

dtype (" float32")

>>> ma.masked_all_like(arr) .dtype
dtype (' float32")

numpy .ma . ones (shape, dtype=None, order="C’)
Return a new array of given shape and type, filled with ones.
Please refer to the documentation for zeros for further details.

See Also:

zeros, ones_1like

Examples

>>> np.ones (5)
array ([1., 1., 1., 1., 1.7)

>>> np.ones((5,), dtype=np.int)
array (1, 1, 1, 1, 17)

>>> np.ones((2, 1))
array ([[1.]

[1.11)
>>> 5 = (2,2)
>>> np.ones(s)
array ([[1., 1.1,
[1., 1.]11)

numpy .ma . zeros (shape, dtype=float, order="C’)
Return a new array of given shape and type, filled with zeros.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.
dtype : data-type, optional

The desired data-type for the array, e.g., numpy . int 8. Default is numpy . float 64.
order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

326 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array of zeros with the given shape, dtype, and order.

See Also:

zeros_like
Return an array of zeros with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.

Examples

>>> np.zeros (5)
array ([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=numpy.int)
array ([0, O, 0, 0, 0])

>>> np.zeros ((2, 1))

array ([[0.7,
[0.11)
>>> s = (2,2)
>>> np.zeros(s)
array ([[0., 0.1,
[0., 0.11)

>>> np.zeros((2,), dtype=[('x", "i4"), ('y’, "14")]1) # custom dtype
array ([(0, 0), (0, 0)1,
dtype=[("x", "<i4"), ("y', "<i4")1])

1.6. Masked arrays 327

NumPy Reference, Release 1.6.0

Inspecting the array

ma . all(selff, axis, out]) Check if all of the elements of a are true.

ma . any(selff, axis, out]) Check if any of the elements of a are true.

ma . count(a[, axis]) Count the non-masked elements of the array along the given axis.
ma .count_masked(arr[, axis]) Count the number of masked elements along the given axis.
ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array of False.
ma . getdata(a[, subok]) Return the data of a masked array as an ndarray.

ma .nonzero(self) Return the indices of unmasked elements that are not zero.

ma . shape(obj) Return the shape of an array.

ma . size(objl, axis]) Return the number of elements along a given axis.
ma.MaskedArray.data Return the current data, as a view of the original
ma.MaskedArray.mask Mask

ma.MaskedArray.recordmask Return the mask of the records.

ma.MaskedArray.all(axis=None[, out]) Check if all of the elements of a are true.
ma.MaskedArray.any(axis=None[, out]) Check if any of the elements of a are true.

ma.MaskedArray.count(axis=None) Count the non-masked elements of the array along the given axis.
ma.MaskedArray.nonzero() Return the indices of unmasked elements that are not zero.

ma . shape(obj) Return the shape of an array.

ma . size(obj[, axis]) Return the number of elements along a given axis.

numpy .ma .all (self, axis=None, out=None)
Check if all of the elements of a are true.

Performs a 1ogical_and over the given axis and returns the result. Masked values are considered as True
during computation. For convenience, the output array is masked where ALL the values along the current axis
are masked: if the output would have been a scalar and that all the values are masked, then the output is masked.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array.
out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See Also:

all
equivalent function

Examples
>>> np.ma.array ([1,2,3]).all()
True
>>> a = np.ma.array([1l,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

numpy .ma . any (self, axis=None, out=None)
Check if any of the elements of a are true.

Performs a logical_or over the given axis and returns the result. Masked values are considered as False during
computation.

328 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array and return a
scalar.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See Also:

any
equivalent function

numpy .ma . count (a, axis=None)
Count the non-masked elements of the array along the given axis.

Parameters
axis : int, optional

Axis along which to count the non-masked elements. If axis is None, all non-masked
elements are counted.

Returns
result : int or ndarray

If axis is None, an integer count is returned. When axis is not None, an array with shape
determined by the lengths of the remaining axes, is returned.

See Also:

count_masked
Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange (6) .reshape((2, 3))
>>> a[l, :] = ma.masked
>>> a
masked_array (data =

[[0 1 2]

[-- - --11,

mask =
[[False False False]
[True True Truell,
fill_value = 999999)

>>> a.count ()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array ([1, 1, 11)
>>> a.count (axis=1)
array ([3, 0])

numpy .ma .count_masked (arr, axis=None)
Count the number of masked elements along the given axis.

1.6. Masked arrays 329

NumPy Reference, Release 1.6.0

Parameters
arr : array_like

An array with (possibly) masked elements.
axis : int, optional
Axis along which to count. If None (default), a flattened version of the array is used.

Returns
count : int, ndarray

The total number of masked elements (axis=None) or the number of masked elements
along each slice of the given axis.

See Also:

MaskedArray.count
Count non-masked elements.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (9) .reshape ((3,3))

>>> a = ma.array (a)
>>> a[l, 0] = ma.masked
>>> al[l, 2] = ma.masked
>>> a2, 1] = ma.masked
>>> a
masked_array(data =

[[0 1 2]

[-= 4 -]

[6 —- 811,

mask =

[[False False False]
[True False True]
[False True False]l],
fill_value=999999)
>>> ma.count_masked (a)
3

When the axis keyword is used an array is returned.

>>> ma.count_masked (a, axis=0)
array ([1, 1, 11)
>>> ma.count_masked(a, axis=1)
array ([0, 2, 11)

numpy .ma .getmask (a)
Return the mask of a masked array, or nomask.

Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask. To
guarantee a full array of booleans of the same shape as a, use getmaskarray.

Parameters
a: array_like

Input MaskedArray for which the mask is required.
See Also:

330 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

getdata
Return the data of a masked array as an ndarray.

getmaskarray
Return the mask of a masked array, or full array of False.

Examples
>>> import numpy.ma as ma
>>> a = ma.masked_equal ([[1,2],[3,411, 2)
>>> a
masked_array (data =
[[1 -]
(3 411,

mask =
[[False True]
[False False]],
fil1l_value=999999)
>>> ma.getmask (a)
array ([[False, Truel,
[False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array ([[False, True],
[False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array ([[1,2],1[3,4]1])
>>> b
masked_array(data =
[[1 2]
[3 411,
mask =
False,
fil1l_value=999999)
>>> ma.nomask

False

>>> ma.getmask (b) == ma.nomask
True

>>> b.mask == ma.nomask

True

numpy .ma .getmaskarray (arr)
Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters
arr : array_like

Input MaskedArray for which the mask is required.
See Also:

getmask
Return the mask of a masked array, or nomask.

1.6. Masked arrays 331

NumPy Reference, Release 1.6.0

getdata
Return the data of a masked array as an ndarray.

Examples
>>> import numpy.ma as ma
>>> a = ma.masked_equal ([[1,2],13,41]1, 2)
>>> a
masked_array(data =
[([1 --1]
(3 411,

mask =
[[False True]
[False False]],
fill_value=999999)
>>> ma.getmaskarray (a)
array ([[False, True],
[False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array ([[1,2],[3,4]1])
>>> Db
masked_array(data =
[[1 2]
[3 411,
mask =
False,
fill_value=999999)
>>> >ma.getmaskarray (b)
array ([[False, False],
[False, False]], dtype=bool)

numpy .ma .getdata (a, subok=True)
Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass
(depending on subok) if not.

Parameters
a: array_like

Input MaskedArray, alternatively a ndarray or a subclass thereof.
subok : bool

Whether to force the output to be a pure ndarray (False) or to return a subclass of ndarray
if appropriate (True, default).

See Also:
getmask
Return the mask of a masked array, or nomask.

getmaskarray
Return the mask of a masked array, or full array of False.

332 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_equal ([[1,2],1[3,411,

>>> a

masked_array (data =
(11 -]
(3 411,

mask =
[[False True]
[False False]],
fill_value=999999)
>>> ma.getdata(a)
array ([[1, 217,
[3, 411)

Equivalently use the MaskedArray data attribute.

>>> a.data
array ([[1, 21,
[3, 411)

numpy .ma .nonzero (self)
Return the indices of unmasked elements that are not zero.

ala.nonzero ()]

np.transpose (a.nonzero())

Parameters
None :

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.

See Also:

numpy . nonzero

Function operating on ndarrays.

flatnonzero

2)

To group the indices by element, rather than dimension, use instead:

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

The result of this is always a 2d array, with a row for each non-zero element.

Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero

Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

1.6. Masked arrays

333

NumPy Reference, Release 1.6.0

>>> import numpy.ma as ma
>>> x = ma.array (np.eye(3))
>>> x
masked_array(data =
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.171,
mask
False,
fill value=1le+20)
>>> x.nonzero ()
(array ([0, 1, 21), array ([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array (data =
[[1.0 0.0 0.0]
[0.0 —— 0.0]
[0.0 0.0 1.011,
mask =
[[False False False]
[False True False]
[False False False]l],
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 21), array ([0, 21))

Indices can also be grouped by element.

>>> np.transpose (x.nonzero())
array ([[0, O],
(2, 211)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array ([[1,2,31,104,5,6]1,17,8,911)
>>> g > 3
masked_array(data =
[[False False False]
[True True True]
[True True Truell],
mask =
False,
fill_value=999999)
>>> ma.nonzero(a > 3)
(array (1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the condition array can also be called.

>>> (a > 3) .nonzero ()
(array (i, 1, 1, 2, 2, 21]), array(lo, 1, 2, 0, 1, 2]))

numpy .ma . shape (0bj)
Return the shape of an array.

334 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Input array.

Returns
shape : tuple of ints

The elements of the shape tuple give the lengths of the corresponding array dimensions.
See Also:
alen

ndarray . shape
Equivalent array method.

Examples

>>> np.shape (np.eye(3))
(3, 3)

>>> np.shape ([[1, 2]])
(1, 2)

>>> np.shape ([0])

(1,)

>>> np.shape (0)

0

>>> a = np.array([(1, 2), (3, 4)]1, dtype=[('x", "1i4"), ('y', 714")1)
>>> np.shape (a)

(2,)

>>> a.shape

(2,)

numpy .ma . size (obj, axis=None)
Return the number of elements along a given axis.

Parameters
a: array_like

Input data.
axis : int, optional

Axis along which the elements are counted. By default, give the total number of ele-
ments.

Returns
element_count : int

Number of elements along the specified axis.
See Also:
shape
dimensions of array

ndarray . shape
dimensions of array

ndarray.size
number of elements in array

1.6. Masked arrays 335

NumPy Reference, Release 1.6.0

Examples
>>> a = np.array([[1,2,31,104,5,6]1])
>>> np.size(a)
6
>>> np.size(a,l)
3
>>> np.size(a,0)
2

MaskedArray.data
Return the current data, as a view of the original underlying data.

MaskedArray.mask
Mask

MaskedArray.recordmask
Return the mask of the records. A record is masked when all the fields are masked.

MaskedArray.all (axis=None, out=None)
Check if all of the elements of a are true.

Performs a 1ogical_and over the given axis and returns the result. Masked values are considered as True
during computation. For convenience, the output array is masked where ALL the values along the current axis
are masked: if the output would have been a scalar and that all the values are masked, then the output is masked.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array.
out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See Also:

all
equivalent function

Examples
>>> np.ma.array ([1,2,3]).all()
True
>>> a = np.ma.array([1l,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

MaskedArray .any (axis=None, out=None)
Check if any of the elements of g are true.

Performs a logical_or over the given axis and returns the result. Masked values are considered as False during
computation.

Parameters
axis : {None, integer}

Axis to perform the operation over. If None, perform over flattened array and return a
scalar.

out : {None, array}, optional

336 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

See Also:

any
equivalent function

MaskedArray.count (axis=None)
Count the non-masked elements of the array along the given axis.

Parameters
axis : int, optional

Axis along which to count the non-masked elements. If axis is None, all non-masked
elements are counted.

Returns
result : int or ndarray

If axis is None, an integer count is returned. When axis is not None, an array with shape
determined by the lengths of the remaining axes, is returned.

See Also:

count_masked
Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma

>>> a = ma.arange (6) .reshape((2, 3))
>>> af[l, :] = ma.masked

>>> a

masked_array (data
[[0 1 2]
[-— —= —-11,
mask =
[[False False False]
[True True Truell],
fill_value = 999999)
>>> a.count ()

3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array ([1, 1, 11])
>>> a.count (axis=1)
array ([3, 0])

MaskedArray.nonzero ()
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

ala.nonzero ()]

To group the indices by element, rather than dimension, use instead:

1.6. Masked arrays 337

NumPy Reference, Release 1.6.0

np.transpose (a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None :

Returns
tuple_of_arrays : tuple

Indices of elements that are non-zero.
See Also:
numpy . nonzero
Function operating on ndarrays.

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples
>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x

masked_array (data =
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.171,
mask
False,
fill value=1le+20)
>>> x.nonzero ()
(array ([0, 1, 21), array ([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(data =
[[1.0 0.0 0.0]
[0.0 —— 0.0]
[0.0 0.0 1.011,
mask =
[[False False False]
[False True False]
[False False False]l],
fill value=1le+20)
>>> x.nonzero ()
(array ([0, 21), array ([0, 21))

Indices can also be grouped by element.

338 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.transpose (x.nonzero())
array ([[0, 0],
(2, 211)

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the

a where the condition is true.

>>> a = ma.array ([[1,2,31,104,5,6]1,17,8,911)
>>> a > 3
masked_array(data =
[[False False False]
[True True True]
[True True Truell],
mask =
False,
fill_value=999999)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([O, 1, 2, O, 1, 2]))

numpy .ma . shape (obj)
Return the shape of an array.

Parameters
a: array_like

Input array.

Returns
shape : tuple of ints

The elements of the shape tuple give the lengths of the corresponding array dimensions.

See Also:
alen

ndarray . shape
Equivalent array method.

Examples

>>> np.shape (np.eye (3))
(3, 3)

>>> np.shape ([[1, 2]])
(1, 2)

>>> np.shape ([0])

(1,)

>>> np.shape (0)

0)

>>> a = np.array([(1, 2), (3, 4)], dtype=[("x", "1i4"), ("y’, "1i4")])
>>> np.shape (a)

(2,)

>>> a.shape

(2,)

1.6. Masked arrays 339

NumPy Reference, Release 1.6.0

numpy .ma . size (obj, axis=None)
Return the number of elements along a given axis.

Parameters
a: array_like

Input data.
axis : int, optional

Axis along which the elements are counted. By default, give the total number of ele-
ments.

Returns
element_count : int

Number of elements along the specified axis.

See Also:

shape
dimensions of array

ndarray . shape
dimensions of array

ndarray.size
number of elements in array

Examples

>>> a = np.array([[1,2,3]1,1[4,5,6]1])
>>> np.size(a)

6

>>> np.size(a,l)

3

>>> np.size(a,0)

2

Manipulating a MaskedArray

Changing the shape

ma . ravel(self) Returns a 1D version of self, as a view.

ma . reshape(a, new_shapel[, order]) Returns an array containing the same data with a new
shape.

ma . resize(X, new_shape) Return a new masked array with the specified size and
shape.

ma.MaskedArray.flatten(order=) Return a copy of the array collapsed into one dimension.

ma.MaskedArray.ravel() Returns a 1D version of self, as a view.

ma.MaskedArray.reshape(¥s, **kwargs) Give a new shape to the array without changing its data.

ma.MaskedArray.resize(newshapel[, refcheck,

]

numpy .ma . ravel (self)
Returns a 1D version of self, as a view.

340 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
MaskedArray :

Output view is of shape (self.size,) (or
(np.ma.product (self.shape),)).

Examples

>>> x = np.ma.array([[1,2,31,1[4,5,6]1,17,8,911, mask=[0] + [1,0]%4)
>>> print x

[[1 —- 3]
[-—— 5 ——]
[7 —— 91]
>>> print x.ravel ()
[l ——3 —5 — 7 — 9]

numpy .ma . reshape (a, new_shape, order="C")
Returns an array containing the same data with a new shape.

Refer to MaskedArray.reshape for full documentation.
See Also:

MaskedArray.reshape
equivalent function

numpy .ma.resize (x, new_shape)
Return a new masked array with the specified size and shape.

This is the masked equivalent of the numpy . resize function. The new array is filled with repeated copies of
x (in the order that the data are stored in memory). If x is masked, the new array will be masked, and the new
mask will be a repetition of the old one.

See Also:

numpy .resize
Equivalent function in the top level NumPy module.

Examples
>>> import numpy.ma as ma
>>> a = ma.array ([[1, 2] ,I[3, 411)
>>> a[0, 1] = ma.masked
>>> a
masked_array (data =
[([1 ——]
(3 411,

mask =
[[False True]
[False False]],
fill_value = 999999)
>>> np.resize(a, (3, 3))
array ([[1, 2, 31,
4, 1, 21,
(3, 4, 111)
>>> ma.resize(a, (3, 3))
masked_array (data =
[[1 —= 3]
(4 1 —-1]

1.6. Masked arrays 341

NumPy Reference, Release 1.6.0

(34171,
mask =
[[False True False]
[False False True]
[False False False]],
fill_value = 999999)

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array ([[1, 2] ,[3, 411)
>>> ma.resize(a, (3, 3))
masked_array(data =

[[1 2 3]

[4 1 2]

[3 4 111,

mask =
False,
fill_value = 999999)

MaskedArray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the

C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,4]1])
>>> a.flatten ()

array ([1, 2, 3, 41])
>>> a.flatten('F’)
array ([1, 3, 2, 41)

MaskedArray.ravel ()
Returns a 1D version of self, as a view.

Returns
MaskedArray :

Output view is of shape
(np.ma.product (self.shape),)).

(self.size,) (or

342

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> x = np.ma.array([[1,2,31,104,5,6]1,17,8,911, mask=[0] + [1,0]%4)
>>> print x

[[1 —-- 3]

[—= 5 -]

[7 —— 91]

>>> print x.ravel ()

[1 -3 -—5-—7 -— 9]

MaskedArray.reshape (*s, **kwargs)
Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape. The result is a view on the original
array; if this is not possible, a ValueError is raised.

Parameters
shape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer is supplied,
then the result will be a 1-D array of that length.

order : {‘C’, ‘F’}, optional

Determines whether the array data should be viewed as in C (row-major) or FORTRAN
(column-major) order.

Returns
reshaped_array : array

A new view on the array.

See Also:

reshape
Equivalent function in the masked array module.

numpy .ndarray . reshape
Equivalent method on ndarray object.

numpy . reshape
Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use
a.shape = s

Examples

>>> x = np.ma.array([[1,2],([3,4]], mask=[1,0,0,1])

>>> print x

[[—— 2]
[3 —-11

>>> x = x.reshape((4,1))

>>> print x

[[--]

1.6. Masked arrays 343

NumPy Reference, Release 1.6.0

MaskedArray.resize (newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own
its data and therefore cannot safely be resized in place. Use the numpy . ma . resize function instead.

Modifying axes

This method is difficult to implement safely and may be deprecated in future releases of NumPy.

ma
ma
ma
ma

.swapaxes
.transpose(al, axes])
.MaskedArray.swapaxes(axisl, axis2)
.MaskedArray.transpose(*axes)

swapaxes
Permute the dimensions of an array.

Return a view of the array with axis/ and axis2 interchanged.
Returns a view of the array with axes transposed.

numpy .ma . swapaxes
swapaxes a.swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.

See Also:

numpy . swapaxes

equivalent function

numpy .ma.transpose (a, axes=None)
Permute the dimensions of an array.

This function is exactly equivalent to numpy .t ranspose.

See Also:

numpy . transpose

Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma
>>> x = ma.arange (4) .reshape ((2,2))

>>> x[1, 1] = ma.masked
>>>> x
masked_array (data =

[[0 1]

(2 ——-11,

mask

[[False False]
[False Truell,

fill_wvalue
>>> ma.transpose (x
masked_array (data

([0 2]
(1 --11,

mask

[[False False]
[False Truel],

fill_value

999999)

999999)

MaskedArray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

344

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Refer to numpy . swapaxes for full documentation.
See Also:

numpy . swapaxes
equivalent function

MaskedArray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a ma-
trix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order in-

dicates how the axes are permuted (see Examples). If axes are not provided and a . shape = (1[0], i[1l],
i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], 1i[n-2], ... if[1],
i[01).
Parameters

axes : None, tuple of ints, or n ints
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.
See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 21, [3, 411)
>>> a
array ([[1, 27,
[3, 411)
>>> a.transpose ()
array ([[1, 3],
[2, 411)
>>> a.transpose ((1, 0))
array ([[1, 3],
[2, 411)
>>> a.transpose(l, 0)
array ([[1, 3],
[2, 411)

1.6. Masked arrays 345

NumPy Reference, Release 1.6.0

Changing the number of dimensions

ma.atleast_1ld(*arys) Convert inputs to arrays with at least one dimension.
ma.atleast_2d(*arys) View inputs as arrays with at least two dimensions.
ma.atleast_3d(*arys) View inputs as arrays with at least three dimensions.

ma . expand_dims(X, axis) Expand the shape of an array.

ma.squeeze(a) Remove single-dimensional entries from the shape of an array.
ma.MaskedArray.squeeze() Remove single-dimensional entries from the shape of a.
ma.column_stack(tup) Stack 1-D arrays as columns into a 2-D array.

ma .concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.

ma . dstack(tup) Stack arrays in sequence depth wise (along third axis).

ma . hstack(tup) Stack arrays in sequence horizontally (column wise).

ma . hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally (column-wise).
ma.mr_ Translate slice objects to concatenation along the first axis.

ma . row_stack(tup) Stack arrays in sequence vertically (row wise).

ma . vstack(tup) Stack arrays in sequence vertically (row wise).

numpy .ma.atleast_1d (*arys)

Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.
Parameters
arrayl, array?2, ... : array_like
One or more input arrays.

Returns
ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1. Copies are made only if
necessary.
Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)
array ([1.1)

>>> x = np.arange (9.0) .reshape (3, 3)
>>> np.atleast_1d(x

_)
array ([[0., 1., 2.1,
[3., 4., 5.7,
[6., 7., 8.11)
>>> np.atleast_1ld(x) is x
True

>>> np.atleast_1d (1, [3, 4])
l[array ([1]), array([3, 4])]

numpy .ma.atleast_2d (*arys)

View inputs as arrays with at least two dimensions.

346 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
arrayl, array?2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have two or more dimensions are preserved.

Returns
res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.
Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> np.atleast_2d(3.0)
array ([[3.11)
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array ([[0., 1., 2.11)
>>> np.atleast_2d(x) .base is x
True

>>> np.atleast_2d(1, [1
larray ([[1]]), array([[

numpy .ma.atleast_3d (*arys)

View inputs as arrays with at least three dimensions.
Parameters
arrayl, array?2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have three or more dimensions are preserved.

Returns
resl, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 3. Copies are avoided where
possible, and views with three or more dimensions are returned. For example, a 1-D
array of shape (N,) becomes a view of shape (1, N, 1), anda 2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array ([[[3.111)

>>> x = np.arange(3.0)
>>> np.atleast_3d(x) .shape
(1, 3, 1)

1.6. Masked arrays 347

NumPy Reference, Release 1.6.0

>>> x = np.arange (12.0) .reshape (4, 3)
>>> np.atleast_3d(x) .shape

(4, 3, 1)

>>> np.atleast_3d(x) .base is x

True

>>> for arr in np.atleast_3d([1, 2], [[1, 211, [[[1, 211]):
print arr, arr.shape

[l
[
[l
[
[0l

numpy .ma .expand_dims (x, axis)
Expand the shape of an array.

Expands the shape of the array by including a new axis before the one specified by the axis parameter. This
function behaves the same as numpy . expand_dims but preserves masked elements.

See Also:

numpy . expand_dims
Equivalent function in top-level NumPy module.

Examples
>>> import numpy.ma as ma
>>> x = ma.array([1l, 2, 4])
>>> x[1] = ma.masked
>>> x
masked_array(data = [1 —-— 4],
mask = [False True False],

fill_value = 999999)
>>> np.expand_dims (x, axis=0)
array ([[1, 2, 411)
>>> ma.expand_dims (x, axis=0)
masked_array (data =

[([1 —— 471,
mask =
[[False True False]],
fill_value = 999999)

The same result can be achieved using slicing syntax with np.newaxis.

>>> x[np.newaxis, :]
masked_array(data =
[([1 —— 411,
mask =
[[False True False]],
fill_value = 999999)

numpy .ma.squeeze (a)
Remove single-dimensional entries from the shape of an array.

Parameters
a: array_like

Input data.

348 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
squeezed : ndarray

The input array, but with with all dimensions of length 1 removed. Whenever possible,
a view on a is returned.

Examples

>>> x = np.array ([[[0], [1], [2]1])
>>> x.shape

(1, 3, 1)

>>> np.squeeze (x) .shape

(3,)

MaskedArray.squeeze ()
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.
See Also:

numpy . squeeze
equivalent function

numpy .ma.column_stack (fup)

Stack 1-D arrays as columns into a 2-D array.
Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are
stacked as-is, just like with Astack. 1-D arrays are turned into 2-D columns first.
Parameters
tup : sequence of 1-D or 2-D arrays.
Arrays to stack. All of them must have the same first dimension.

Returns
stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack ((a,b))
array ([[1, 27,
(2, 31,
(3, 411)

numpy .ma . concatenate (arrays, axis=0)
Concatenate a sequence of arrays along the given axis.

Parameters
arrays : sequence of array_like

1.6. Masked arrays 349

NumPy Reference, Release 1.6.0

The arrays must have the same shape, except in the dimension corresponding to axis
(the first, by default).

axis : int, optional
The axis along which the arrays will be joined. Default is 0.

Returns
result : MaskedArray

The concatenated array with any masked entries preserved.
See Also:

numpy .concatenate
Equivalent function in the top-level NumPy module.

Examples
>>> import numpy.ma as ma
>>> a = ma.arange (3)
>>> a[l] = ma.masked
>>> b = ma.arange (2, 5)
>>> a
masked_array(data = [0 —— 2],
mask = [False True False],
fill_value = 999999)
>>> b
masked_array(data = [2 3 4],
mask = False,
fill_value = 999999)
>>> ma.concatenate([a, bl)
masked_array(data = [0 —— 2 2 3 4],
mask = [False True False False False False],
fill_value = 999999)

numpy .ma .dstack (fup)

Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds
arrays divided by dsplit. This is a simple way to stack 2D arrays (images) into a single 3D array for
processing.

Parameters
tup : sequence of arrays
Arrays to stack. All of them must have the same shape along all but the third axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.
See Also:

vstack
Stack along first axis.

350 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

hstack
Stack along second axis.

concatenate
Join arrays.

dsplit
Split array along third axis.
Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))

array ([[[1, 21,
[2’ 31’
[3, 4111)
>>> a = np.array ([[1],[2],[3]11)

1
>>> b = np.array ([[2],131,10411])
>>> np.dstack((a,b))

array ([[[1, 211,
[z, 311,
[[3, 4]111)

numpy .ma . hstack (fup)

Stack arrays in sequence horizontally (column wise).
Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided
by hsplit.
Parameters
tup : sequence of ndarrays
All arrays must have the same shape along all but the second axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.
See Also:
vstack

Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third axis).

concatenate
Join a sequence of arrays together.

hsplit
Split array along second axis.

1.6. Masked arrays 351

NumPy Reference, Release 1.6.0

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))

>>> b = np.array((2,3,4))

>>> np.hstack((a,b))

array ([1, 2, 3, 2, 3, 41)

>>> a = np.array ([[1],[2],[3]]
21,131, 14
)

>>> b = np.array([[2], , [41]
>>> np.hstack((a,b)
array ([[1, 2],

[2’ 3]/

(3, 411)

numpy .ma.hsplit (ary, indices_or_sections)

Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. Asplit is equivalent to split with axis=1, the array is always

split along the second axis regardless of the array dimension.

See Also:

split

Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> x = np.arange (16.0) .reshape (4,
>>> x
array ([0., 1., 2.,

[

[4., 5., 6.,

[8., 9., 10., 1
[12., 13., 14., 1
>>> np.hsplit(x, 2)

g = J W

[array ([[0., 1.1,
[4., 5.1,
[8., 9.1,
[12., 13.11),
array ([[2., 3.1,
[6., 7.1,
[

10., 11.71,

[14., 15.11)]
>>> np.hsplit(x, np.array ([3,
[array ([[O., 1., 2.1,

}V
:|V
]
]

1)

61))

352

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

[15.11),
array ([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange (8.0) .reshape (2, 2, 2)

>>> x
array ([[[O., 1.1,
[2., 3.11,
[T 4., 5.1,
[6., 7.111)
>>> np.hsplit(x, 2)
larray ([[[0., 1.11,
(L 4., 5.111),
array ([[[2., 3.11,
[r 6., 7.111)1

numpy .ma.mr__
Translate slice objects to concatenation along the first axis.

This is the masked array version of lib.index_tricks.RClass.
See Also:

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
array([1, 2, 3, 0, 0O, 4, 5, 6])

numpy .ma.row_stack (fup)

Stack arrays in sequence vertically (row wise).
Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided
by vsplit.
Parameters
tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same shape along all
but the first axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.
See Also:
hstack

Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

concatenate
Join a sequence of arrays together.

1.6. Masked arrays 353

NumPy Reference, Release 1.6.0

vsplit
Split array into a list of multiple sub-arrays vertically.
Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1l, 2, 31)
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array ([[1, 2, 31,

[2, 3, 411)

>>> a = np.array ([[1],

>>> b = np.array ([[2], [3], [4]1])
>>> np.vstack((a,b))

array ([[1],

numpy .ma .vstack (fup)

Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided
by vsplit.

Parameters

tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same shape along all
but the first axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.
See Also:
hstack

Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

concatenate
Join a sequence of arrays together.

vsplit
Split array into a list of multiple sub-arrays vertically.
Notes

The function is applied to both the _data and the _mask, if any.

354 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> a = np.array([1l, 2, 31)
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))

array ([[1, 2, 31,

(2, 3, 411
>>> a = np.array ([[1], [2], [311)
>>> b = np.array ([[2], [31, [)
>>> np.vstack ((a,b))
array ([[1],

(21,

[31,

(21,

[31,

[411)

Joining arrays

ma.column_stack(tup) Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma . dstack(tup) Stack arrays in sequence depth wise (along third axis).
ma . hstack(tup) Stack arrays in sequence horizontally (column wise).
ma . vstack(tup) Stack arrays in sequence vertically (row wise).

numpy .ma.column_stack (fup)

Stack 1-D arrays as columns into a 2-D array.
Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are
stacked as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.
Parameters
tup : sequence of 1-D or 2-D arrays.
Arrays to stack. All of them must have the same first dimension.

Returns
stacked : 2-D array

The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack ((a,b))
array ([[1, 21,

(2, 31,

(3, 411)

numpy .ma.concatenate (arrays, axis=0)
Concatenate a sequence of arrays along the given axis.

1.6. Masked arrays 355

NumPy Reference, Release 1.6.0

Parameters
arrays : sequence of array_like

The arrays must have the same shape, except in the dimension corresponding to axis
(the first, by default).

axis : int, optional
The axis along which the arrays will be joined. Default is 0.

Returns
result : MaskedArray

The concatenated array with any masked entries preserved.

See Also:

numpy .concatenate
Equivalent function in the top-level NumPy module.

Examples
>>> import numpy.ma as ma
>>> a = ma.arange (3)
>>> a[l] = ma.masked
>>> b = ma.arange (2, 5)
>>> a
masked_array(data = [0 —— 2],
mask = [False True False],

fill_value = 999999)
>>> Db
masked_array(data = [2 3 4],
mask = False,
fill_value = 999999)
>>> ma.concatenate([a, bl)
masked_array(data = [0 —— 2 2 3 4],
mask [False True False False False False],
fill_value = 999999)

numpy .ma .dstack (fup)

Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds
arrays divided by dsplit. This is a simple way to stack 2D arrays (images) into a single 3D array for
processing.

Parameters
tup : sequence of arrays
Arrays to stack. All of them must have the same shape along all but the third axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.

See Also:

356 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

vstack
Stack along first axis.

hstack
Stack along second axis.

concatenate
Join arrays.

dsplit
Split array along third axis.
Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array ([[[1, 27,
[2, 31,
[3, 4111)
>>> a = np.array ([[1],[2],[311)

1
>>> b = np.array ([[2],[31,1[411)
>>> np.dstack((a,b))

array ([[[1, 211,
(L2, 311,
[[3, 411D)

numpy .ma . hstack (fup)

Stack arrays in sequence horizontally (column wise).
Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided
by hsplit.
Parameters
tup : sequence of ndarrays
All arrays must have the same shape along all but the second axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.
See Also:
vstack

Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third axis).

concatenate
Join a sequence of arrays together.

1.6. Masked arrays 357

NumPy Reference, Release 1.6.0

hsplit
Split array along second axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array ([1, 2, 3, 2, 3, 41)
>>> a = np.array ([[1],[2],[3]1])
21,131 4
)

>>> b = np.array ([,[411)
>>> np.hstack ((a,b)
array ([[1, 27,

(2, 31,

[3, 411)

numpy .ma .vstack (fup)

Stack arrays in sequence vertically (row wise).
Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided
by vsplit.
Parameters
tup : sequence of ndarrays

Tuple containing arrays to be stacked. The arrays must have the same shape along all
but the first axis.

Returns
stacked : ndarray

The array formed by stacking the given arrays.
See Also:
hstack

Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

concatenate
Join a sequence of arrays together.

vsplit
Split array into a list of multiple sub-arrays vertically.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

358 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.array([l, 2, 31)
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array ([[1, 2, 3],

(2, 3, 411)

>>> a = np.array ([[1],

>>> b = np.array ([[2], [31, [411])
>>> np.vstack((a,b))

array ([[1],

Operations on masks

Creating a mask

ma

ma .
ma.
ma.

.make_mask(m][, copy, shrink, dtype]) Create a boolean mask from an array.
make_mask_none(newshape[, dtype]) Return a boolean mask of the given shape, filled with False.
mask_or(ml, m2[, copy, shrink]) Combine two masks with the 1ogical_or operator.
make_mask_descr(ndtype) Construct a dtype description list from a given dtype.

numpy .ma .make_mask (m, copy=False, shrink=True, dtype=<type ‘numpy.bool_">)

Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence
that is convertible to integers, or nomask. Does not require that contents must be Os and 1s, values of 0 are
interepreted as False, everything else as True.

Parameters
m : array_like

Potential mask.
copy : bool, optional

Whether to return a copy of m (True) or m itself (False).
shrink : bool, optional

Whether to shrink m to nomask if all its values are False.
dtype : dtype, optional

Data-type of the output mask. By default, the output mask has a dtype of MaskType
(bool). If the dtype is flexible, each field has a boolean dtype.

Returns
result : ndarray

A boolean mask derived from m.

Examples

1.6.

Masked arrays 359

NumPy Reference, Release 1.6.0

>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask (m)

array ([True, False, True, True], dtype=bool)
>>m = [1, 0, 1, 1]

>>> ma.make_mask (m)

array ([True, False, True, True], dtype=bool)
>>>m = [1, 0, 2, -3]

>>> ma.make_mask (m)

array ([True, False, True, True], dtype=bool)

Effect of the shrink parameter.

>>> m = np.zeros (4)

>>> m

array ([0., 0., 0., 0.7)

>>> ma.make_mask (m)

False

>>> ma.make_mask (m, shrink=False)

array ([False, False, False, False], dtype=bool)

Using a flexible drype.

>>>m = [1, 0, 1, 1]
>> n = [0, 1, 0, 0]
>>> arr = []
>>> for man, mouse in zip(m, n):
arr.append((man, mouse))
>>> arr
((x, 0y, (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype ({’names’:[’man’, ’'mouse’],

"formats’ : [np.int, np.int]})

>>> arr = np.array(arr, dtype=dtype)

>>> arr

array ([(1, 0), (O, 1), (1, 0), (1, 0)1,
dtype=[('man’, ’'<i4’), ('mouse’, ’'<id’)])

>>> ma.make_mask (arr, dtype=dtype)

(False, True),

("mouse’, " 1bl’)])

array ([(True, False),
dtype=[('man’, ' |bl"),

numpy .ma .make_mask_none (newshape, dtype=None)

Return a boolean mask of the given shape, filled with False.

(True, False),

(True, False)],

This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations.
If a complex dtype is specified, the type of each field is converted to a boolean type.

Parameters
newshape : tuple

A tuple indicating the shape of the mask.
dtype: {None, dtype}, optional :

If None, use a MaskType instance. Otherwise, use a new datatype with the same fields

as dtype, converted to boolean types.

Returns
result : ndarray

An ndarray of appropriate shape and dtype, filled with False.

360

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:
make_mask
Create a boolean mask from an array.
make mask descr
Construct a dtype description list from a given dtype.
Examples

>>> import numpy.ma as ma

>>> ma.make_mask_none ((3,))

array ([False, False, False], dtype=bool)
Defining a more complex dtype.

>>> dtype = np.dtype({’'names’:[’foo’, ’'bar’],
"formats’ : [np.float32, np.int]})
>>> dtype
dtype ([(" foo’, ’"<f4’), ('bar’, ’'<id’)])
>>> ma.make_mask_none((3,), dtype=dtype)
array ([(False, False), (False, False), (False, False)],
dtype=[(" foo’, " |bl"), ('bar’, ’'Ibl’")])

numpy .ma.mask_or (ml, m2, copy=False, shrink=True)
Combine two masks with the 1ogical_or operator.
The result may be a view on m/ or m2 if the other is nomask (i.e. False).

Parameters
ml, m2 : array_like

Input masks.
copy : bool, optional

If copy is False and one of the inputs is nomask, return a view of the other input mask.
Defaults to False.

shrink : bool, optional
Whether to shrink the output to nomask if all its values are False. Defaults to True.

Returns
mask : output mask

The result masks values that are masked in either m/ or m2.

Raises
ValueError :

If m1 and m2 have different flexible dtypes.

Examples
>>> ml = np.ma.make_mask ([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])

>>> np.ma.mask_or (ml, m2)
array ([True, True, True, False], dtype=bool)

numpy .ma .make_mask_descr (ndtype)
Construct a dtype description list from a given dtype.

1.6. Masked arrays 361

NumPy Reference, Release 1.6.0

Parameters
ndtype : dtype

The dtype to convert.

Returns
result : dtype

A dtype that looks like ndtype, the type of all fields is boolean.

Examples

>>> import numpy.ma as ma
>>> dtype = np.dtype({’names’:[’foo’, ’"bar’],
"formats’ : [np.float32, np.int]})

>>> dtype

dtype ([(" foo’, "<f4’), ('bar’, ’'<id’)])
>>> ma.make_mask_descr (dtype)
dtype ([(" foo’, 7 |bl"), ('bar’, ’'|bl’)1])

>>> ma.make_mask_descr (np.float32)
<type "numpy.bool_’>

Accessing a mask

Returns a new dtype object, with the type of all fields in ndtype to a boolean type. Field names are not altered.

ma.getmask(a) Return the mask of a masked array, or nomask.

ma.getmaskarray(arr)

ma.masked_array.mask Mask

Return the mask of a masked array, or full boolean array of False.

numpy .ma .getmask (a)

Return the mask of a masked array, or nomask.

Parameters
a: array_like

Input MaskedArray for which the mask is required.

See Also:

getdata

Return the data of a masked array as an ndarray.

getmaskarray

Return the mask of a masked array, or full array of False.

Examples
>>> import numpy.ma as ma
>>> a = ma.masked_equal ([[1,2],13,411, 2)
>>> a
masked_array (data =
[[1 ——]
[3 411,

mask =

[[False True]

[False False]],
fill_value=999999)

Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask. To
guarantee a full array of booleans of the same shape as a, use getmaskarray.

362

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> ma.getmask (a)
array ([[False, True],
[False, False]], dtype=bool)

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array ([[False, True],
[False, False]], dtype=bool)

Result when mask == nomask

>>> b = ma.masked_array([[1,2],1[3,4]1])
>>> b
masked_array(data =
[[1 2]
[3 411,
mask =
False,
fill_value=999999)
>>> ma.nomask

False

>>> ma.getmask (b) == ma.nomask
True

>>> b.mask == ma.nomask

True

numpy .ma .getmaskarray (arr)
Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters
arr : array_like

Input MaskedArray for which the mask is required.
See Also:
getmask
Return the mask of a masked array, or nomask.

getdata
Return the data of a masked array as an ndarray.

Examples
>>> import numpy.ma as ma
>>> a = ma.masked_equal ([[1,2], 13,411, 2)
>>> a
masked_array(data =
[([1 --1
[3 411,

mask =
[[False True]
[False False]l],
fill_value=999999)
>>> ma.getmaskarray (a)

1.6. Masked arrays 363

NumPy Reference, Release 1.6.0

array ([[False, True]

[False,

Result when mask == nomask

>>> b =
>>> Db
masked_array(data =
[[1 2]
[3 411,
mask =
False,
fill_value=999999)
>>> >ma.getmaskarray (b)
array ([[False, False]
[False,

masked_array.mask

Mask

Finding masked data

4
False]], dtype=bool)

ma.masked_array ([[1,2],[3,411)

r
False]], dtype=bool)

ma.
.flatnotmasked_edges(a)
ma.
.notmasked_edges(al, axis])

ma

ma

flatnotmasked_contiguous(a)

notmasked_contiguous(a[, axis])

Find contiguous unmasked data in a masked array along the given axis.
Find the indices of the first and last unmasked values.

Find contiguous unmasked data in a masked array along the given axis.
Find the indices of the first and last unmasked values along an axis.

numpy .ma . flatnotmasked contiguous (a)
Find contiguous unmasked data in a masked array along the given axis.

Parameters
a: narray

The input array.

Returns
slice_list : list

A sorted sequence of slices (start index, end index).

See Also:

flatnotmasked_edges,
clump_unmasked

Notes
Only accepts 2-D arrays at most.

Examples

>>> a = np.ma.arange (10)

notmasked_contiguous,

notmasked_edges, clump_masked,

>>> np.ma.extras.flatnotmasked_contiguous (a)

slice (0, 10, None)
>>> mask = (a < 3)
>>> a[mask] = np.ma.masked
>>> np.array (a[~a.mask])

array ([3, 4, 6, 7, 8])

(a > 8)

[(a == 5)

364

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.ma.extras.flatnotmasked_contiguous (a)
[slice (3, 5, None), slice (6, 9, None)]

>>> al:] = np.ma.masked

>>> print np.ma.extras.flatnotmasked_edges (a)
None

numpy .ma . flatnotmasked_edges (a)
Find the indices of the first and last unmasked values.

Expects a 1-D MaskedArray, returns None if all values are masked.

Parameters
arr : array_like

Input 1-D MaskedArray

Returns
edges : ndarray or None

The indices of first and last non-masked value in the array. Returns None if all values

are masked.

See Also:

Notes

Only accepts 1-D arrays.

Examples
>>> a = np.ma.arange (10)
>>> flatnotmasked_edges (a)
[0,-1]
>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked

>>> np.array (al[~a.mask])
array([3, 4, 6, 7, 81])

>>> flatnotmasked_edges (a)
array ([3, 81])

>>> al:] = np.ma.masked
>>> print flatnotmasked_edges (ma)
None

numpy .ma .notmasked_contiguous (a, axis=None)
Find contiguous unmasked data in a masked array along the given axis.

Parameters
a: array_like

The input array.

axis : int, optional

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges, clump_masked,
clump_unmasked

Axis along which to perform the operation. If None (default), applies to a flattened

version of the array.

1.6. Masked arrays

365

NumPy Reference, Release 1.6.0

Returns
endpoints : list

A list of slices (start and end indexes) of unmasked indexes in the array.

See Also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges, clump_masked,

clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples
>>> a = np.arange (9) .reshape ((3, 3))
>>> mask = np.zeros_like(a)
>>> mask[1l:, 1:] =1
>>> ma = np.ma.array(a, mask=mask)

>>> np.array (ma[~ma.mask])
array ([0, 1, 2, 3, 6])

>>> np.ma.extras.notmasked_contiguous (ma)
[slice (0, 4, None), slice (6, 7, None)]

numpy .ma .notmasked_edges (a, axis=None)
Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the

first and last unmasked values respectively.

Parameters
a: array_like

The input array.
axis : int, optional

Axis along which to perform the operation. If None (default), applies to a flattened
version of the array.

Returns
edges : ndarray or list

An array of start and end indexes if there are any masked data in the array. If there are
no masked data in the array, edges is a list of the first and last index.

See Also:

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous,

clump_masked, clump_unmasked

Examples
>>> a = np.arange (9) .reshape ((3, 3))
>>> m = np.zeros_like(a)
>>> m[l:, 1:] = 1
>>> am = np.ma.array(a, mask=m)

>>> np.array (am[~am.mask])
array ([0, 1, 2, 3, 6])

366 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.ma.extras.notmasked_edges (ma)
array ([0, 6])

Modifying a mask

ma .mask_cols(a[, axis]) Mask columns of a 2D array that contain masked values.

ma .mask_or(ml, m2[, copy, shrink]) Combine two masks with the 1ogical_or operator.

ma .mask_rowcols(a[, axis]) Mask rows and/or columns of a 2D array that contain masked values.
ma .mask_rows(a[, axis]) Mask rows of a 2D array that contain masked values.

ma . harden_mask(self) Force the mask to hard.

ma .soften_mask(self) Force the mask to soft.

ma.MaskedArray.harden_mask() Force the mask to hard.
ma.MaskedArray.soften_mask() Force the mask to soft.
ma.MaskedArray.shrink_mask() Reduce a mask to nomask when possible.
ma.MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.

numpy .ma .mask_cols (a, axis=None)
Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.
See Also:
mask_rowcols

Mask rows and/or columns of a 2D array.

masked_where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)
>>> afl, 1] =1
>>> a
array ([[O0, 0, 01,
(0, 1, 01,
(0, 0, 0I1)
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array (data =
[[0 O O]
[0 —— 0]
[0 0 011,
mask =

[[False False False]
[False True False]
[False False False]],
fill_value=999999)
>>> ma.mask_cols (a)
masked_array(data =

[[0 —= 0]

[0 —— 0]

[0 —— 0171,
mask =

[[False True False]
[False True False]

1.6. Masked arrays 367

NumPy Reference, Release 1.6.0

[False True False]],
fill_value=999999)

numpy .ma .mask_or (ml, m2, copy=~False, shrink=True)
Combine two masks with the 1ogical_or operator.
The result may be a view on m/ or m2 if the other is nomask (i.e. False).

Parameters
ml, m2 : array_like

Input masks.
copy : bool, optional

If copy is False and one of the inputs is nomask, return a view of the other input mask.
Defaults to False.

shrink : bool, optional
Whether to shrink the output to nomask if all its values are False. Defaults to True.

Returns
mask : output mask

The result masks values that are masked in either m/ or m2.

Raises
ValueError :

If mI and m2 have different flexible dtypes.

Examples
>>> ml = np.ma.make_mask ([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, O,
>>> np.ma.mask_or (ml, m2)
array ([True, True, True, False], dtype=bool)

numpy .ma .mask_rowcols (a, axis=None)
Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected
using the axis parameter.

oIf axis is None, rows and columns are masked.
oIf axis is 0, only rows are masked.
oIf axis is 1 or -1, only columns are masked.
Parameters

a: array_like, MaskedArray

The array to mask. If not a MaskedArray instance (or if no array elements are masked).
The result is a MaskedArray with mask set to nomask (False). Must be a 2D array.

axis : int, optional

Axis along which to perform the operation. If None, applies to a flattened version of the
array.

Returns
a : MaskedArray

368 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

A modified version of the input array, masked depending on the value of the axis pa-
rameter.

Raises
NotImplementedError :

If input array a is not 2D.
See Also:
mask_rows

Mask rows of a 2D array that contain masked values.

mask_cols
Mask cols of a 2D array that contain masked values.

masked where
Mask where a condition is met.
Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)

>>> afl, 1] =1
>>> a
array ([[0, 0, 071,
[o, 1, 01,
[0, 0, 01D
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array (data =
[[0 0 O]
[0 —— 0]
[0 0 0]1,
mask =

[[False False False]
[False True False]
[False False False]],
fill _value=999999)
>>> ma.mask_rowcols (a)
masked_array(data =
[[0 —= 0]

[[False True False]

[True True True]

[False True False]],
fill_value=999999)

numpy .ma .mask_rows (a, axis=None)
Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See Also:

1.6. Masked arrays

369

NumPy Reference, Release 1.6.0

mask_rowcols
Mask rows and/or columns of a 2D array.

masked_where
Mask where a condition is met.
Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=np.int)

>>> afl, 1] =1
>>> a
array ([[0, 0, 071,
[o, 1, 01,
[0, 0, OID)
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array (data =
[[0 O O]
[0 —— 0]
[0 0 0]1,
mask =

[[False False False]
[False True False]
[False False False]],
fill_value=999999)
>>> ma.mask_rows (a)
masked_array(data =
[[0 O O]
[-- - -]
[0 0 011,
mask =
[[False False False]
[True True True]
[False False False]],
i1l _value=999999)

numpy .ma . harden_mask (self)
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask sets
hardmask to True.

See Also:
hardmask

numpy .ma . soften_mask (self)
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask sets
hardmask to False.

See Also:
hardmask

MaskedArray.harden_mask ()
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask sets
hardmask to True.

370 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:
hardmask

MaskedArray.soften_mask ()
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask sets
hardmask to False.

See Also:
hardmask

MaskedArray.shrink_mask ()
Reduce a mask to nomask when possible.

Parameters
None :

Returns
None :

Examples

>>> x = np.ma.array ([[1,2 1, [3, 4]], mask=[0]+4)
>>> x.mask
array ([[False, False],
[False, False]], dtype=bool)
>>> x.shrink_mask ()
>>> x.mask
False

MaskedArray.unshare_mask ()
Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from the sharedmask property. unshare_mask
ensures the mask is not shared. A copy of the mask is only made if it was shared.

See Also:

sharedmask

1.6. Masked arrays 371

NumPy Reference, Release 1.6.0

Conversion operations

> to a masked array

ma . asarray(al, dtype, order]) Convert the input to a masked array of the given data-type.
ma.asanyarray(a[, dtype]) Convert the input to a masked array, conserving subclasses.
ma . fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by a fill
value.
ma.masked_equal(x, value[, copy]) Mask an array where equal to a given value.
ma.masked_greater(x, value[, copy]) Mask an array where greater than a given value.
ma.masked_greater_equal(x, value[, Mask an array where greater than or equal to a given value.
copyl)
ma.masked_inside(x, vl, v2[, copy]) Mask an array inside a given interval.
ma.masked_invalid(al, copy]) Mask an array where invalid values occur (NaNs or infs).
ma.masked_less(x, value[, copy]) Mask an array where less than a given value.
ma.masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
ma.masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
ma.masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to value.
ma.masked_outside(x, vl, v2[, copy]) Mask an array outside a given interval.
ma.masked_values(x, valuel, rtol, atol, ...]) Mask using floating point equality.
ma .masked_where(condition, a[, copy]) Mask an array where a condition is met.

numpy .ma .asarray (a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray, a base class
MaskedArray is returned.

Parameters
a: array_like

Input data, in any form that can be converted to a masked array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype : dtype, optional
By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

Masked array interpretation of a.

See Also:

asanyarray
Similar to asarray, but conserves subclasses.

Examples
>>> x = np.arange (10.) .reshape (2, 5)
>>> x
array ([[O., 1., 2., 3.,]

4.1,
[5., 6., 7., 8., 9.1
>>> np.ma.asarray (x)

372 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

masked_array(data =
[(r 0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.11,
mask =
False,
fill _value = 1e+20)
>>> type(np.ma.asarray (x))
<class ’'numpy.ma.core.MaskedArray’>

numpy .ma .asanyarray (a, dtype=None)
Convert the input to a masked array, conserving subclasses.
If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an ndarray.

Parameters
a: array_like

Input data, in any form that can be converted to an array.
dtype : dtype, optional

By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory representa-
tion. Default is ‘C’.

Returns
out : MaskedArray

MaskedArray interpretation of a.
See Also:

asarray
Similar to asanyarray, but does not conserve subclass.

Examples
>>> x = np.arange (10.) .reshape (2, 5)
>>> x
array ([[O., 1., 2., 3.,]

4.7,
[5., 6., 7., 8., 9.11)
>>> np.ma.asanyarray (x)
masked_array (data =
([0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.11,
mask =
False,
fill_value = 1le+20)
>>> type(np.ma.asanyarray (x))
<class ’'numpy.ma.core.MaskedArray’>

numpy .ma . £fix_invalid (a, mask=False, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.
Invalid data means values of nan, inf, etc.

Parameters
a: array_like

1.6. Masked arrays 373

NumPy Reference, Release 1.6.0

Input array, a (subclass of) ndarray.

copy : bool, optional

Whether to use a copy of a (True) or to fix a in place (False). Default is True.

fill_value : scalar, optional

Value used for fixing invalid data. Default is None, in which casethe a.fi11_value

is used.

Returns
b : MaskedArray

The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples
>>> x = np.ma.array([l., -1, np.nan, np.inf], mask=[1] + [0]=*3)
>>> x
masked_array(data = [-- -1.0 nan inf],

mask =
fill _value = 1e+20)
>>> np.ma.fix_invalid(x)

[True False False False],

masked_array(data = [-- -1.0 —— ——],
mask = [True False True Truel,
fill value = 1e+20)

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
1.00000000e+00,
1.00000000e+207)
>>> x.data
array ([1.,

array ([

-1., NaN, Inf])
numpy .ma .masked_equal (x, value, copy=True)

Mask an array where equal to a given value.

-1.00000000e+00,

1.00000000e+20,

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays, consider

using masked_values (x, value).
See Also:
masked where

Mask where a condition is met.
masked_values

Mask using floating point equality.
Examples

>>> import numpy.ma as ma

>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)

>>> ma.masked_equal (a, 2)
masked_array(data = [0 1 —-— 37,

374

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

mask = [False False True False],
fill_value=999999)

numpy .ma .masked_greater (x, value, copy=True)
Mask an array where greater than a given value.

This function is a shortcut to masked_where, with condition = (x > value).

See Also:

masked where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a

array ([0, 1, 2, 31)
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 —-1,
mask = [False False False True],
fill_value=999999)

numpy .ma .masked_greater_equal (x, value, copy=True)
Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x >= value).

See Also:

masked where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.arange(4)

>>> a

array ([0, 1, 2, 31)

>>> ma.masked_greater_equal (a, 2)

masked_array(data = [0 1 -—- ——],
mask = [False False True True],
fill_value=999999)

numpy .ma .masked_inside (x, vI, v2, copy=True)
Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (vl <= x <= v2). The

boundaries v/ and v2 can be given in either order.

See Also:

masked where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

1.6. Masked arrays

375

NumPy Reference, Release 1.6.0

Examples
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data = [0.31 1.2 —— —— -0.4 -1.17],
mask = [False False True True False False],

fill_value=1e+20)

The order of v/ and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data = [0.31 1.2 —— -——- -0.4 -1.17],
mask = [False False True True False False],

fill_value=1e+20)
numpy .ma .masked_invalid (a, copy=True)
Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask is
conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but
accepts any array_like object.

See Also:

masked where
Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (5, dtype=np.float)

>>> al[2] = np.NaN
>>> a[3] = np.PINF
>>> a
array ([0., 1., NaN, Inf, 4.7)
>>> ma.masked_invalid(a)
masked_array(data = [0.0 1.0 —— —— 4.0],
mask = [False False True True False],

fill_value=1e+20)
numpy .ma .masked_1less (x, value, copy=True)
Mask an array where less than a given value.
This function is a shortcut to masked_where, with condition = (x < value).
See Also:

masked_where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> 3

array ([0, 1, 2, 31)
>>> ma.masked_less (a, 2)
masked_array(data = [-— —-—— 2 3],

376 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

mask = [True True False False],
fill_value=999999)

numpy .ma .masked_less_equal (x, value, copy=True)
Mask an array where less than or equal to a given value.
This function is a shortcut to masked_where, with condition = (x <= value).
See Also:

masked where
Mask where a condition is met.

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a

array ([0, 1, 2, 31)
>>> ma.masked_less_equal (a, 2)
masked_array(data = [-— -—— —— 317,
mask = [True True True False],
fill_value=999999)

numpy .ma .masked_not_equal (x, value, copy=True)
Mask an array where not equal to a given value.
This function is a shortcut to masked_where, with condition = (x != value).
See Also:
masked where
Mask where a condition is met.
Examples

>>> import numpy.ma as ma

>>> a = np.arange(4)

>>> a

array ([0, 1, 2, 31)

>>> ma.masked_not_equal (a, 2)

masked_array(data = [-— -—— 2 —-1,
mask = [True True False True],
fill_value=999999)

numpy .ma .masked_object (x, value, copy=True, shrink=True)
Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use
masked_values instead.

Parameters
x : array_like

Array to mask
value : object
Comparison value

copy : {True, False}, optional

1.6. Masked arrays 377

NumPy Reference, Release 1.6.0

Whether to return a copy of x.
shrink : {True, False}, optional
Whether to collapse a mask full of False to nomask

Returns
result : MaskedArray

The result of masking x where equal to value.

See Also:

masked where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

masked wvalues
Mask using floating point equality.

Examples

>>> import numpy.ma as ma

>>> food = np.array([’green_eggs’, ’"ham’], dtype=object)
>>> # don’t eat spoiled food

>>> eat = ma.masked_object (food, ’'green_eggs’)

>>> print eat

[—— ham]

>>> # plain ol‘' ham is boring

>>> fresh_food = np.array ([’ cheese’, "ham’, ’'pineapple’], dtype=object)
>>> eat = ma.masked_object (fresh_food, ’green_eggs’)

>>> print eat
[cheese ham pineapple]
Note that mask is set to nomask if possible.

>>> eat

masked_array (data = [cheese ham pineapple],
mask = False,
fill_value=?)

numpy .ma .masked_outside (x, vi, v2, copy=True)
Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < vD)I(x > v2). The
boundaries v/ and v2 can be given in either order.

See Also:

masked where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

378 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data = [-—— -- 0.01 0.2 —— ——],
mask = [True True False False True True],
fill_value=1e+20)

The order of v/ and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data = [-— -- 0.01 0.2 —— —-],
mask = [True True False False True True],
fill_value=1e+20)

numpy .ma .masked_values (x, value, rtol=1.0000000000000001e-05, atol=1e-08, copy=True,

shrink=True)
Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, i.e. where the
following condition is True

(abs(x - value) <= atol+rtol*abs(value))

The fill_value is set to value and the mask is set to nomask if possible. For integers, consider using
masked_equal.

Parameters
x : array_like

Array to mask.
value : float

Masking value.
rtol : float, optional

Tolerance parameter.
atol : float, optional

Tolerance parameter (1e-8).
copy : bool, optional

Whether to return a copy of x.
shrink : bool, optional

Whether to collapse a mask full of False to nomask.

Returns
result : MaskedArray

The result of masking x where approximately equal to value.
See Also:
masked where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

1.6. Masked arrays 379

NumPy Reference, Release 1.6.0

Examples

>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 31)
>>> ma.masked_values(x, 1.1)
masked_array(data = [1.0 —— 2.0 —— 3.0],
mask = [False True False True False],
fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5)

masked_array(data = [1. 1.1 2. 1.1 3. 1,
mask = False,
fill_value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange(5)

>>> x

array ([0, 1, 2, 3, 4])

>>> ma.masked_values (x, 2)

masked_array(data = [0 1 -— 3 47,
mask = [False False True False False],
fill_value=2)

>>> ma.masked_equal (x, 2)

masked_array(data = [0 1 —-— 3 4],
mask = [False False True False False],
fill_value=999999)

numpy .ma .masked_where (condition, a, copy=True)
Mask an array where a condition is met.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked in
the output.

Parameters
condition : array_like

Masking condition. When condition tests floating point values for equality, consider
using masked_values instead.

a: array_like
Array to mask.
copy : bool

If True (default) make a copy of a in the result. If False modify a in place and return a
view.

Returns
result : MaskedArray

The result of masking a where condition is True.
See Also:
masked_values
Mask using floating point equality.

masked_equal
Mask where equal to a given value.

380 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

masked_not_equal
Mask where not equal to a given value.

masked_less_equal
Mask where less than or equal to a given value.

masked_greater_equal
Mask where greater than or equal to a given value.

masked_less
Mask where less than a given value.

masked_greater
Mask where greater than a given value.

masked_inside
Mask inside a given interval.

masked outside
Mask outside a given interval.

masked_invalid
Mask invalid values (NaNs or infs).

Examples
>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a

array ([0, 1, 2, 31)
>>> ma.masked_where(a <= 2, a)
masked_array(data = [-— -—- —— 37,
mask = [True True True False]l,
fill_value=999999)

Mask array b conditional on a.

>> b = ["a’, 'b’, 'c’, 'd"]
>>> ma.masked_where(a == 2, b)
masked_array(data = [a b —— d],

mask = [False False True False],

fill value=N/A)

Effect of the copy argument.

>>> ¢ = ma.masked_where(a <= 2, a)

>>> ¢

masked_array(data = [-— —— —— 31,
mask = [True True True False],
fill_value=999999)

>>> c[0] = 99

>>> ¢

masked_array(data = [99 -- —— 37,
mask = [False True True False],
fil1l_value=999999)

>>> a

array ([0, 1, 2, 31)

>>> c ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99

>>> ¢

masked_array (data = [99 -—- —-- 317,

1.6. Masked arrays 381

NumPy Reference, Release 1.6.0

mask = [False True True

fill_value=999999)
>>> a
array ([99, 1, 2, 31)

When condition or a contain masked values.

>>> a = np.arange (4)

>>> a = ma.masked_where(a == 2,

>>> a

masked_array(data = [0 1 -- 3],
mask = [False False True

i1l _value=999999)
>>> b = np.arange (4)

False],

False],

>>> b = ma.masked_where (b == 0,

>>> b

masked_array(data = [-— 1 2 37,
mask = [True False False
fill_value=999999)

>>> ma.masked_where(a == 3, b)

masked_array(data = [-—— 1 —— ——1,
mask = [True False True

fill_value=999999)

> to a ndarray

Truel,

ma .

ma
ma
ma

ma .

ma

ma .

compress_cols(a)

.compress_rowcols(x[, axis])
.compress_rows(a)
.compressed(x)

filled(al, fill_value])

.MaskedArray.compressed()
MaskedArray.filled(fill_value=None)

Suppress whole columns of a 2-D array that contain masked values.
Suppress the rows and/or columns of a 2-D array that contain
Suppress whole rows of a 2-D array that contain masked values.
Return all the non-masked data as a 1-D array.

Return input as an array with masked data replaced by a fill value.
Return all the non-masked data as a 1-D array.

Return a copy of self, with masked values filled with a given value.

numpy .ma .compress_cols (a)
Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np .ma .extras.compress_rowcols (a, 1), see extras.compress_rowcols for de-

tails.
See Also:

extras.compress_rowcols

numpy .ma.compress_rowcols (x, axis=None)
Suppress the rows and/or columns of a 2-D array that contain masked values.

The suppression behavior is selected with the axis parameter.

oIf axis is None, both rows and columns are suppressed.

oIf axis is 0, only rows are suppressed.

oIf axis is 1 or -1, only columns are suppressed.

Parameters
axis : int, optional

Axis along which to perform the operation. Default is None.

382

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
compressed_array : ndarray

The compressed array.

Examples
>>> x = np.ma.array (np.arange(9) .reshape (3, 3), mask=[[1, 0, 0],
(1, 0, 01,
(0, 0, 011)
>>> x
masked_array (data =
[[-—— 1 2]
[-—— 4 5]
[6 7 811,

mask =
[[True False False]
[True False False]
[False False False]],
fill_value = 999999)

>>> np.ma.extras.compress_rowcols (x)
array ([[7, 8]1)
>>> np.ma.extras.compress_rowcols (x, 0)
array ([[6, 7, 811)
>>> np.ma.extras.compress_rowcols (x, 1)
array ([[1, 217,

(4, 51,

(7, 811)

numpy .ma.compress_rows (a)
Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np.ma.extras.compress_rowcols (a, 0), see extras.compress_rowcols for de-
tails.

See Also:
extras. compress_rowcols

numpy .ma . compressed (x)
Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a MaskedArray, see MaskedArray.compressed
for details.

See Also:

MaskedArray.compressed
Equivalent method.

numpy .ma . filled (a, fill_value=None)
Return input as an array with masked data replaced by a fill value.

If a is not a MaskedArray, a itself is returned. If a is a MaskedArray and fill_value is None, fill_value is set to
a.fill_value.

Parameters
a : MaskedArray or array_like

An input object.

1.6. Masked arrays 383

NumPy Reference, Release 1.6.0

fill_value : scalar, optional

Filling value. Default is None.

Returns
a : ndarray
The filled array.
See Also:
compressed
Examples
>>> x = np.ma.array (np.arange(9) .reshape (3, 3), mask=[[1, 0, 0],
(1, o, 01,
L. [0, 0, 011
>>> x.filled()
array ([[999999, 1, 21,
[999999, 4, 5],
[6, 7, 811)

MaskedArray.compressed ()
Return all the non-masked data as a 1-D array.

Returns
data : ndarray

A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange (5), mask=[0]*2 + [1]%3)
>>> x.compressed ()

array ([0, 117)

>>> type (x.compressed())

<type ’numpy.ndarray’>

MaskedArray.filled (fill_value=None)
Return a copy of self, with masked values filled with a given value.

Parameters
fill_value : scalar, optional

The value to use for invalid entries (None by default). If None, the fill_value attribute
of the array is used instead.

Returns
filled_array : ndarray

A copy of self with invalid entries replaced by fill_value (be it the function argument
or the attribute of self.

Notes

The result is not a MaskedArray!

384 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], f£ill value=-999)
>>> x.filled()

array ([1, 2, =999, 4, -999])

>>> type(x.filled())

<type ’numpy.ndarray’>

Subclassing is preserved. This means that if the data part of the masked array is a matrix, filled returns a matrix:

>>> x = np.ma.array (np.matrix([[1, 2], [3, 4]1]), mask=[[0, 11, [1, 011)
>>> x.filled()
matrix ([[1, 9999997,

[999999, 411)

> to another object

ma.MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
ma.MaskedArray.tolist(fill_value=None) Return the data portion of the masked array as a hierarchical

Python list.
ma.MaskedArray.torecords() Transforms a masked array into a flexible-type array.
ma.MaskedArray.tostring(fill_value=None[, Return the array data as a string containing the raw bytes in
order]) the array.

MaskedArray.tofile (fid, sep="", format="%s’)
Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

Raises
NotImplementedError :

When rofile is called.

MaskedArray.tolist (fill_value=None)
Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value. If
fill_value is None, the corresponding entries in the output list will be None.

Parameters
fill_value : scalar, optional

The value to use for invalid entries. Default is None.

Returns
result : list

The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6]1, [7,8,9]], mask=[0] + [1,0]%4)
>>> x.tolist ()

[[1, None, 3], [None, 5, None], [7, None, 9]]

>>> x.tolist (-999)

[r1, -999, 31, [-999, 5, -9991, [7, -999, 911

MaskedArray.torecords ()
Transforms a masked array into a flexible-type array.

1.6. Masked arrays 385

NumPy Reference, Release 1.6.0

The flexible type array that is returned will have two fields:
ethe _data field stores the _data part of the array.
ethe _mask field stores the _mask part of the array.

Parameters
None :
Returns

record : ndarray

A new flexible-type ndarray with two fields: the first element containing a value, the

second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (£111_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3]1,1[4,5,6]1,[7,8,91]1, mask=[0] + [1,0]%4)
>>> print x

[[1 —— 3]

[—— 5 ——]

[7 —— 91]
>>> print x.toflex()

[[(1, False) (2, True) (3, False)]
[(4, True) (5, False) (6, True)]
[(7, False) (8, True) (9, False)]l]

MaskedArray.tostring (fill_value=None, order="C")
Return the array data as a string containing the raw bytes in the array.
The array is filled with a fill value before the string conversion.

Parameters
fill_value : scalar, optional

Value used to fill in the masked values. Deafult is None, in which case MaskedAr-
ray.fill_value is used.

order : {‘C’F’A’}, optional
Order of the data item in the copy. Default is ‘C’.
e ‘C’ — C order (row major).
e ‘F’ — Fortran order (column major).
* ‘A’ — Any, current order of array.
* None — Same as ‘A’.
See Also:

ndarray.tostring,tolist,tofile

Notes

As for ndarray.tostring, information about the shape, dtype, etc., but also about fill_value, will be lost.

386 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples

>>> x = np.ma.array(np.array([[1, 2], [3, 4]1]), mask=[[0, 11, [1, O11])
>>> x.tostring ()
"\x01\x00\x00\x00?B\x0f\x00?B\x0f\x00\x04\x00\x00\x00"

Pickling and unpickling

ma . dump(a, F) Pickle a masked array to a file.

ma . dumps(a) Return a string corresponding to the pickling of a masked array.

ma . load(F) Wrapper around cPickle.load which accepts either a file-like object
ma . loads(strg) Load a pickle from the current string.

numpy .ma . dump (a, F)
Pickle a masked array to a file.

This is a wrapper around cPickle.dump.

Parameters
a : MaskedArray

The array to be pickled.
F : str or file-like object
The file to pickle a to. If a string, the full path to the file.

numpy .ma .dumps (a)
Return a string corresponding to the pickling of a masked array.

This is a wrapper around cPickle.dumps.

Parameters
a : MaskedArray

The array for which the string representation of the pickle is returned.

numpy .ma . load (F)
Wrapper around cPickle.load which accepts either a file-like object or a filename.

Parameters
F : stroor file

The file or file name to load.
See Also:
dump
Pickle an array
Notes
This is different from numpy . 1 oad, which does not use cPickle but loads the NumPy binary .npy format.

numpy .ma . loads (strg)
Load a pickle from the current string.

The result of cPickle.loads (strg) isreturned.

Parameters
strg : str

The string to load.
See Also:

1.6. Masked arrays 387

NumPy Reference, Release 1.6.0

dumps
Return a string corresponding to the pickling of a masked array.

Filling a masked array

ma.common_fill_ value(a,b) Return the common filling value of two masked arrays, if any.

ma.default_fill_value(obj) Return the default fill value for the argument object.

ma.maximum_fill_wvalue(obj) Return the minimum value that can be represented by the dtype
of an object.

ma.maximum_fill_value(obj) Return the minimum value that can be represented by the dtype
of an object.

ma.set_fill_value(a, fill_value) Set the filling value of a, if a is a masked array.

ma.MaskedArray.get_fill_value() Return the filling value of the masked array.

ma.MaskedArray.set_fill value(value=Soihg filling value of the masked array.

ma.MaskedArray.fill_value Filling value.

numpy .ma.common_f£fill value (a, b)
Return the common filling value of two masked arrays, if any.

Ifa.fill_value == b.fill_value, return the fill value, otherwise return None.

Parameters
a, b : MaskedArray

The masked arrays for which to compare fill values.

Returns
fill_value : scalar or None

The common fill value, or None.

Examples
>>> x = np.ma.array ([0, 1.1, fill_value=3)
>>> y = np.ma.array ([0, 1.], fill_value=3)
>>> np.ma.common_fill value(x, V)
3.0

numpy .ma.default_£fill_ wvalue (0bj)
Return the default fill value for the argument object.

The default filling value depends on the datatype of the input array or the type of the input scalar:

datatype default
bool True

int 999999
float 1.e20
complex 1.e20+0j
object “r

string ‘N/A

Parameters

obj : ndarray, dtype or scalar
The array data-type or scalar for which the default fill value is returned.

Returns
fill_value : scalar

The default fill value.

388 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
>>> np.ma.default_fill_value (1)
999999
>>> np.ma.default_fill_value(np.array([l.1, 2., np.pil))
le+20
>>> np.ma.default_fill_value (np.dtype (complex))
(le+20+07)

numpy .ma.maximum £ill value (0bj)
Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.

Parameters
obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

Returns
val : scalar

The minimum representable value.

Raises
TypeError :

If obj isn’t a suitable numeric type.

See Also:

minimum fill value
The inverse function.

set_fill wvalue
Set the filling value of a masked array.

MaskedArray.fill value
Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()

>>> ma.maximum_fill_value (a)
-128

>>> a = np.int32 ()

>>> ma.maximum_fill_value (a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1l, 2, 3], dtype=np.int8)
>>> ma.maximum_fill value (a)

-128

>>> a = np.array([1l, 2, 3], dtype=np.float32)
>>> ma.maximum_fill value (a)

—-inf

numpy .ma .maximum £ill_ value (0bj)
Return the minimum value that can be represented by the dtype of an object.

This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.

1.6. Masked arrays 389

NumPy Reference, Release 1.6.0

Parameters
obj : {ndarray, dtype}

An object that can be queried for it’s numeric type.

Returns
val : scalar

The minimum representable value.

Raises
TypeError :

If obj isn’t a suitable numeric type.

See Also:

minimum fill value
The inverse function.

set_fill value
Set the filling value of a masked array.

MaskedArray.fill_value
Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()

>>> ma.maximum_fill_ value (a)
-128

>>> a = np.int32()

>>> ma.maximum_fill_ value (a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([l, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_ value (a)

-128

>>> a = np.array([1l, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_ value (a)

—inf

numpy.ma.set_£ill_wvalue (aq, fill_value)
Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place. If a is not a masked array, the function
returns silently, without doing anything.

Parameters
a: array_like

Input array.
fill_value : dtype

Filling value. A consistency test is performed to make sure the value is compatible with
the dtype of a.

Returns
None :

390 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Nothing returned by this function.
See Also:
maximum fill value
Return the default fill value for a dtype.

MaskedArray.fill_wvalue
Return current fill value.

MaskedArray.set_fill value
Equivalent method.

Examples

>>> import numpy.ma as ma

>>> a = np.arange(5)

>>> a

array ([0, 1, 2, 3, 4])

>>> a = ma.masked_where(a < 3, a)
>>> a

masked_array(data = [-— —— —— 3 4],

mask = [True True

fill value=999999)
>>> ma.set_fill_value(a,
>>> g

-999)

masked_array (data [~—— — —— 3 4],
mask = [True True
fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = range (5)

>>> a

(o, 1, 2, 3, 4]

>>> ma.set_fill value(a, 100)
>>> a

(o, 1, 2, 3, 4]

>>> a = np.arange(5)

>>> a

array ([0, 1, 2, 3, 4])

>>> ma.set_fill value(a, 100)

>>> a

1, 2, 3, 4])

array ([0,
MaskedArray.get_£fill_wvalue ()
Return the filling value of the masked array.

Returns
fill_value : scalar

The filling value.

Examples

>>> for dt in [np.int32,
np.ma.array ([0,

np.int64,
11,
999999
999999

True False False],

True False False],

np.float64, np.complexl28]:

dtype=dt) .get_£fill value()

1.6. Masked arrays

391

NumPy Reference, Release 1.6.0

1e+20
(1e+20+07)

>>> x = np.ma.array ([0, 1.], fill_value=-np.inf)
>>> x.get_fill _value()
—-inf

MaskedArray.set_f£ill wvalue (value=None)
Set the filling value of the masked array.

Parameters
value : scalar, optional

The new filling value. Default is None, in which case a default based on the data type
is used.

See Also:

ma.set_fill value
Equivalent function.

Examples

>>> x = np.ma.array ([0, 1.], fill_value=-np.inf)
>>> x.fill_value

—-inf

>>> x.set_fill_value (np.pi)

>>> x.fill_value

3.1415926535897931

Reset to default:

>>> x.set_fill_value()
>>> x.fill_value
le+20

MaskedArray.fill_wvalue
Filling value.

392 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Masked arrays arithmetics

Arithmetics

ma . anom(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

ma . anomalies(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

ma . average(al, axis, weights, returned]) Return the weighted average of array over the given axis.

ma .conjugate(x[, out]) Return the complex conjugate, element-wise.

ma.corrcoef(x[,y, rowvar, bias, ...]) Return correlation coefficients of the input array.

ma . cov(X[, y, rowvar, bias, allow_masked, Estimate the covariance matrix.

ddof])

ma . cumsum(self], axis, dtype, out]) Return the cumulative sum of the elements along the given axis.

ma . cumprod(self[, axis, dtype, out]) Return the cumulative product of the elements along the given

ma

ma.

ma

ma .
ma .
ma .

ma
ma

.mean(self[, axis, dtype, out])
median(al, axis, out, overwrite_input])
.power(a, b[, third])

prod(selff, axis, dtype, out])
std(self[, axis, dtype, out, ddof])
sum(self[, axis, dtype, out])

. var(selff, axis, dtype, out, ddof])
.MaskedArray.anom(axis=None[,

dtype])

ma.MaskedArray.cumprod(axis=None|,

dtype, out])

ma

.MaskedArray.cumsum(axis=None][,

dtype, out])

ma

.MaskedArray .mean(axis=None[,

dtype, out])

ma

.MaskedArray.prod(axis=None[,

dtype, out])

ma

.MaskedArray.std(axis=None[,

dtype, out, ddof])

ma

.MaskedArray . sum(axis=None|,

dtype, out])

ma

.MaskedArray.var(axis=None|,

dtype, out, ddof])

axis.

Returns the average of the array elements.

Compute the median along the specified axis.

Returns element-wise base array raised to power from second
array.

Return the product of the array elements over the given axis.
Compute the standard deviation along the specified axis.
Return the sum of the array elements over the given axis.
Compute the variance along the specified axis.

Compute the anomalies (deviations from the arithmetic mean)
along the given axis.

Return the cumulative product of the elements along the given
axis.

Return the cumulative sum of the elements along the given axis.

Returns the average of the array elements.

Return the product of the array elements over the given axis.
Compute the standard deviation along the specified axis.
Return the sum of the array elements over the given axis.

Compute the variance along the specified axis.

numpy .ma . anom (self, axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed

along the given axis.

Parameters
axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened

array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

1.6.

Masked arrays

393

NumPy Reference, Release 1.6.0

See Also:

mean
Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom/()

masked_array (data [-1. 0. 1.1,
mask False,
fill value = 1e+20)

numpy .ma .anomalies (self, axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened
array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See Also:

mean
Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])
>>> a.anom/()
masked_array (data = [-1. 0. 1.1,
mask False,
fill value = 1le+20)

numpy .ma .average (a, axis=None, weights=None, returned=False)
Return the weighted average of array over the given axis.

Parameters
a: array_like

Data to be averaged. Masked entries are not taken into account in the computation.
axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

weights : array_like, optional

The importance that each element has in the computation of the average. The weights
array can either be 1-D (in which case its length must be the size of a along the given
axis) or of the same shape as a. If weights=None, then all data in a are assumed to
have a weight equal to one.

394 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

returned : bool, optional

Flag indicating whether a tuple (result, sum of weights) should be returned
as output (True), or just the result (False). Default is False.

Returns
average, [sum_of_weights] : (tuple of) scalar or MaskedArray

The average along the specified axis. When returned is True, return a tuple with the
average as the first element and the sum of the weights as the second element. The
return type is np.float64 if a is of integer type, otherwise it is of the same type as a. If
returned, sum_of_weights is of the same type as average.

Examples

>>> a = np.ma.array([l., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average (a, weights=[3, 1, 0, 0])

1.25
>>> x = np.ma.arange (6.) .reshape (3, 2)
>>> print x
[l 0. 1.]
[2. 3.]
[4. 5.1]
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 31,

C . returned=True)
>>> print avg
[2.66666666667 3.66666666667]

numpy .ma.conjugate (x[, out])
Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x : array_like

Input value.

Returns
y : ndarray

The complex conjugate of x, with same dtype as y.

Examples

>>> np.conjugate (1+273)
(1-23)

>>> x = np.eye(2) + 13 * np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.7, 0.-0.71,

[0.-0.3, 1.-1.311)

numpy .ma .corrcoef (x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)
Return correlation coefficients of the input array.

Except for the handling of missing data this function does the same as numpy . corrcoef. For more details

and examples, see numpy . corrcoef.

Parameters
x : array_like

1.6. Masked arrays

NumPy Reference, Release 1.6.0

A 1-D or 2-D array containing multiple variables and observations. Each row of x
represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y : array_like, optional
An additional set of variables and observations. y has the same shape as x.
rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed: each column represents a variable,
while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N-1), where N is the number of observations
given (unbiased estimate). If bias is 1, then normalization is by N. This keyword can be
overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked in x, the corre-
sponding value is masked in y. If False, raises an exception.

ddof : {None, int}, optional

New in version 1.5. If not None normalization is by (N - ddof), where N is the
number of observations; this overrides the value implied by bias. The default value is
None.

See Also:
numpy . corrcoef
Equivalent function in top-level NumPy module.
cov
Estimate the covariance matrix.
numpy .ma . cov (x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)
Estimate the covariance matrix.

Except for the handling of missing data this function does the same as numpy .cov. For more details and
examples, see numpy . cov.

By default, masked values are recognized as such. If x and y have the same shape, a common mask is allocated:
if x[1, 7] is masked, then y [1, j] will also be masked. Setting allow_masked to False will raise an exception
if values are missing in either of the input arrays.

Parameters
x : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row of x
represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y : array_like, optional
An additional set of variables and observations. y has the same form as x.

rowvar : bool, optional

396 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

If rowvar is True (default), then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed: each column represents a variable,
while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N—1), where N is the number of observations given
(unbiased estimate). If bias is True, then normalization is by N. This keyword can be
overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked : bool, optional

If True, masked values are propagated pair-wise: if a value is masked in x, the cor-
responding value is masked in y. If False, raises a ValueError exception when some
values are missing.

ddof : {None, int}, optional

New in version 1.5. If not None normalization is by (N - ddof), where N is the
number of observations; this overrides the value implied by bias. The default value is
None.

Raises
ValueError: :

Raised if some values are missing and allow_masked is False.
See Also:
numpy . cov

numpy .ma . cumsum (self, axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the

flattened array by default, otherwise over the specified axis.

Masked values are set to O internally during the computation. However, their position is saved, and the result

will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array. axis may be negative, in which case it counts from the last to the
first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumsum : ndarray.

A new array holding the result is returned unless out is specified, in which case a
reference to out is returned.

1.6. Masked arrays

397

NumPy Reference, Release 1.6.0

Notes
The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array (np.arange(10), mask=[0,0,0,1,1,1,0,0,0,07])
>>> print marr.cumsum()
[01 3 -—-— -9 16 24 33]

numpy .ma . cumprod (self, axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis. The cumulative product is taken over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the product is computed. The default (axis = None) is to compute
over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are multiplied. If dtype has the value None and the type of a is an integer type
of precision less than the default platform integer, then the default platform integer
precision is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumprod : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

numpy . ma .mean (self, axis=None, dtype=None, out=None)
Returns the average of the array elements.

Masked entries are ignored. The average is taken over the flattened array by default, otherwise over the specified
axis. Refer to numpy . mean for the full documentation.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

axis : int, optional

398 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point, inputs it is the same as the input dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
numpy .ma.mean
Equivalent function.

numpy .mean
Equivalent function on non-masked arrays.

numpy .ma.average

Weighted average.
Examples
>>> a = np.ma.array([1l,2,3], mask=[False, False, Truel)
>>> a
masked_array(data = [1 2 —-],

mask = [False False True],
fill_value 999999)
>>> a.mean ()
1.5

numpy .ma .median (a, axis=None, out=None, overwrite_input=False)
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters
a: array_like

Input array or object that can be converted to an array.
axis : int, optional

Axis along which the medians are computed. The default (None) is to compute the
median along a flattened version of the array.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

overwrite_input : bool, optional

If True, then allow use of memory of input array (a) for calculations. The input array
will be modified by the call to median. This will save memory when you do not need to

1.6. Masked arrays

399

NumPy Reference, Release 1.6.0

preserve the contents of the input array. Treat the input as undefined, but it will probably
be fully or partially sorted. Default is False. Note that, if overwrite_input is True, and
the input is not already an ndarray, an error will be raised.

Returns
median : ndarray

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned. Return data-type is float64 for integers and floats smaller than
float64, or the input data-type, otherwise.

See Also:

mean

Notes

Given a vector V with N non masked values, the median of V is the middle value of a sorted copy of V (Vs) - i.e.
Vs[(N-1)/2],whenNisodd,or {Vs[N/2 - 1] + Vs[N/2]}/2 when N is even.

Examples

>>> x = np.ma.array(np.arange (8), mask=[0]*4 + [1]x4)
>>> np.ma.extras.median (x)
1.5

>>> x = np.ma.array (np.arange (10) .reshape (2, 5), mask=[0]x6 + [1]x4)
>>> np.ma.extras.median (x)

2.5
>>> np.ma.extras.median(x, axis=-1, overwrite_input=True)
masked_array(data = [2. 5.1,

mask = False,
fill_value 1e+20)

numpy .ma . power (a, b, third=None)

Returns element-wise base array raised to power from second array.

This is the masked array version of numpy . power. For details see numpy . power.
See Also:

numpy .power

Notes

The out argument to numpy . power is not supported, third has to be None.

numpy .ma . prod (self, axis=None, dtype=None, out=None)

Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dt ype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

400

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See Also:

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.prod([1.,2.])
2.0
>>> np.prod([1.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.1])
24.0
>>> np.prod([[1l.,2.],[3.,4.]1], axis=1)
array ([2., 12.1)

numpy .ma . std (self, axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

1.6. Masked arrays 401

NumPy Reference, Release 1.6.0

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

See Also:
var, mean

numpy .doc.ufuncs
Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqgrt (mean (abs(x — x.mean())**2)).

The average squared deviation is normally calculated as x.sum () / N, where N = len (x). If, however,
ddof is specified, the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 41])
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> af0,:] = 1.0

>>> afl,:] = 0.1

>>> np.std(a)

0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

numpy .ma . sum (self, axis=None, dtype=None, out=None)

Return the sum of the array elements over the given axis. Masked elements are set to O internally.

Parameters
axis : {None, -1, int}, optional

402

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are summed. If dtype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified axis removed. If self is a 0-d
array, or if axis is None, a scalar is returned. If an output array is specified, a reference
to out is returned.

Examples

>>> x = np.ma.array([[1,2,3]1,104,5,6]1,[7,8,9]11, mask=[0] + [1,0]%4)
>>> print x
[[1 -- 3]
[—— 5 ——]
[7 —— 91]
>>> print x.sum()
25
>>> print x.sum(axis=1)
[4 5 16]
>>> print x.sum(axis=0)
[8 5 12]
>>> print type (x.sum(axis=0, dtype=np.int64) [0])
<type ’'numpy.int64’>

numpy .ma . var (self, axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

1.6. Masked arrays 403

NumPy Reference, Release 1.6.0

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs(x -
x.mean ()) *x*2).

The mean is normally calculated as x. sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1,2],13,411])
>>> np.var (a)
1.25

>>> np.var(a,0)
array ([1., 1.1)

>>> np.var(a, 1)
array ([0.25, 0.257)

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512x512), dtype=np.float32)
>>> af[0,:] = 1.0

>>> afl,:] = 0.1

>>> np.var(a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

404

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.var (a, dtype=np.float64)
0.20249999932997387

>>> ((1-0.55)x%x2 + (0.1-0.55)%%2)/2
0.20250000000000001

MaskedArray.anom (axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters
axis : int, optional

Axis over which the anomalies are taken. The default is to use the mean of the flattened
array as reference.

dtype : dtype, optional

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See Also:

mean
Compute the mean of the array.

Examples
>>> a = np.ma.array([1,2,3])
>>> a.anom/()
masked_array (data = [-1. 0. 1.1,

mask = False,
fill_value le+20)

MaskedArray .cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis. The cumulative product is taken over the
flattened array by default, otherwise over the specified axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the product is computed. The default (axis = None) is to compute
over the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are multiplied. If dtype has the value None and the type of a is an integer type
of precision less than the default platform integer, then the default platform integer
precision is used. Otherwise, the dtype is the same as that of a.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumprod : ndarray

1.6. Masked arrays 405

NumPy Reference, Release 1.6.0

A new array holding the result is returned unless out is specified, in which case a refer-
ence to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

MaskedArray .cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the
flattened array by default, otherwise over the specified axis.

Masked values are set to O internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array. axis may be negative, in which case it counts from the last to the
first axis.

dtype : {None, dtype}, optional

Type of the returned array and of the accumulator in which the elements are summed. If
dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer. In that case, the default platform
integer is used.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
cumsum : ndarray.

A new array holding the result is returned unless out is specified, in which case a
reference to out is returned.

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array (np.arange(10), mask=[0,0,0,1,1,1,0,0,0,07)
>>> print marr.cumsum()
[01 3 -——-— -9 16 24 33]

MaskedArray.mean (axis=None, dtype=None, out=None)
Returns the average of the array elements.

Masked entries are ignored. The average is taken over the flattened array by default, otherwise over the specified
axis. Refer to numpy . mean for the full documentation.

Parameters
a: array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is
attempted.

406 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

axis : int, optional

Axis along which the means are computed. The default is to compute the mean of the
flattened array.

dtype : dtype, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating
point, inputs it is the same as the input dtype.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

Returns
mean : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to
the output array is returned.

See Also:
numpy .ma.mean
Equivalent function.

numpy .mean
Equivalent function on non-masked arrays.

numpy .ma.average

Weighted average.
Examples
>>> a = np.ma.array([1l,2,3], mask=[False, False, Truel)
>>> a
masked_array(data = [1 2 —--],
mask = [False False True],

999999)

fill_value
>>> a.mean ()
1.5

MaskedArray.prod (axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis. Masked elements are set to 1 internally for
computation.

Parameters
axis : {None, int}, optional

Axis over which the product is taken. If None is used, then the product is over all the
array elements.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements are
multiplied. If dt ype has the value None and the type of a is an integer type of precision
less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, array}, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type will be cast if necessary.

1.6. Masked arrays 407

NumPy Reference, Release 1.6.0

Returns
product_along_axis : {array, scalar}, see dtype parameter above.

Returns an array whose shape is the same as a with the specified axis removed. Returns
a 0d array when a is 1d or axis=None. Returns a reference to the specified output array
if specified.

See Also:

prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples
>>> np.prod([l.,2.])
2.0
>>> np.prod([1l.,2.], dtype=np.int32)
2
>>> np.prod([[1.,2.],[3.,4.11)
24.0
>>> np.prod([[1.,2.],[3.,4.1]1, axis=l)
array ([2., 12.1)

MaskedArray.std (axis=None, dtype=None, out=None, ddof=0)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Calculate the standard deviation of these values.
axis : int, optional

Axis along which the standard deviation is computed. The default is to compute the
standard deviation of the flattened array.

dtype : dtype, optional

Type to use in computing the standard deviation. For arrays of integer type the default
is float64, for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternative output array in which to place the result. It must have the same shape as the
expected output but the type (of the calculated values) will be cast if necessary.

ddof : int, optional

Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
where N represents the number of elements. By default ddof is zero.

Returns
standard_deviation : ndarray, see dtype parameter above.

If out is None, return a new array containing the standard deviation, otherwise return a
reference to the output array.

408 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

See Also:

var, mean

numpy .doc.ufuncs
Section “Output arguments”’

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sgrt (mean (abs (x — x.mean())**2)).

The average squared deviation is normally calculated as x.sum () / N, where N = len (x). If, however,
ddof is specified, the divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddo£=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dfype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1, 2], [3, 411)
>>> np.std(a)

1.1180339887498949

>>> np.std(a, axis=0)

array ([1., 1.1)

>>> np.std(a, axis=1)

array ([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> af0,:] = 1.0

>>> afl,:] = 0.1

>>> np.std(a)

0.45172946707416706

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925552653

MaskedArray . sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis. Masked elements are set to 0 internally.

Parameters
axis : {None, -1, int}, optional

Axis along which the sum is computed. The default (axis = None) is to compute over
the flattened array.

dtype : {None, dtype}, optional

Determines the type of the returned array and of the accumulator where the elements
are summed. If dtype has the value None and the type of a is an integer type of precision

1.6. Masked arrays 409

NumPy Reference, Release 1.6.0

less than the default platform integer, then the default platform integer precision is used.
Otherwise, the dtype is the same as that of a.

out : {None, ndarray}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

Returns
sum_along_axis : MaskedArray or scalar

An array with the same shape as self, with the specified axis removed. If self is a 0-d
array, or if axis is None, a scalar is returned. If an output array is specified, a reference
to out is returned.

Examples

>>> x = np.ma.array([[1,2,3]1,14,5,6]1,[7,8,91]1, mask=[0] + [1,0]%4)
>>> print x
[[1 —— 3]

>>> print x.sum()

25

>>> print x.sum(axis=1)

[4 5 16]

>>> print x.sum(axis=0)

[8 5 12]

>>> print type (x.sum(axis=0, dtype=np.int64) [0])
<type ’'numpy.int64’>

MaskedArray.var (axis=None, dtype=None, out=None, ddof=0)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters
a: array_like

Array containing numbers whose variance is desired. If a is not an array, a conversion
is attempted.

axis : int, optional

Axis along which the variance is computed. The default is to compute the variance of
the flattened array.

dtype : data-type, optional

Type to use in computing the variance. For arrays of integer type the default is float32;
for arrays of float types it is the same as the array type.

out : ndarray, optional

Alternate output array in which to place the result. It must have the same shape as the
expected output, but the type is cast if necessary.

ddof : int, optional

“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where
N represents the number of elements. By default ddof is zero.

410 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
variance : ndarray, see dtype parameter above

If out=None, returns a new array containing the variance; otherwise, a reference to
the output array is returned.

See Also:

std
Standard deviation

mean
Average

numpy .doc.ufuncs
Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, ie., var = mean (abs(x -
x.mean ()) *x2).

The mean is normally calculated as x.sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples
>>> a = np.array ([[1,2],[3,4]])
>>> np.var (a)
1.25
>>> np.var (a,0)
array ([1., 1.1])

>>> np.var(a, 1)
array ([0.25, 0.2517)

In single precision, var() can be inaccurate:

>>> a = np.zeros((2,512«512), dtype=np.float32)
>>> af[0,:] = 1.0

>>> afl,:] = 0.1

>>> np.var (a)

0.20405951142311096

Computing the standard deviation in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932997387

>>> ((1-0.55)%%2 + (0.1-0.55)%%2)/2
0.20250000000000001

1.6. Masked arrays 411

NumPy Reference, Release 1.6.0

Minimum/maximum

ma . argmax(a[, axis, fill_value]) Function version of the eponymous method.

ma . argmin(a[, axis, fill_value]) Returns array of indices of the maximum values along the
given axis.

ma . max(obj[, axis, out, fill_value]) Return the maximum along a given axis.

ma . min(obj[, axis, out, fill_value]) Return the minimum along a given axis.

ma . ptp(obj[, axis, out, fill_value]) Return (maximum - minimum) along the the given

dimension (i.e.
ma.MaskedArray.argmax(axis=None[, ...]) Returns array of indices of the maximum values along the

given axis.

ma.MaskedArray.argmin(axis=None[, ...]) = Return array of indices to the minimum values along the
given axis.

ma.MaskedArray .max(axis=None[, out, Return the maximum along a given axis.

fill_value])

ma .MaskedArray .min(axis=None[, out, Return the minimum along a given axis.

fill_value])

ma.MaskedArray.ptp(axis=None[, out, Return (maximum - minimum) along the the given

fill_value]) dimension (i.e.

numpy .ma.argmax (a, axis=None, fill_value=None)
Function version of the eponymous method.

numpy .ma .argmin (a, axis=None, fill_value=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis
fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of maxi-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

Returns
index_array : {integer_array}

Examples

>>> a = np.arange (6) .reshape (2, 3)
>>> a.argmax()

5

>>> a.argmax (0)

array ([1, 1, 11)

>>> a.argmax (1)

array ([2, 2])

numpy .ma .max (obj, axis=None, out=None, fill_value=None)
Return the maximum along a given axis.

Parameters
axis : {None, int}, optional

412 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Axis along which to operate. By default, axis is None and the flattened input is used.
out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values. If None, use the output of maxi-
mum_fill_value().

Returns
amax : array_like

New array holding the result. If out was specified, out is returned.
See Also:

maximum fill wvalue
Returns the maximum filling value for a given datatype.

numpy .ma .min (0bj, axis=None, out=None, fill_value=None)
Return the minimum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.
out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional
Value used to fill in the masked values. If None, use the output of minimum_fill_value.

Returns
amin : array_like

New array holding the result. If out was specified, out is returned.
See Also:

minimum fill value
Returns the minimum filling value for a given datatype.

numpy .ma . ptp (0bj, axis=None, out=None, fill_value=None)
Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value).

Parameters
axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the flattened array is used.
out : {None, array_like}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

fill_value : {var}, optional

Value used to fill in the masked values.

1.6. Masked arrays 413

NumPy Reference, Release 1.6.0

Returns
ptp : ndarray.

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

MaskedArray.argmax (axis=None, fill_value=None, out=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis
fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of maxi-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

Returns
index_array : {integer_array}

Examples

>>> a = np.arange (6) .reshape (2, 3)
>>> a.argmax()

5

>>> a.argmax(0)

array ([1, 1, 11)

>>> a.argmax (1)

array ([2, 2])

MaskedArray.argmin (axis=None, fill_value=None, out=None)
Return array of indices to the minimum values along the given axis.

Parameters
axis : {None, integer}

If None, the index is into the flattened array, otherwise along the specified axis
fill_value : {var}, optional

Value used to fill in the masked values. If None, the output of mini-
mum_fill_value(self._data) is used instead.

out : {None, array}, optional

Array into which the result can be placed. Its type is preserved and it must be of the
right shape to hold the output.

Returns
{ndarray, scalar} :

If multi-dimension input, returns a new ndarray of indices to the minimum values along
the given axis. Otherwise, returns a scalar of index to the minimum values along the
given axis.

414 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Examples
>>> x = np.ma.array(arange(4), mask=[1,1,0,07])
>>> x.shape = (2,2)

>>> print x

[[-- -]

[2 3]1]

>>> print x.argmin(axis=0, fill_value=-1)
[0 0]

>>> print x.argmin(axis=0, fill_value=9)
[1 1]

MaskedArray.max (axis=None, out=None, fill_value=None)
Return the maximum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.
out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional

Value used to fill in the masked values. If None, use the output of maxi-
mum_fill_value().

Returns
amax : array_like

New array holding the result. If out was specified, out is returned.
See Also:

maximum_fill_ value
Returns the maximum filling value for a given datatype.

MaskedArray.min (axis=None, out=None, fill_value=None)
Return the minimum along a given axis.

Parameters
axis : {None, int}, optional

Axis along which to operate. By default, axis is None and the flattened input is used.
out : array_like, optional

Alternative output array in which to place the result. Must be of the same shape and
buffer length as the expected output.

fill_value : {var}, optional
Value used to fill in the masked values. If None, use the output of minimum_fill_value.

Returns
amin : array_like

New array holding the result. If out was specified, out is returned.

See Also:

1.6. Masked arrays

415

NumPy Reference, Release 1.6.0

minimum £ill wvalue
Returns the minimum filling value for a given datatype.

MaskedArray.ptp (axis=None, out=None, fill_value=None)
Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value).

Parameters
axis : {None, int}, optional

Axis along which to find the peaks. If None (default) the flattened array is used.
out : {None, array_like}, optional

Alternative output array in which to place the result. It must have the same shape and
buffer length as the expected output but the type will be cast if necessary.

fill_value : {var}, optional
Value used to fill in the masked values.

Returns
ptp : ndarray.

A new array holding the result, unless out was specified, in which case a reference to
out is returned.

Sorting

ma .argsort(a[, axis, kind, order, fill_value]) Return an ndarray of indices that sort the array along the
specified axis.

ma . sort(a[, axis, kind, order, endwith, ...]) Sort the array, in-place
ma.MaskedArray.argsort(axis=None][, Return an ndarray of indices that sort the array along the
kind, ...]) specified axis.

ma.MaskedArray.sort(axis=-1[, kind, Sort the array, in-place

order, ...])

numpy .ma .argsort (a, axis=None, kind="quicksort’, order=None, fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters
axis : int, optional

Axis along which to sort. The default is -1 (last axis). If None, the flattened array is
used.

fill_value : var, optional

Value used to fill the array before sorting. The default is the fill_value attribute of the
input array.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.
order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare
first, second, etc. Not all fields need be specified.

Returns
index_array : ndarray, int

416 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.ma.array([3,2,1], mask=[False, False, Truel)
>>> a
masked_array(data = [3 2 —-],

mask = [False False True],
fill_value 999999)
>>> a.argsort ()
array ([1, 0, 21)

numpy .ma . sort (a, axis=-1, kind="quicksort’, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters
a: array_like

Array to be sorted.
axis : int, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices (at the end of the
array) (True) or lower indices (at the beginning).

fill_value : {var}, optional

Value used internally for the masked values. If £111_value is not None, it supersedes
endwith.

Returns
sorted_array : ndarray

Array of the same type and shape as a.

1.6. Masked arrays 417

NumPy Reference, Release 1.6.0

See Also:

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, O,
>>> # Default

>>> a.sort ()

>>> print a

[1 35— —-]

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, O,
>>> # Put missing values in the front

>>> a.sort (endwith=False)

>>> print a

[-— — 1 3 5]

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, O,
>>> # fill value takes over endwith

>>> a.sort (endwith=False, fill_value=3)

>>> print a

[l —— —— 3 5]

MaskedArray.argsort (axis=None, kind="quicksort’, order=None, fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to

Sfill_value.

Parameters
axis : int, optional

Axis along which to sort. The default is -1 (last axis). If None, the flattened array is

used.

fill_value : var, optional

Value used to fill the array before sorting. The default is the fill_value attribute of the

input array.
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm.

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare

first, second, etc. Not all fields need be specified.

418

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Returns
index_array : ndarray, int

Array of indices that sort a along the specified axis. In other words,
alindex_array] yields a sorted a.

See Also:
sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.ma.array([3,2,1], mask=[False, False, Truel)
>>> a
masked_array(data = [3 2 —-],
mask = [False False True]l,

fill_value = 999999)
>>> a.argsort ()
array ([1, 0, 21)

MaskedArray.sort (axis=-1, kind="quicksort’, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters
a: array_like

Array to be sorted.
axis : int, optional

Axis along which to sort. If None, the array is flattened before sorting. The default is
-1, which sorts along the last axis.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional

When a is a structured array, this argument specifies which fields to compare first, sec-
ond, and so on. This list does not need to include all of the fields.

endwith : {True, False}, optional

Whether missing values (if any) should be forced in the upper indices (at the end of the
array) (True) or lower indices (at the beginning).

fill_value : {var}, optional

Value used internally for the masked values. If f111_value is not None, it supersedes
endwith.

1.6. Masked arrays 419

NumPy Reference, Release 1.6.0

Returns
sorted_array : ndarray

Array of the same type and shape as a.

See Also:

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01)
>>> # Default

>>> a.sort ()

>>> print a

[1 35— ——]

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01)
>>> # Put missing values in the front

>>> a.sort (endwith=False)

>>> print a

[-— — 1 3 5]

>>> a = ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 017)
>>> # fill value takes over endwith

>>> a.sort (endwith=False, fill_value=3)

>>> print a

[l —— — 3 5]

Algebra
ma . diag(v[, k]) Extract a diagonal or construct a diagonal array.
ma . dot(a, b[, strict]) Return the dot product of two arrays.
ma . identity(n[, dtype]) Return the identity array.
ma.inner(a, b) Inner product of two arrays.
ma.innerproduct(a, b) Inner product of two arrays.
ma.outer(a, b) Compute the outer product of two vectors.
ma.outerproduct(a, b) Compute the outer product of two vectors.
ma . t race(self[, offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
ma.transpose(al, axes]) Permute the dimensions of an array.
ma.MaskedArray.trace(offset=0[, axisl, ...]) Return the sum along diagonals of the array.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

numpy .ma .diag (v, k=0)
Extract a diagonal or construct a diagonal array.

420 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

This function is the equivalent of numpy . diag that takes masked values into account, see numpy . diag for
details.

See Also:

numpy .diag
Equivalent function for ndarrays.

numpy .ma .dot (a, b, strict=False)
Return the dot product of two arrays.

Note: Works only with 2-D arrays at the moment.

This function is the equivalent of numpy . dot that takes masked values into account, see numpy . dot for
details.

Parameters
a, b : ndarray

Inputs arrays.
strict : bool, optional

Whether masked data are propagated (True) or set to O (False) for the computation.
Default is False. Propagating the mask means that if a masked value appears in a row
or column, the whole row or column is considered masked.

See Also:

numpy . dot
Equivalent function for ndarrays.

Examples

>>> a = ma.array([[1l, 2, 31, [4, 5, 61], mask=[[1, O, O], [O, O, 0O11)
>>> b = ma.array([[1, 2], [3, 41, [5, 611, mask=[[1, O], [O, O], [0, 0O11)
>>> np.ma.dot (a, b)
masked_array (data =
[[21 26]
[45 64]1],

mask =
[[False False]
[False Falsel],
fill_value = 999999)

>>> np.ma.dot (a, b, strict=True)
masked_array (data

[—-]

[-- 6411,

mask =
[[True True]
[True False]],
fill_value = 999999)

numpy .ma.identity (n, dtype=None)
Return the identity array.
The identity array is a square array with ones on the main diagonal.

Parameters
n: int

1.6. Masked arrays 421

NumPy Reference, Release 1.6.0

Number of rows (and columns) in # X n output.
dtype : data-type, optional
Data-type of the output. Defaults to f1oat.

Returns
out : ndarray

n X n array with its main diagonal set to one, and all other elements O.

Examples
>>> np.identity (3)
array ([[1., 0., 0.7,
[0., 1., 0.1,
[0., 0., 1.101)

numpy .ma.inner (a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum

product over the last axes.

Parameters
a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

Returns
out : ndarray

out.shape = a.shape(:-1] + b.shape[:-1]

Raises
ValueError :

If the last dimension of a and b has different size.
See Also:
tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

einsum
Einstein summation convention.

Notes

Masked values are replaced by 0.

Examples
Ordinary inner product for vectors:

>>> a = np.array([1,2,3])

>>> b = np.array([0,1,0])
>>> np.inner (a, b)
2

A multidimensional example:

422

Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = np.arange (24) .reshape ((2,3,4))
>>> b = np.arange (4)
>>> np.inner(a, b)
array ([[14, 38, 62171,
[86, 110, 13411)

An example where b is a scalar:

>>> np.inner (np.eye(2), 7)
array ([[7., 0.1,
[0., 7.11)

numpy .ma.innerproduct (a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters
a, b : array_like

If a and b are nonscalar, their last dimensions of must match.

Returns
out : ndarray

out.shape = a.shape(:-1] + b.shape[:-1]

Raises
ValueError :

If the last dimension of a and b has different size.
See Also:
tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

einsum
Einstein summation convention.
Notes

Masked values are replaced by 0.

Examples
Ordinary inner product for vectors:

>>> a = np.array([1,2,3])

>>> b = np.array([0,1,01)
>>> np.inner (a, b)
2

A multidimensional example:

>>> a = np.arange (24) .reshape((2,3,4))
>>> b = np.arange (4)
>>> np.inner(a, b)

1.6. Masked arrays 423

NumPy Reference, Release 1.6.0

array ([[14, 38, 621,
[86, 110, 134]1])

An example where b is a scalar:

>>> np.inner (np.eye(2), 7)
array ([[7., 0.1,
[0., 7.11)

numpy .ma .outer (a, b)
Compute the outer product of two vectors.

Given two vectors,a = [a0, al, ..., aM]andb = [b0O, bl,
is:
[[a0*b0 al0xbl ... al0*bN]
[alxbO0
[... .
[aM*DbO0 aMxbN 1]
Parameters

a, b : array_like, shape (M,), (N,)

., DbN], the outer product [R47]

First and second input vectors. Inputs are flattened if they are not already 1-dimensional.

Returns
out : ndarray, shape (M, N)

out[i, J] = ali] » b[j]
See Also:

inner, einsum

Notes

Masked values are replaced by 0.

References
[R47]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

5))

>>> rl = np.outer (np.ones((5,)), np.linspace (-2, 2,
>>> rl
array([[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., =-1., 0., 1., 2.11)
>>> im = np.outer (lj*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array ([[0.+2.3, 0.+2.3, 0.+2.3, 0.+2.3, 0.+2.7]
[0.+1.3, O0.+1.3, O.+1.3, O0.+1.3, O0.+1.7]
[0.+0.3, 0.+0.3, 0.+0.3, 0.+40.3, 0.+0.7]
[o.-1.3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.7]
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.7]
>>> grid = rl + im

424

Chapter 1

. Array objects

NumPy Reference, Release 1.6.0

420

array ([[-2.42.9, -1.+2.49, 0.42.5, 1.4+2.5, 2 i1,
[-2.+41.9, -1.+1.59, 0.+1.5, 1.+1.3, 2.+1.41,
[-2.+0.3, -1.+0.73, 0.+0.7, 1.+0.3, 2.+0.31,
[-2.-1.3, -1.-1.73, 0.-1.73, 1.-1.73, 2.-1.31,
[-2.-2.5, -1.-2.73, 0.-2.73, 1.-2.73, 2.-2.7311)
An example using a “vector” of letters:
>>> x = np.array([’a’, 'b’, 'c’], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaal,
[b, bb, bbb],
[c, cc, ccc]l], dtype=object)
numpy .ma .outerproduct (a, b)
Compute the outer product of two vectors.
Given two vectors,a = [a0, al, ..., aM]landb = [b0O, bl,
is:
[[a0*b0 al0xbl ... al0*bN]
[al*xb0
[... .
[aMxb0 aM+bN 1]
Parameters

a, b : array_like, shape (M,), (N,)

., DbN], the outer product [R48]

First and second input vectors. Inputs are flattened if they are not already 1-dimensional.

Returns
out : ndarray, shape (M, N)

out[i, jl = alil * bI[]]

See Also:

inner, einsum

Notes

Masked values are replaced by 0.

References
[R48]

Examples
Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer (np.ones((5,)), np.linspace(-2, 2, 5))

>>> rl
array ([[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.11)
>>> im = np.outer (lj*np.linspace (2, -2, 5), np.ones((5,)))
>>> im

1.6. Masked arrays

425

NumPy Reference, Release 1.6.0

array ([[0.+2.3, 0.+2.3, 0.+2.3, 0.42.3, 0.+2.3],
[0.+1.3, O.+1.3, O0.+1.3, O0.+1.3, O.+1.71,
[0.+0.3, 0.+0.3, 0.40.3, 0.+0.3, 0.40.31,
(o0.-1.3, 0.-1.3, ©O0.-1.3, 0.-1.3, 0.-1.31,
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.311)

>>> grid = rl + im

>>> grid

array([[-2.+2.3, -1.+2.3, 0.+2.3, 1.42.3, 2.+2.3],
[-2.+1.3, -1.+1.3, O.+1.3, 1.+1.3, 2.+1.3],
[-2.+0.3, -1.+0.73, 0.+0.73, 1.+0.3, 2.+0.31,
[-2.-1.3, -1.-1.3, O.-1.3, 1.-1.3, 2.-1.31,
[-2.-2.3, -1.-2.3, 0.-2.3, 1.-2.3, 2.-2.311)

An example using a “vector” of letters:

>>> x = np.array([’a’, 'b’, ’'c’], dtype=object)
>>> np.outer(x, [1, 2, 31)
array ([[a, aa, aaal,

[b, bb, bbb],

[c, cc, cccl], dtype=object)

numpy .ma . trace (self, offset=0, axis1=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axisl=0,
axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy .trace
equivalent function

numpy .ma .transpose (a, axes=None)
Permute the dimensions of an array.
This function is exactly equivalent to numpy .t ranspose.
See Also:

numpy . transpose
Equivalent function in top-level NumPy module.

Examples
>>> import numpy.ma as ma
>>> x = ma.arange (4) .reshape ((2,2))
>>> x[1, 1] = ma.masked
>>>> x
masked_array (data =
[[0 1]
(2 ——11,
mask =

[[False False]
[False Truel],
fill_value =
>>> ma.transpose (x)
masked_array(data =
[[0 2]

999999)

426 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

(1 --11,

mask
[[False False]
[False Truell],
fill_value

999999)

MaskedArray.trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.
See Also:

numpy .trace
equivalent function

MaskedArray.transpose (*axes)

Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a ma-
trix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order in-

dicates how the axes are permuted (see Examples). If axes are not provided and a . shape = (1[0], i[1l],
i[n-2], i[n-1]), then a.transpose () .shape = (i[n-1], 1i[n-2], ... if[1],
i[01).
Parameters

axes : None, tuple of ints, or n ints
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a‘s i-th axis becomes a.transpose()‘s j-th
axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out : ndarray

View of a, with axes suitably permuted.

See Also:

ndarray.T
Array property returning the array transposed.

Examples
>>> a = np.array ([[1, 2], [3, 41])
>>> a
array ([[1, 27,
[3, 411])
>>> a.transpose ()
array ([[1, 3],
[2, 411])
>>> a.transpose((1l, 0))
array ([[1, 3],
[2, 411])

>>> a.transpose (1, 0)

1.6. Masked arrays 427

NumPy Reference, Release 1.6.0

Polynomial fit

ma .vander(x[, n]) Generate a Van der Monde matrix.
ma.polyfit(x,y, deg[, rcond, full]) Least squares polynomial fit.

numpy .ma .vander (x, n=None)
Generate a Van der Monde matrix.

The columns of the output matrix are decreasing powers of the input vector. Specifically, the i-th output column
is the input vector raised element-wise to the powerof N — i - 1. Such a matrix with a geometric progression
in each row is named for Alexandre-Theophile Vandermonde.

Parameters
x : array_like

1-D input array.
N : int, optional

Order of (number of columns in) the output. If N is not specified, a square array is
returned (N = len (x)).

Returns
out : ndarray

Van der Monde matrix of order N. The first column is x* (N-1), the second x" (N-2)
and so forth.

Notes

Masked values in the input array result in rows of zeros.

Examples
>>> x = np.array([1l, 2, 3, 5])
>>> N = 3
>>> np.vander (x, N)
array ([[1, 1, 11,
[4, 2, 11,
L9 3, 11,
[25 5 111)

’ ’

>>> np.column_stack ([x** (N-1-1) for i in range(N)])

array ([[1, 1, 11,
[4, 2, 1],
[9, 3, 17,
[25, 5, 111)
>>> x = np.array([1l, 2, 3, 51)
>>> np.vander (x)
array ([[1, 1, 1, 1],
[8, 4, 2, 1],
[27, 9, 3, 1],
[125, 25, 5, 111)

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

428 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> np.linalg.det (np.vander (x))
48.000000000000043

>>> (5-3) % (5-2) % (5-1) % (3-2) % (3-1)* (2-1)
48

numpy .ma .polyfit (x, y, deg, rcond=None, full=False)
Least squares polynomial fit.

Fita polynomial p (x) = p[0] * xx*xdeg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error.

Parameters
x : array_like, shape (M,)

x-coordinates of the M sample points (x[1], y[i]).
y : array_like, shape (M,) or (M, K)

y-coordinates of the sample points. Several data sets of sample points sharing the same
x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset
per column.

deg : int
Degree of the fitting polynomial
rcond : float, optional

Relative condition number of the fit. Singular values smaller than this relative to the
largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full : bool, optional

Switch determining nature of return value. When it is False (the default) just the coef-
ficients are returned, when True diagnostic information from the singular value decom-
position is also returned.

Returns
p : ndarray, shape (M,) or (M, K)

Polynomial coefficients, highest power first. If y was 2-D, the coefficients for k-th data
setareinp[:,k].

residuals, rank, singular_values, rcond : present only if full = True

Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coeffi-
cient matrix, its singular values, and the specified value of rcond. For more details, see
linalg.lstsq.

Warns
RankWarning :

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is
only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter (' ignore’, np.RankWarning)

See Also:

1.6. Masked arrays 429

NumPy Reference, Release 1.6.0

polyval
Computes polynomial values.

linalg.1lstsq
Computes a least-squares fit.

scipy.interpolate.UnivariateSpline
Computes spline fits.
Notes

Any masked values in x is propagated in y, and vice-versa.

References
[R49], [R50]

Examples

>>> = np.array([0.0, 1.0,

X 2.0,
y = np.array([0.0, 0.8, 0.9,

>>> z = np.polyfit(x, y, 3)
z
Yy

o W

>>>

>>>
arra

It is convenient to use polyld objects for dealing with polynomials:

>>> p = np.polyld(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.polyld(np.polyfit(x, y, 30))

/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)

-0.80000000000000204

>>> p30(5)

-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)

>>> plt.plot(x, y, ".", xp, p(xp), "-', xp, p30(xp),
[<matplotlib.lines.Line2D object at Ox...>, <matplotlib.lines.Line2D object at 0x..

>>> plt.ylim(-2,2)
(=2, 2)
>>> plt.show ()

.0, 4.0, 5.0])
1, -0.8, -1.01)

([0.08703704, -0.81349206, 1.69312169, -0.03968254])

430

Chapter 1. Array objects

>,

<matplc

NumPy Reference, Release 1.6.0

| | |
= =2 O O O = ¥
(6,1 o (6,1 o 6] o [6,]
T T T T T T T
!

Clipping and rounding

ma.around Round an array to the given number of decimals.

ma .clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.

ma . round(a[, decimals, out]) Return a copy of a, rounded to ‘decimals’ places.
ma.MaskedArray.clip(a_min, a_max], Return an array whose values are limited to [a_min,

out]) a_max].

ma.MaskedArray . round(decimals=0[, Return a with each element rounded to the given number of
out]) decimals.

numpy .ma .around
Round an array to the given number of decimals.

Refer to around for full documentation.
See Also:

around
equivalent function

numpy .ma.clip (a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters
a: array_like

Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like

Maximum value. If a_min or a_max are array_like, then they will be broadcasted to the
shape of a.

out : ndarray, optional

1.6. Masked arrays 431

NumPy Reference, Release 1.6.0

The results will be placed in this array. It may be the input array for in-place clipping.
out must be of the right shape to hold the output. Its type is preserved.

Returns
clipped_array : ndarray

An array with the elements of a, but where values < a_min are replaced with a_min, and
those > a_max with a_max.

See Also:

numpy .doc.ufuncs
Section “Output arguments”’

Examples

>>> a = np.arange (10)
>>> np.clip(a, 1, 8)
array([(1, 1, 2, 3, 4, 5, 6, 7, 8, 81)
>>> a
array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])
>>> np.clip(a, 3, 6, out=a)
array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange (10)
>>> a
array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91])
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4]1, 8)

array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 81)
numpy .ma . round (a, decimals=0, out=None)

Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to O.

Parameters
decimals : int

Number of decimals to round to. May be negative.
out : array_like

Existing array to use for output. If not given, returns a default copy of a.

Notes
If out is given and does not have a mask attribute, the mask of a is lost!

MaskedArray.clip (a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].

Refer to numpy . c11ip for full documentation.

See Also:

numpy.clip
equivalent function

MaskedArray . round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

432 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Refer to numpy . around for full documentation.

See Also:

numpy . around
equivalent function

Miscellanea

ma.allequal(a, b[, fill_value])
ma.allclose(a, b[, masked_equal, rtol,
atol])

ma.apply_along_axis(funcld, axis,
arr, ...)

ma . arange([start,] stop[, step,][, dtype])
ma . choose(indices, choices[, out, mode])
ma . ediffld(arr[, to_end, to_begin])

ma . indices(dimensions[, dtype])

Return True if all entries of a and b are equal, using
Returns True if two arrays are element-wise equal within a
tolerance.

Apply a function to 1-D slices along the given axis.

Return evenly spaced values within a given interval.

Use an index array to construct a new array from a set of choices.
Compute the differences between consecutive elements of an array.
Return an array representing the indices of a grid.

Return a masked array with elements from x or y, depending on
condition.

ma . where(condition][, X, y])

numpy .ma.allequal (q, b, fill_value=True)
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Parameters
a, b : array_like

Input arrays to compare.
fill_value : bool, optional
Whether masked values in a or b are considered equal (True) or not (False).

Returns
y : bool

Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See Also:

all, any, numpy.ma.allclose

Examples
>>> a = ma.array([lel0, le-7, 42.0], mask=[0, 0, 11)
>>> a
masked_array(data = [10000000000.0 le-07 —--1,

mask = [False False True],
fill_value=1e+20)
>>> b = array([lel0, 1le-7, —-42.0])
>>> b
array ([1.00000000e+10, 1.00000000e-07, —-4.20000000e+0117)
>>> ma.allequal(a, b, fill value=False)
False
>>> ma.allequal (a, b)
True

numpy .ma.allclose (a, b, masked_equal=True, rtol=1.0000000000000001e-05, atol=1e-08)
Returns True if two arrays are element-wise equal within a tolerance.

1.6. Masked arrays 433

NumPy Reference, Release 1.6.0

This function is equivalent to allclose except that masked values are treated as equal (default) or unequal,
depending on the masked_equal argument.

Parameters
a, b : array_like

Input arrays to compare.
masked_equal : bool, optional

Whether masked values in a and b are considered equal (True) or not (False). They are
considered equal by default.

rtol : float, optional

Relative tolerance. The relative difference is equal to rtol = b. Defaultis le-5.
atol : float, optional

Absolute tolerance. The absolute difference is equal to atol. Default is 1e-8.

Returns
y : bool

Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See Also:
all, any

numpy.allclose
the non-masked allclose.

Notes
If the following equation is element-wise True, then allclose returns True:

absolute('a' - 'b') <= (‘atol' + ‘rtol' x absolute (‘b))

Return True if all elements of @ and b are equal subject to given tolerances.

Examples
>>> a = ma.array([lel0, le-7, 42.0], mask=[0, 0, 117)
>>> a
masked_array(data = [10000000000.0 1le-07 —--1,

mask = [False False True],
fill value = 1e+20)
>>> b = ma.array([lel0, 1e-8, -42.0], mask=[0, 0, 11)
>>> ma.allclose(a, b)
False

>>> a = ma.array([lel0, 1le-8, 42.0], mask=[0, 0, 11)

>>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 17])
>>> ma.allclose(a, b)

True

>>> ma.allclose(a, b, masked_equal=False)

False

Masked values are not compared directly.

434 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

>>> a = ma.array([lel0, 1le-8, 42.0], mask=[0, 0, 11)

>>> b = ma.array([1.00001e10, 1le-9, 42.0], mask=[0, 0, 1])
>>> ma.allclose(a, b)

True

>>> ma.allclose(a, b, masked_equal=False)

False

numpy .ma .apply_along_axis (funcld, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Execute funcld(a, *args) where funcld operates on 1-D arrays and a is a 1-D slice of arr along axis.

Parameters
funcld : function

This function should accept 1-D arrays. It is applied to 1-D slices of arr along the
specified axis.

axis : integer

Axis along which arr is sliced.
arr : ndarray

Input array.
args : any

Additional arguments to funcld.

Returns
outarr : ndarray

The output array. The shape of outarr is identical to the shape of arr, except along the
axis dimension, where the length of outarr is equal to the size of the return value of
funcld. If funcld returns a scalar outarr will have one fewer dimensions than arr.

See Also:

apply_over_axes
Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
"""Average first and last element of a 1-D array"""
.. return (a[0] + a[-1]) = 0.5
>>> b = np.array([[1,2,3], [4,5,6]1, [7,8,911)
>>> np.apply_along_axis (my_func, 0, b)
array ([4., 5., 6.])
>>> np.apply_along_axis (my_func, 1, b)
array ([2., 5., 8.1)

For a function that doesn’t return a scalar, the number of dimensions in outarr is the same as arr.

>>> def new_func(a):
"""Divide elements of a by 2."""
. return a x 0.5
>>> b = np.array([[1,2,3]1, [4,5,6]1, [7,8,911])
>>> np.apply_along_axis (new_func, 0, b)
array ([[0.5, 1. , 1.57,

1.6. Masked arrays

NumPy Reference, Release 1.6.0

[2., 2.5 3.1,
[3.5, 4., 4.5]])

numpy .ma.arange ([start], stop[, step], dtype=None)

Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns a ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use 1inspace
for these cases.

Parameters
start : number, optional

Start of interval. The interval includes this value. The default start value is 0.
stop : number

End of interval. The interval does not include this value, except in some cases where
step is not an integer and floating point round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance between two adjacent
values, out [1+1] - out [i]. The default step size is 1. If step is specified, start
must also be given.

dtype : dtype

The type of the output array. If dfype is not given, infer the data type from the other
input arguments.

Returns
out : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is ceil ((stop -
start) /step). Because of floating point overflow, this rule may result in the last
element of out being greater than stop.

See Also:

linspace
Evenly spaced numbers with careful handling of endpoints.

ogrid
Arrays of evenly spaced numbers in N-dimensions

mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions

Examples

>>> np.arange (

array ([0, 1, 2

>>> np.arange (0)
array ([0., 1., 2.1)
>>> np.arange (3, 7)
array ([3, 4, 5, 6])

3)
1)
3.

’

436

Chapter 1. Array objects

http://docs.python.org/lib/built-in-funcs.html

NumPy Reference, Release 1.6.0

>>> np.arange (3,7, 2)
array ([3, 5])

numpy .ma . choose (indices, choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this method will create a new array that merges each of
the choice arrays. Where a value in a is i, the new array will have the value that choices[i] contains in the same

place.
Parameters
a : ndarray of ints
This array must contain integers in [0, n-—1], where n is the number of choices.
choices : sequence of arrays
Choice arrays. The index array and all of the choices should be broadcastable to the
same shape.
out : array, optional
If provided, the result will be inserted into this array. It should be of the appropriate
shape and dtype.
mode : {‘raise’, ‘wrap’, ‘clip’ }, optional
Specifies how out-of-bounds indices will behave.
* ‘raise’ : raise an error
e ‘wrap’ : wrap around
e ‘clip’ : clip to the range
Returns
merged_array : array
See Also:
choose

equivalent function

Examples

>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]1])
>>> a np.array([2, 1, 01)
>>> np.ma.choose (a, choice)
masked_array(data = [3 2 1],
mask = False,
fil1ll_value=999999)

numpy .ma .ediff1d (arr, to_end=None, to_begin=None)
Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediffld that takes masked values into account, see
numpy .edif f1d for details.

See Also:

numpy .ediffld
Equivalent function for ndarrays.

1.6. Masked arrays 437

NumPy Reference, Release 1.6.0

numpy .ma . indices (dimensions, dtype=<type ‘int’>)
Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis.

Parameters
dimensions : sequence of ints

The shape of the grid.
dtype : dtype, optional
Data type of the result.

Returns
grid : ndarray

The array of grid indices, grid.shape = (len(dimensions),) +
tuple (dimensions).

See Also:

mgrid, meshgrid

Notes

The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if
dimensions is atuple (r0, ..., rN-1) oflength N, the output shape is (N, r0O, ..., rN-1).

The subarrays grid[k] contains the N-D array of indices along the k—th axis. Explicitly:

grid[k,i0,il,...,iN-1] = ik

Examples

>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array ([[0, 0, 01,
(1, 1, 111
>>> grid[1] # column indices
array ([[0, 1, 27,
[0, 1, 211)

The indices can be used as an index into an array.

>>> x = np.arange (20) .reshape (5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array ([[0, 1, 21,

(4, 5, 611)

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

numpy .ma . where (condition, x=None, y=None)
Return a masked array with elements from x or y, depending on condition.

Returns a masked array, shaped like condition, where the elements are from x when condition is True, and from
y otherwise. If neither x nor y are given, the function returns a tuple of indices where condition is True (the
result of condition.nonzero ()).

438 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

Parameters
condition : array_like, bool

The condition to meet. For each True element, yield the corresponding element from x,
otherwise from y.

X, y : array_like, optional

Values from which to choose. x and y need to have the same shape as condition, or be
broadcast-able to that shape.

Returns
out : MaskedArray or tuple of ndarrays

The resulting masked array if x and y were given, otherwise the result of
condition.nonzero().

See Also:

numpy . where
Equivalent function in the top-level NumPy module.

Examples
>>> x = np.ma.array(np.arange(9.) .reshape(3, 3), mask=[[0, 1, 0],
[4 OI 1] 4
ce (0, 1, 011)
>>> print x
[[0.0 —— 2.0]
[-— 4.0 —-]
[6.0 —— 8.0]]
>>> np.ma.where(x > 5) # return the indices where x > 5

(array ([2, 21), array ([0, 21))

>>> print np.ma.where(x > 5, x, -3.1416)
[[-3.1416 —— -3.1416]

[-— =-3.1416 —-]

[6.0 —— 8.0]]

1.7 The Array Interface

Note: This page describes the numpy-specific API for accessing the contents of a numpy array from other C exten-
sions. PEP 3118 — The Revised Buffer Protocol introduces similar, standardized API to Python 2.6 and
3.0 for any extension module to use. Cython‘s buffer array support uses the PEP 3118 API; see the Cython numpy
tutorial. Cython provides a way to write code that supports the buffer protocol with Python versions older than 2.6
because it has a backward-compatible implementation utilizing the legacy array interface described here.

version
3

The array interface (sometimes called array protocol) was created in 2005 as a means for array-like Python objects to
re-use each other’s data buffers intelligently whenever possible. The homogeneous N-dimensional array interface is
a default mechanism for objects to share N-dimensional array memory and information. The interface consists of a
Python-side and a C-side using two attributes. Objects wishing to be considered an N-dimensional array in application
code should support at least one of these attributes. Objects wishing to support an N-dimensional array in application
code should look for at least one of these attributes and use the information provided appropriately.

1.7. The Array Interface 439

http://www.python.org/dev/peps/pep-3118
http://docs.python.org/dev/c-api/buffer.html#PyObject_GetBuffer
http://cython.org/
http://www.python.org/dev/peps/pep-3118
http://wiki.cython.org/tutorials/numpy
http://wiki.cython.org/tutorials/numpy

NumPy Reference, Release 1.6.0

This interface describes homogeneous arrays in the sense that each item of the array has the same “type”. This type
can be very simple or it can be a quite arbitrary and complicated C-like structure.

There are two ways to use the interface: A Python side and a C-side. Both are separate attributes.

1.7.1 Python side

This approach to the interface consists of the object havingan __array_interface__ attribute.

__array_interface_
A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if
they are not provided.

The keys are:
shape (required)

Tuple whose elements are the array size in each dimension. Each entry is an integer (a Python int or
long). Note that these integers could be larger than the platform “int” or “long” could hold (a Python
int is a C long). It is up to the code using this attribute to handle this appropriately; either by raising
an error when overflow is possible, or by using Py_ LONG_LONG as the C type for the shapes.

typestr (required)

A string providing the basic type of the homogenous array The basic string format consists of 3 parts:
a character describing the byteorder of the data (<: little-endian, >: big-endian, |: not-relevant), a
character code giving the basic type of the array, and an integer providing the number of bytes the
type uses.

The basic type character codes are:

-

Bit field (following integer gives the number of bits in the bit field).
Boolean (integer type where all values are only True or False)
Integer

Unsigned integer

Floating point

Complex floating point

Object (i.e. the memory contains a pointer to PyOb ject)

String (fixed-length sequence of char)

Unicode (fixed-length sequence of Py_UNICODE)

Other (void * — each item is a fixed-size chunk of memory)

C »n OQ o H O

<

descr (optional)

A list of tuples providing a more detailed description of the memory layout for each item in the
homogeneous array. Each tuple in the list has two or three elements. Normally, this attribute would
be used when typestr is V[0-9] +, but this is not a requirement. The only requirement is that the
number of bytes represented in the rypestr key is the same as the total number of bytes represented
here. The idea is to support descriptions of C-like structs (records) that make up array elements. The
elements of each tuple in the list are

1.A string providing a name associated with this portion of the record. This could also be a tuple
of (/ full name’, ’'basic_name’) where basic name would be a valid Python variable
name representing the full name of the field.

2.Either a basic-type description string as in typestr or another list (for nested records)

3.An optional shape tuple providing how many times this part of the record should be repeated. No
repeats are assumed if this is not given. Very complicated structures can be described using this

440 Chapter 1. Array objects

http://docs.python.org/dev/c-api/structures.html#PyObject
http://docs.python.org/dev/c-api/unicode.html#Py_UNICODE

NumPy Reference, Release 1.6.0

generic interface. Notice, however, that each element of the array is still of the same data-type.
Some examples of using this interface are given below.

Default: [(7, typestr)]
data (optional)

A 2-tuple whose first argument is an integer (a long integer if necessary) that points to the data-area
storing the array contents. This pointer must point to the first element of data (in other words any
offset is always ignored in this case). The second entry in the tuple is a read-only flag (true means
the data area is read-only).

This attribute can also be an object exposing the buffer interface which will be used to share
the data. If this key is not present (or returns None), then memory sharing will be done through the
buffer interface of the object itself. In this case, the offset key can be used to indicate the start of the
buffer. A reference to the object exposing the array interface must be stored by the new object if the
memory area is to be secured.

Default: None
strides (optional)

Either None to indicate a C-style contiguous array or a Tuple of strides which provides the number of
bytes needed to jump to the next array element in the corresponding dimension. Each entry must be
an integer (a Python int or 1ong). As with shape, the values may be larger than can be represented
by a C “int” or “long”; the calling code should handle this appropiately, either by raising an error, or
by using Py_ LONG_LONG in C. The default is None which implies a C-style contiguous memory
buffer. In this model, the last dimension of the array varies the fastest. For example, the default
strides tuple for an object whose array entries are 8 bytes long and whose shape is (10,20,30) would
be (4800, 240, 8)

Default: None (C-style contiguous)
mask (optional)

None or an object exposing the array interface. All elements of the mask array should be interpreted
only as true or not true indicating which elements of this array are valid. The shape of this object
should be “broadcastable” to the shape of the original array.

Default: None (All array values are valid)
offset (optional)

An integer offset into the array data region. This can only be used when data is None or returns a
buffer object.

Default: 0.
version (required)

An integer showing the version of the interface (i.e. 3 for this version). Be careful not to use this to
invalidate objects exposing future versions of the interface.

1.7.2 C-struct access

This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-
defined C-structure.

__array_struct_
A PyCObject whose voidptr member contains a pointer to a filled PyArrayInterface structure.
Memory for the structure is dynamically created and the PyCObject is also created with an appropriate
destructor so the retriever of this attribute simply has to apply Py_DECREF to the object returned by this

1.7. The Array Interface 441

http://docs.python.org/dev/c-api/objbuffer.html#PyObject_AsCharBuffer
http://docs.python.org/dev/c-api/refcounting.html#Py_DECREF

NumPy Reference, Release 1.6.0

attribute when it is finished. Also, either the data needs to be copied out, or a reference to the object exposing
this attribute must be held to ensure the data is not freed. Objects exposing the __array_struct___ interface
must also not reallocate their memory if other objects are referencing them.

The PyArrayInterface structure is defined in numpy/ndarrayobject .h as:

typedef struct {

int two; /+ contains the integer 2 —-- simple sanity check x/

int nd; /* number of dimensions */

char typekind; /+ kind in array —--- character code of typestr =/

int itemsize; /* size of each element =*/

int flags; /* flags indicating how the data should be interpreted x/

/ * must set ARR_HAS DESCR bit to validate descr =/
Py_intptr_t =xshape; /* A length-nd array of shape information x/
Py_intptr_t *strides; /+ A length-nd array of stride information =/

void xdata; /* A pointer to the first element of the array =*/
PyObject =*descr; /+ NULL or data-description (same as descr key
of __array_interface_) -- must set ARR_HAS_DESCR

flag or this will be ignored. =*/
} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be interpreted and one bit showing how
the Interface should be interpreted. The data-bits are CONTIGUOUS (0x1), FORTRAN (0x2), ALIGNED (0x100),
NOTSWAPPED (0x200), and WRITEABLE (0x400). A final flag ARR_HAS_DESCR (0x800) indicates whether or not
this structure has the arrdescr field. The field should not be accessed unless this flag is present.

New since June 16, 2006:

In the past most implementations used the “desc” member of the PyCObject itself (do not confuse this with the
“descr” member of the PyArrayInterface structure above — they are two separate things) to hold the pointer to
the object exposing the interface. This is now an explicit part of the interface. Be sure to own a reference to the object
when the PyCOb ject is created using PyCOb ject_FromVoidPtrAndDesc.

1.7.3 Type description examples

For clarity it is useful to provide some examples of the type description and corresponding __array_interface_
‘descr’ entries. Thanks to Scott Gilbert for these examples:

In every case, the ‘descr’ key is optional, but of course provides more information which may be important for various
applications:

* Float data
typestr == ">f4’
descr == [('','>f4")]

* Complex double
typestr == ’>c8’
descr == [('real’,’>f4’), ('imag’,’>f4’")]

* RGB Pixel data

typestr == ' |V3’

descr == [('r’,’|ul"), ('g’,"|ul’), ('b","|ul’)]
* Mixed endian (weird but could happen).

typestr == ' |V8’ (or '>u8’)

descr == [('big’,’>14"), (’'little’,’'<id’")]

* Nested structure

442 Chapter 1. Array objects

NumPy Reference, Release 1.6.0

struct {
int ival;
struct {
unsigned short sval;
unsigned char bval;
unsigned char cval;

} sub;
}
typestr == 7 |V8’ (or ’<u8’
descr == [("ival’,’<i4d’"),

* Nested array
struct {
int ival;
double datal[l6x4];
}
typestr == 7 |V516’

descr == [('ival’,’>1i4"),

* Padded structure
struct {
int ival;
double dval;
}
typestr == ' |V16’

descr == [('ival’,’>i4"),("","|Vv4’), ('dval’,’>£8")]

It should be clear that any record type could be described using this interface.

if you want)

(" sub’,

[("sval’,’'<u2’),

("data’,’>f£8", (16,4))]

1.7.4 Differences with Array interface (Version 2)

("bval’,’ |ul’),

The version 2 interface was very similar. The differences were largely asthetic. In particular:

1. The PyArraylnterface structure had no descr member at the end (and therefore no flag ARR_HAS_DESCR)

2. The desc member of the PyCObject returned from __array_struct__ was not specified. Usually, it was the object
exposing the array (so that a reference to it could be kept and destroyed when the C-object was destroyed). Now
it must be a tuple whose first element is a string with “PyArrayInterface Version #” and whose second element

is the object exposing the array.

3. The tuple returned from __array_interface_ [’data’] used to be a hex-string (now it is an integer or a long

integer).

4. There was no __array_interface__ attribute instead all of the keys (except for version) in the __array_interface__
dictionary were their own attribute: Thus to obtain the Python-side information you had to access separately the

attributes:
e _ array_data__
e _ array_shape__
e __ array_strides__
e __ array_typestr__
e __array_descr__
e __ array_offset__

e __array_mask__

1.7. The Array Interface

443

("cval’,’ |ul’) 1)

]

NumPy Reference, Release 1.6.0

444 Chapter 1. Array objects

CHAPTER
TWO

UNIVERSAL FUNCTIONS (UFUNC)

A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized”
wrapper for a function that takes a fixed number of scalar inputs and produces a fixed number of scalar outputs.

In Numpy, universal functions are instances of the numpy . ufunc class. Many of the built-in functions are imple-
mented in compiled C code, but ufunc instances can also be produced using the f rompy func factory function.

2.1 Broadcasting

Each universal function takes array inputs and produces array outputs by performing the core function element-wise
on the inputs. Standard broadcasting rules are applied so that inputs not sharing exactly the same shapes can still be
usefully operated on. Broadcasting can be understood by four rules:

1. All input arrays with ndim smaller than the input array of largest ndim, have 1’s prepended to their shapes.
2. The size in each dimension of the output shape is the maximum of all the input sizes in that dimension.

3. An input can be used in the calculation if its size in a particular dimension either matches the output size in that
dimension, or has value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that dimension will be used for all
calculations along that dimension. In other words, the stepping machinery of the ufunc will simply not step
along that dimension (the stride will be O for that dimension).

Broadcasting is used throughout NumPy to decide how to handle disparately shaped arrays; for example, all arith-
metic operations (+, —, *, ...) between ndarrays broadcast the arrays before operation. A set of arrays is called
“broadcastable” to the same shape if the above rules produce a valid result, i.e., one of the following is true:

1. The arrays all have exactly the same shape.

2. The arrays all have the same number of dimensions and the length of each dimensions is either a common length
orl.

3. The arrays that have too few dimensions can have their shapes prepended with a dimension of length 1 to satisfy
property 2.

Example

If a.shapeis (5,1), b.shape is (1,6), c.shape is (6,) and d. shape is () so that d is a scalar, then a, b, ¢, and d
are all broadcastable to dimension (5,6); and

* g acts like a (5,6) array where a [:, 0] is broadcast to the other columns,

* b acts like a (5,6) array where b [0, :] is broadcast to the other rows,

445

NumPy Reference, Release 1.6.0

* cacts like a (1,6) array and therefore like a (5,6) array where c [:] is broadcast to every row, and finally,

* d acts like a (5,6) array where the single value is repeated.

2.2 Output type determination

The output of the ufunc (and its methods) is not necessarily an ndarray, if all input arguments are not ndarrays.

All output arrays will be passed to the _ array_prepare_ and __array_wrap__ methods of the in-
put (besides ndarrays, and scalars) that defines it and has the highest _ _array_priority__ of any other
input to the universal function. The default _ array priority__ of the ndarray is 0.0, and the default
__array_priority__ of asubtypeis 1.0. Matrices have __array_priority__ equal to 10.0.

All ufuncs can also take output arguments. If necessary, output will be cast to the data-type(s) of the provided output
array(s). If a class with an __array__ method is used for the output, results will be written to the object returned
by __array__ . Then, if the class also has an __array_prepare__ method, it is called so metadata may be
determined based on the context of the ufunc (the context consisting of the ufunc itself, the arguments passed to
the ufunc, and the ufunc domain.) The array object returned by ___array_prepare__ is passed to the ufunc for
computation. Finally, if the class also has an __array_wrap__ method, the returned ndarray result will be
passed to that method just before passing control back to the caller.

2.3 Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and data that has to be converted from one data type to
another. The size of internal buffers is settable on a per-thread basis. There can be up to 2(ninputs + Moutputs) buffers
of the specified size created to handle the data from all the inputs and outputs of a ufunc. The default size of a buffer is
10,000 elements. Whenever buffer-based calculation would be needed, but all input arrays are smaller than the buffer
size, those misbehaved or incorrectly-typed arrays will be copied before the calculation proceeds. Adjusting the size of
the buffer may therefore alter the speed at which ufunc calculations of various sorts are completed. A simple interface
for setting this variable is accessible using the function

setbufsize(size) Set the size of the buffer used in ufuncs.

numpy . setbufsize (size)
Set the size of the buffer used in ufuncs.

Parameters
size : int

Size of buffer.

2.4 Error handling

Universal functions can trip special floating-point status registers in your hardware (such as divide-by-zero). If avail-
able on your platform, these registers will be regularly checked during calculation. Error handling is controlled on a
per-thread basis, and can be configured using the functions

seterr(all=None[, divide, over, under, invalid]) Set how floating-point errors are handled.
seterrcall(func) Set the floating-point error callback function or log object.

numpy . seterr (all=None, divide=None, over=None, under=None, invalid=None)
Set how floating-point errors are handled.

446 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

Note that operations on integer scalar types (such as int/6) are handled like floating point, and are affected by
these settings.

Parameters

all : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Set treatment for all types of floating-point errors at once:
* ignore: Take no action when the exception occurs.
» warn: Print a RuntimeWarning (via the Python warnings module).
e raise: Raise a FloatingPointError.
* call: Call a function specified using the seterrcall function.
e print: Print a warning directly to stdout.
* log: Record error in a Log object specified by seterrcall.
The default is not to change the current behavior.

divide : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’ }, optional
Treatment for division by zero.

over : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for floating-point overflow.

under : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for floating-point underflow.

invalid : {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional
Treatment for invalid floating-point operation.

Returns
old_settings : dict

Dictionary containing the old settings.

See Also:

seterrcall
Set a callback function for the ‘call’ mode.

geterr,geterrcall

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:
*Division by zero: infinite result obtained from finite numbers.
*Overflow: result too large to be expressed.
*Underflow: result so close to zero that some precision was lost.

eInvalid operation: result is not an expressible number, typically indicates that a NaN was produced.

Examples

24,

Error handling 447

http://docs.python.org/dev/library/warnings.html#warnings

NumPy Reference, Release 1.6.0

>>> o0ld_settings = np.seterr(all=’ignore’) #seterr to known value
>>> np.seterr (over='raise’)
{’over’: "ignore’, ’'divide’: ’'ignore’, ’invalid’: ’ignore’,
"under’ : ’ignore’}
>>> np.seterr(all="ignore’) # reset to default
{’over’: "raise’, ’'divide’: ’'ignore’, ’invalid’: ’ignore’, ’under’: ’ignore’}

>>> np.intl6(32000) * np.intl6(3)
30464
>>> old_settings = np.seterr(all="warn’, over='raise’)
>>> np.intl6(32000) * np.intl6(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in short_scalars

>>> old_settings = np.seterr(all='print’)

>>> np.geterr()

{’over’: ’'print’, ’'divide’: ’'print’, ’'invalid’: ’'print’, ’‘under’: ’‘print’}
>>> np.intl6(32000) * np.intl6(3)

Warning: overflow encountered in short_scalars

30464

numpy . seterrcall (func)
Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages. The first is to set the error-handler to ‘call’, using
seterr. Then, set the function to call using this function.

The second is to set the error-handler to ‘log’, using seterr. Floating-point errors then trigger a call to the ‘write’
method of the provided object.

Parameters
func : callable f(err, flag) or object with write method

Function to call upon floating-point errors (‘call’-mode) or object whose ‘write’ method
is used to log such message (‘log’-mode).

The call function takes two arguments. The first is the type of error (one of “divide”,

CEINT3

“over”, “under”, or “invalid”), and the second is the status flag. The flag is a byte, whose
least-significant bits indicate the status:

[0 0 0 0 invalid over under invalid]

In other words, flags = divide + 2xover + 4xunder + 8xinvalid.
If an object is provided, its write method should take one argument, a string.

Returns
h : callable, log instance or None

The old error handler.
See Also:

seterr,geterr,geterrcall

Examples

Callback upon error:

448 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

>>> def err_handler (type, flag):
print "Floating point error (%s), with flag " % (type, flag)

>>> saved_handler = np.seterrcall (err_handler)
>>> save_err = np.seterr(all="call’)

>>> np.array ([1, 2, 31) / 0.0
Floating point error (divide by zero), with flag 1
array ([Inf, Inf, Inf])

>>> np.seterrcall (saved_handler)

<function err_handler at 0Ox...>

>>> np.seterr (xxsave_err)

{"over’: 'call’, ’'divide’: ’'call’, ’'invalid’: ’'call’, ’'under’: ’'call’}

Log error message:

>>> class Log(object):
def write(self, msg):
print "LOG: " % msg

>>> log = Log()
>>> saved_handler = np.seterrcall (log)
>>> save_err np.seterr(all="1log’)

>>> np.array ([1, 2, 31) / 0.0

LOG: Warning: divide by zero encountered in divide
<BLANKLINE>

array ([Inf, Inf, Inf])

>>> np.seterrcall (saved_handler)

<__main__ .Log object at Ox...>

>>> np.seterr (xxsave_err)

{’over’: "log’, ’'divide’: ’"log’, ’"invalid’: "log’, ’‘under’: ’"log’}

2.5 Casting Rules

Note: In NumPy 1.6.0, a type promotion API was created to encapsulate the mechansim for determining output types.
See the functions result_type, promote_types,andmin_scalar_type for more details.

At the core of every ufunc is a one-dimensional strided loop that implements the actual function for a specific type
combination. When a ufunc is created, it is given a static list of inner loops and a corresponding list of type signatures
over which the ufunc operates. The ufunc machinery uses this list to determine which inner loop to use for a particular
case. You can inspect the . t ypes attribute for a particular ufunc to see which type combinations have a defined inner
loop and which output type they produce (character codes are used in said output for brevity).

Casting must be done on one or more of the inputs whenever the ufunc does not have a core loop implementation for
the input types provided. If an implementation for the input types cannot be found, then the algorithm searches for an
implementation with a type signature to which all of the inputs can be cast “safely.” The first one it finds in its internal
list of loops is selected and performed, after all necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user settable).

Note: Universal functions in NumPy are flexible enough to have mixed type signatures. Thus, for example, a universal
function could be defined that works with floating-point and integer values. See 1dexp for an example.

2.5. Casting Rules 449

NumPy Reference, Release 1.6.0

By the above description, the casting rules are essentially implemented by the question of when a data type can be
cast “safely” to another data type. The answer to this question can be determined in Python with a function call:
can_cast (fromtype, totype). The Figure below shows the results of this call for the 24 internally supported
types on the author’s 64-bit system. You can generate this table for your system with the code given in the Figure.

Figure
Code segment showing the “can cast safely” table for a 32-bit system.

>>> def print_table (ntypes):
print 'X’,
for char in ntypes: print char,
print
for row in ntypes:

print row,

for col in ntypes:

print int (np.can_cast (row, col)),

. print
>> print_table (np.typecodes[’Al
bhilagpB ILOQ
111

~

OO0 000000 ORRRERRLRRERERRRERERRR R R PQ —

v -

OO0 000000 O0OORRREPRPRERERRERERRERERRRERREQ -

es|
P e
11
01
00
00
00
00
00
11
10
10
10
10
10
01
00
00
00
00
00
00
00
00
00
00
00
00

S ROoO<cmMOUMQ QO YO BEHHDWDT.Q H R D50 v X
OO OO0 ODODODODODODODOODDOOOODODOOO OO OO K W
OO OO0 ODO0ODODODOOODOOOOOOOOO OO O K K
OO OO0 OODO0OOOOOOOOOOORH OO OO K
OO OO0 OO0OO0OOOOOOOOOR K OOOR
OO0 OO0 OO0OOOOOOOOOOR PR ERERE P
OO OO0 O0OO0OO0OOOOOOOOOR R R ERERE P B - &
OO OO0 O0OO0OO0OOOOOOOOOR PR ERERE P B - -
OO OO0 ODO0ODO0ODODOOODO0OOOOOORH OO0 OO O
OO OO0 O0OODO0ODOOOODOOOOORFHOOOOOO R I
OO OO0 OO0 OOODOOOOKRREOOOOO O R
OO OO0 O0OO0ODO0OOOOOORRERRERERREOOOOOO R
OO 0000000 OOOORRERRERERREOOOOOO R
OO OO0 O0OO0OO0OOOORRPFEOOOOR R OOOOHR K K H
OO0 000000 OORRPFPROOOOR R OOOORRFREM
OO0 O0OORrRRPORRERPRRPERERERLRRLRERRERLRERREUO
COO0OO0OO0OrRRRPRRPRERERRLRERRERLRRLRRERRERLRERREQR
CoOO0OO0OOKRRRRPRRPRERERPRLRERERRERLRRLRERRERERREW®
COoOO0OORRPRREPRRERPRPRERERRRERRRRRERRRRRRJG
COoORRPRRPRPREREPRPRRPREPRERPRPRRERERRRRERRRRRRCI
cCoORrRrRPRRPRRPRERPRPRPRPREPREREPRRREPRERERRLRRRERRERRERREO
O OO0 0000000000000 OO O OoOr =
H O OO0 OO OO OO R 3

You should note that, while included in the table for completeness, the ‘S’, ‘U’, and ‘V’ types cannot be operated on
by ufuncs. Also, note that on a 32-bit system the integer types may have different sizes, resulting in a slightly altered
table.

Mixed scalar-array operations use a different set of casting rules that ensure that a scalar cannot “upcast” an array
unless the scalar is of a fundamentally different kind of data (i.e., under a different hierarchy in the data-type hierarchy)
than the array. This rule enables you to use scalar constants in your code (which, as Python types, are interpreted
accordingly in ufuncs) without worrying about whether the precision of the scalar constant will cause upcasting on
your large (small precision) array.

450 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

2.6 ufunc

2.6.1 Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent advanced usage and will not typically be used.
out

New in version 1.6. The first output can provided as either a positional or a keyword parameter.
casting

New in version 1.6. Provides a policy for what kind of casting is permitted. For compatibility with
previous versions of NumPy, this defaults to ‘unsafe’. May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or
‘unsafe’. See can_cast for explanations of the parameter values.

order

New in version 1.6. Specifies the calculation iteration order/memory layout of the output array. Defaults
to ‘K’. ‘C’ means the output should be C-contiguous, ‘F’ means F-contiguous, ‘A’ means F-contiguous if
the inputs are F-contiguous, C-contiguous otherwise, and ‘K’ means to match the element ordering of the
inputs as closely as possible.

dtype
New in version 1.6. Overrides the dtype of the calculation and output arrays. Similar to sig.
subok

New in version 1.6. Defaults to true. If set to false, the output will always be a strict array, not a subtype.
Sig

Either a data-type, a tuple of data-types, or a special signature string indicating the input and output

types of a ufunc. This argument allows you to provide a specific signature for the 1-d loop to use in

the underlying calculation. If the loop specified does not exist for the ufunc, then a TypeError is raised.

Normally, a suitable loop is found automatically by comparing the input types with what is available and

searching for a loop with data-types to which all inputs can be cast safely. This keyword argument lets

you bypass that search and choose a particular loop. A list of available signatures is provided by the types
attribute of the ufunc object.

extobj

a list of length 1, 2, or 3 specifying the ufunc buffer-size, the error mode integer, and the error call-
back function. Normally, these values are looked up in a thread-specific dictionary. Passing them here
circumvents that look up and uses the low-level specification provided for the error mode. This may be
useful, for example, as an optimization for calculations requiring many ufunc calls on small arrays in a
loop.

2.6.2 Attributes

There are some informational attributes that universal functions possess. None of the attributes can be set.

doc_| A docstring for each ufunc. The first part of the docstring is dynamically generated from the number of
outputs, the name, and the number of inputs. The second part of the docstring is provided at creation
time and stored with the ufunc.

__name_The name of the ufunc.

2.6. ufunc 451

NumPy Reference, Release 1.6.0

ufunc.nin The number of inputs.

ufunc.nout The number of outputs.

ufunc.nargs The number of arguments.

ufunc.ntypes The number of types.

ufunc.types Returns a list with types grouped input->output.

ufunc.identity The identity value.

ufunc.nin
The number of inputs.

Data attribute containing the number of arguments the ufunc treats as input.

Examples

>>> np.add.nin

2

>>> np.multiply.nin
2

>>> np.power.nin

2

>>> np.exp.nin

1

ufunc.nout
The number of outputs.

Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be (at least) 1.

Examples

>>> np.add.nout

1

>>> np.multiply.nout
1

>>> np.power.nout

1

>>> np.exp.nout

1

ufunc.nargs
The number of arguments.

Data attribute containing the number of arguments the ufunc takes, including optional ones.

Notes

Typically this value will be one more than what you might expect because all ufuncs take the optional “out”
argument.

Examples

>>> np.add.nargs

3

>>> np.multiply.nargs
3

>>> np.power.nargs

3

452 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

>>> np.exp.nargs
2

ufunc.ntypes
The number of types.

The number of numerical NumPy types - of which there are 18 total - on which the ufunc can operate.

See Also:

numpy .ufunc.types

Examples

>>> np.add.ntypes

18

>>> np.multiply.ntypes
18

>>> np.power.ntypes

17

>>> np.exp.ntypes

5

>>> np.remainder.ntypes
14

ufunc.types

Returns a list with types grouped input->output.

Data attribute listing the data-type “Domain-Range” groupings the ufunc can deliver. The data-types are given

using the character codes.
See Also:

numpy .ufunc.ntypes

Examples

>>> np.add.types
[7?2?2->?", 'bb->b’, ’"BB->B’,
"LL->L", ’'qgg->q’, "Q0->Q’,
"GG->G’, "00->0"]

>>> np.multiply.types
[7?2?2->?', 'bb->b’, ’'BB->B’,
"LL->L", "qg—>q’, 'QQ->Q',
"GG->G’", "00->0"]

>>> np.power.types
["bb->b", "BB->B’, ’"hh->h’,
"qg->q’, 'Q0->Q’, "ff->f’,
"00->0"]

>>> np.exp.types

["f-—>f", 'd->d’, 'g->g’, "F->F',

>>> np.remainder.types
["bb->b’, ’'"BB->B’, ’'hh->h’,
"qg->q’, "Q0->Q", "ff->f’,

ufunc.identity
The identity value.

fii->i’, 'II->1’, "11->1",
"gg->g’, 'FF->F’, ’'DD->D',

rii->i’, ’'I11->1"', ’'11->1',
"gg->g’, ’'FF->F’, ’'DD->D’,

rIT->1/, ’11->1’, 'LL->L',
"FF->F’, ’'DD->D’, 'GG->G’,

"'G->G’, "0->0"]

rIT->17, '11->1’, 'LL->L',

"00->0"]

2.6. ufunc

453

NumPy Reference, Release 1.6.0

Data attribute containing the identity element for the ufunc, if it has one. If it does not, the attribute value is
None.

Examples

>>> np.add.identity

0

>>> np.multiply.identity
1

>>> np.power.identity

1

>>> print np.exp.identity
None

2.6.3 Methods

All ufuncs have four methods. However, these methods only make sense on ufuncs that take two input arguments
and return one output argument. Attempting to call these methods on other ufuncs will cause a ValueError. The
reduce-like methods all take an axis keyword and a dfype keyword, and the arrays must all have dimension >= 1.
The axis keyword specifies the axis of the array over which the reduction will take place and may be negative, but
must be an integer. The dtype keyword allows you to manage a very common problem that arises when naively using
{op}.reduce. Sometimes you may have an array of a certain data type and wish to add up all of its elements, but
the result does not fit into the data type of the array. This commonly happens if you have an array of single-byte
integers. The dtype keyword allows you to alter the data type over which the reduction takes place (and therefore
the type of the output). Thus, you can ensure that the output is a data type with precision large enough to handle
your output. The responsibility of altering the reduce type is mostly up to you. There is one exception: if no
dtype is given for a reduction on the “add” or “multiply” operations, then if the input type is an integer (or Boolean)
data-type and smaller than the size of the int__data type, it will be internally upcast to the int_ (or uint) data-type.

ufunc.reduce(a], axis, dtype, out]) Reduces a‘s dimension by one, by applying ufunc along one axis.

ufunc.accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all elements.
ufunc.reduceat(a, indices[, axis, dtype, out]) Performs a (local) reduce with specified slices over a single axis.
ufunc.outer(A, B) Apply the ufunc op to all pairs (a, b) with ain A and b in B.

ufunc.reduce (a, axis=0, dtype=None, out=None)
Reduces a‘s dimension by one, by applying ufunc along one axis.

Let a.shape = (Ngy, ..., N;, ..., Nas—1). Then ufunc.reduce(a,axis =)[ko, .., ki—1,kit1, .., kar—1] = the
result of iterating j over range(N;), cumulatively applying ufunc to each alko, .., k;—1, J, ki+1, .., kar—1]. For a
one-dimensional array, reduce produces results equivalent to:

r = op.identity # op = ufunc
for i in xrange(len(A)):

r = op(r, A[i])
return r

For example, add.reduce() is equivalent to sum().

Parameters
a: array_like

The array to act on.
axis : int, optional
The axis along which to apply the reduction.

dtype : data-type code, optional

454 Chapter 2. Universal functions (ufunc)

http://docs.python.org/dev/library/exceptions.html#ValueError

NumPy Reference, Release 1.6.0

The type used to represent the intermediate results. Defaults to the data-type of the
output array if this is provided, or the data-type of the input array if no output array is
provided.

out : ndarray, optional

A location into which the result is stored. If not provided, a freshly-allocated array is
returned.

Returns
r : ndarray

The reduced array. If out was supplied, r is a reference to it.

Examples

>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange (8) .reshape((2,2,2))

>>> X
array ([[[0, 11,

[2, 311,

[r4, 51,

[6, 7111)
>>> np.add.reduce (X, 0)
array ([[4, 6],

[8, 1011)
>>> np.add.reduce (X) # confirm: default axis value is 0
array ([[4, 6],

[8, 1011)
>>> np.add.reduce (X, 1)
array ([[2, 47,

[10, 1211)
>>> np.add.reduce (X, 2)
array ([[1, 51,

[9, 131])

ufunc.accumulate (array, axis=0, dtype=None, out=None)
Accumulate the result of applying the operator to all elements.

For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty (len(A))
t op.identity # op = the ufunc being applied to A’s elements
for i in xrange(len(A)):
t = op(t, Ali])
r[i] =t
return r

For example, add.accumulate() is equivalent to np.cumsum().

For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples
below) so repeated use is necessary if one wants to accumulate over multiple axes.

Parameters
array : array_like

The array to act on.

axis : int, optional

2.6. ufunc 455

NumPy Reference, Release 1.6.0

The axis along which to apply the accumulation; default is zero.
dtype : data-type code, optional

The data-type used to represent the intermediate results. Defaults to the data-type of the
output array if such is provided, or the the data-type of the input array if no output array
is provided.

out : ndarray, optional

A location into which the result is stored. If not provided a freshly-allocated array is
returned.

Returns
r : ndarray

The accumulated values. If out was supplied, r is a reference to out.

Examples
1-D array examples:

>>> np.add.accumulate ([2, 3, 5])
array ([2, 5, 10])

>>> np.multiply.accumulate([2, 3, 5])
array ([2, 6, 30])

2-D array examples:

>>> 1 = np.eye(2)

>>> T

array ([[1., 0.1,
[0., 1.11)

Accumulate along axis 0 (rows), down columns:

>>> np.add.accumulate (I, 0)

array ([[1., 0.1,

[1., 1.11)
>>> np.add.accumulate(I) # no axis specified = axis zero
array ([[1., 0.1,

[1., 1.11)

Accumulate along axis 1 (columns), through rows:

>>> np.add.accumulate (I, 1)
array ([[1., 1.1,
[0., 1.11)

ufunc.reduceat (q, indices, axis=0, dtype=None, out=None)
Performs a (local) reduce with specified slices over a single axis.

Foriin range (len (indices)), reduceat computes ufunc.reduce (a[indices[i] :indices[i+1]]),
which becomes the i-th generalized “row” parallel to axis in the final result (i.e., in a 2-D array, for example, if
axis = 0, it becomes the i-th row, but if axis = I, it becomes the i-th column). There are two exceptions to this:

ewhen i = len(indices) - 1 (soforthe lastindex), indices[i+1] = a.shape[axis].
eif indices[i] >= indices[i + 1], thei-th generalized “row” is simply a [indices[i]].

The shape of the output depends on the size of indices, and may be larger than a (this happens if
len(indices) > a.shapelaxis]).

456 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

Parameters
a: array_like

The array to act on.
indices : array_like

Paired indices, comma separated (not colon), specifying slices to reduce.
axis : int, optional

The axis along which to apply the reduceat.
dtype : data-type code, optional

The type used to represent the intermediate results. Defaults to the data type of the
output array if this is provided, or the data type of the input array if no output array is
provided.

out : ndarray, optional

A location into which the result is stored. If not provided a freshly-allocated array is
returned.

Returns
r : ndarray

The reduced values. If out was supplied, r is a reference to out.

Notes
A descriptive example:

If a is 1-D, the function ufunc.accumulate(a) is the same as ufunc.reduceat (a, indices) [::2]
where indices is range (len (array) - 1) with a zero placed in every other element: indices =
zeros (2 * len(a) - 1),indices[l::2] = range(l, len(a)).

Don’t be fooled by this attribute’s name: reduceat(a) is not necessarily smaller than a.

Examples
To take the running sum of four successive values:

>>> np.add.reduceat (np.arange (8), [0,4, 1,5, 2,6, 3,7]1)[::2]
array ([6, 10, 14, 18])

A 2-D example:

>>> x = np.linspace (0, 15, 16).reshape(4,4)
>>> x
array ([. 1., 2., 3.1,

0]
4., 5., 6., 7.1,
8., 9., 10., 11.]
2]

12., 13., 14., 15.
reduce such that the result has the following five rows:
[rowl + row2 + row3]
[rowd]
[row2]
[row3]
#

[rowl + row2 + row3 + row4]

2.6. ufunc 457

NumPy Reference, Release 1.6.0

>>> np.add.reduceat (x, [0, 3, 1

array ([[12., 15., 18., 21.]
[12., 13., 14., 15.7,
[4., 5., 6., 7.1
[8., 9., 10., 11.]
[24., 28., 32., 36.]

reduce such that result has the following two columns:
[coll * col2 * col3, col4d]

>>> np.multiply.reduceat (x, [0, 3], 1)

array ([[0., 3.1,
[120., 7.1,
[720., 11.1,
[2184., 5.11)

ufunc.outer (A, B)
Apply the ufunc op to all pairs (a, b) withain A and b in B.

LetM = A.ndim, N = B.ndim. Then the result, C, of op.outer (A, B) isan array of dimension M + N
such that:

C[i07 ~'~77;M717j07 "'7jN71] = OP(A[iO» "'7iM71]7 B[jov "'7jN71])

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in xrange(len(A)):
for j in xrange(len(B)):
r[i,j] = op(A[i]l, B[Jj]) # op = ufunc in question

Parameters
A : array_like

First array
B : array_like
Second array

Returns
r : ndarray

Output array

See Also:

numpy.outer

Examples

>>> np.multiply.outer([1, 2, 31, [4, 5, 6])
array ([[4, 5, 671,

[8, 10, 127,

[12, 15, 1811)

A multi-dimensional example:

458 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

>>> A = np.array ([[1, 2, 31, [4, 5, 611)
>>> A.shape

(2, 3)

>>> B = np.array ([[1l, 2, 3, 411])

>>> B.shape

(1, 4)

>>> C = np.multiply.outer (A, B)

>>> C.shape; C

(2, 3, 1, 4)

array ([[[[1, 2, 3, 4]],
ez, 4, 6, 811,
(e 3 6, 9 12111,
[(rr 4, 8, 12, 1611,
[5 10, 15, 2011,
[l 6, 12, 18, 241]111)

Warning: A reduce-like operation on an array with a data-type that has a range “too small” to handle the result
will silently wrap. One should use dtype to increase the size of the data-type over which reduction takes place.

2.7 Available ufuncs

There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety
of operations. Some of these ufuncs are called automatically on arrays when the relevant infix notation is used (e.g.,
add (a, b) iscalledinternally when a + b is written and a or b is an ndarray). Nevertheless, you may still want
to use the ufunc call in order to use the optional output argument(s) to place the output(s) in an object (or objects) of
your choice.

Recall that each ufunc operates element-by-element. Therefore, each ufunc will be described as if acting on a set of
scalar inputs to return a set of scalar outputs.

Note: The ufunc still returns its output(s) even if you use the optional output argument(s).

2.7. Available ufuncs 459

NumPy Reference, Release 1.6.0

2.7.1 Math operations

add(x1, x2[, out]) Add arguments element-wise.

subtract(xl, x2[, out]) Subtract arguments, element-wise.

multiply(xl, x2[, out]) Multiply arguments element-wise.

divide(x1, x2[, out]) Divide arguments element-wise.

logaddexp(xl, x2[, out]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs in base-2.

true_divide(xl, x2[, out]) Returns a true division of the inputs, element-wise.
floor_divide(xl, x2[, out]) Return the largest integer smaller or equal to the division of the inputs.

negative(x[, out]) Returns an array with the negative of each element of the original array.
power(xl, x2[, out]) First array elements raised to powers from second array, element-wise.
remainder(xl, x2[, out]) Return element-wise remainder of division.

mod(x1, x2[, out]) Return element-wise remainder of division.

fmod(x1, x2[, out]) Return the element-wise remainder of division.

absolute(x[, out]) Calculate the absolute value element-wise.

rint(x[, out]) Round elements of the array to the nearest integer.

sign(x[, out]) Returns an element-wise indication of the sign of a number.

conj(x[, out]) Return the complex conjugate, element-wise.

exp(x[, out]) Calculate the exponential of all elements in the input array.

exp2(x[, out]) Calculate 2**p for all p in the input array.

Log(x[, out]) Natural logarithm, element-wise.

log2(x[, out]) Base-2 logarithm of x.

logl0(x[, out]) Return the base 10 logarithm of the input array, element-wise.
expml1(x[, out]) Calculate exp (x) — 1 for all elements in the array.

loglp(x[, out]) Return the natural logarithm of one plus the input array, element-wise.
sqrt(x[, out]) Return the positive square-root of an array, element-wise.

square(x[, out]) Return the element-wise square of the input.

reciprocal(x[, out]) Return the reciprocal of the argument, element-wise.

ones_like(x[, out]) Returns an array of ones with the same shape and type as a given array.

Tip: The optional output arguments can be used to help you save memory for large calculations. If your arrays are
large, complicated expressions can take longer than absolutely necessary due to the creation and (later) destruction of
temporary calculation spaces. For example, the expression G a » b + cisequivalenttotl = A * B; G =
Tl + C; del t1. It will be more quickly executedas G = A » B; add(G, C, G) which is the same as G
= A x B; G += C.

2.7.2 Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of degrees to radians is 180° /.

460 Chapter 2. Universal functions (ufunc)

NumPy Reference, Release 1.6.0

sin(x[, out]) Trigonometric sine, element-wise.

cos(x[, out]) Cosine elementwise.

tan(x[, out]) Compute tangent element-wise.

arcsin(x[, out]) Inverse sine, element-wise.

arccos(x[, out]) Trigonometric inverse cosine, element-wise.

arctan(x[, out]) Trigonometric inverse tangent, element-wise.
arctan2(x1l, x2[, out]) Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
hypot(x1, x2[, out]) Given the “legs” of a right triangle, return its hypotenuse.
sinh(x[, out]) Hyperbolic sine, element-wise.

cosh(x[, out]) Hyperbolic cosine, element-wise.

tanh(x[, out]) Compute hyperbolic tangent element-wise.
arcsinh(x][, out]) Inverse hyperbolic sine elementwise.

arccosh(x][, out]) Inverse hyperbolic cosine, elementwise.

arctanh(x[, out]) Inverse hyperbolic tangent elementwise.

deg2rad(x[, out]) Convert angles from degrees to radians.

rad2deqg(x[, out]) Convert angles from radians to degrees.

2.7.3 Bit-twiddling functions

These function all require integer arguments and they manipulate the bit-pattern of those arguments.

bitwise_and(xl, x2[, out]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(xl, x2[, out]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(xl, x2[, out]) Compute the bit-wise XOR of two arrays element-wise.
invert(x[, out]) Compute bit-wise inversion, or bit-wise NOT, element-wise.
left_shift(xl, x2[, out]) Shift the bits of an integer to the left.

right_shift(xl, x2[, out]) Shift the bits of an integer to the right.

2.7.4 Comparison functions

greater(xl, x2[, out]) Return the truth value of (x1 > x2) element-wise.
greater_equal(xl, x2[, out]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2[, out]) Return the truth value of (x1 < x2) element-wise.
less_equal(xl, x2[, out]) Return the truth value of (x1 =< x2) element-wise.
not_equal(xl, x2[, out]) Return (x1 !=x2) element-wise.

equal(xl, x2[, out]) Return (x1 == x2) element-wise.

Warning: Do not use the Python keywords and and or to combine logical array expressions. These keywords
will test the truth value of the entire array (not element-by-element as you might expect). Use the bitwise operators
& and | instead.

logical_and(xl, x2[, out]) Compute the truth value of x1 AND x2 elementwise.
logical_or(xl, x2[, out]) Compute the truth value of x1 OR x2 elementwise.
logical_xor(xl, x2[, out]) Compute the truth value of x1 XOR x2, element-wise.
logical_not(x[, out]) Compute the truth value of NOT x elementwise.

Warning: The bit-wise operators & and | are the proper way to perform element-by-element array comparisons.
Be sure you understand the operator precedence: (a > 2) & (a < 5) is the proper syntax because a > 2
& a < 5 will result in an error due to the fact that 2 & a is evaluated first.

maximum(xl, x2[, out]) Element-wise maximum of array elements.

2.7. Available ufuncs 461

NumPy Reference, Release 1.6.0

Tip: The Python function max () will find the maximum over a one-dimensional array, but it will do so using a
slower sequence interface. The reduce method of the maximum ufunc is much faster. Also, the max () method will
not give answers you might expect for arrays with greater than one dimension. The reduce method of minimum also
allows you to compute a total minimum over an array.

minimum(x1, x2[, out])

Element-wise minimum of array elements.

Warning: the behavior of maximum (a, b) is different than that of max (a, b). Asaufunc, maximum (a,
b) performs an element-by-element comparison of a and b and chooses each element of the result according to
which element in the two arrays is larger. In contrast, max (a, b) treats the objects a and b as a whole, looks at
the (total) truth value of a > Db and uses it to return either a or b (as a whole). A similar difference exists between
minimum(a, b) andmin(a, b).

2.7.5 Floating functions

Recall that all of these functions work element-by-element over an array, returning an array output. The description
details only a single operation.

isreal(x)
iscomplex(X)
isfinite(x[, out])
isinf(x[, out])
isnan(x][, out])
signbit(x[, out])
copysign(xl, x2],
out])
nextafter(xl, x2[,
out])

modf(x[, outl, out2])
ldexp(x1, x2[, out])
frexp(X[, outl, out2])
fmod(x1, x2[, out])
floor(x[, out])
ceil(x][, out])
trunc(x[, out])

Returns a bool array, where True if input element is real.

Returns a bool array, where True if input element is complex.

Test element-wise for finite-ness (not infinity or not Not a Number).
Test element-wise for positive or negative infinity.

Test element-wise for Not a Number (NaN), return result as a bool array.
Returns element-wise True where signbit is set (less than zero).

Change the sign of x1 to that of x2, element-wise.

Return the next representable floating-point value after x1 in the direction of x2
element-wise.

Return the fractional and integral parts of an array, element-wise.

Compute y = x1 * 2%*x2.

Split the number, x, into a normalized fraction (y1) and exponent (y2)

Return the element-wise remainder of division.

Return the floor of the input, element-wise.

Return the ceiling of the input, element-wise.

Return the truncated value of the input, element-wise.

462

Chapter 2. Universal functions (ufunc)

CHAPTER
THREE

ROUTINES

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code,
which demonstrates basic usage of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the $doctest_mode mode of IPython, which allows for pasting of multi-
line examples and preserves indentation.

3.1 Array creation routines

See Also:

Array creation

3.1.1 Ones and zeros

empt y(shape[, dtype, order]) Return a new array of given shape and type, without initializing entries.
empty_1ike(a[, dtype, order, subok]) Return a new array with the same shape and type as a given array.
eve(N[, M, k, dtype]) Return a 2-D array with ones on the diagonal and zeros elsewhere.
identity(n[, dtype]) Return the identity array.

ones(shape[, dtype, order]) Return a new array of given shape and type, filled with ones.
ones_like(x[, out]) Returns an array of ones with the same shape and type as a given array.
zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with zeros.

zeros_1like(a[, dtype, order, subok]) Return an array of zeros with the same shape and type as a given array.

numpy . empty (shape, dtype=float, order="C’)
Return a new array of given shape and type, without initializing entries.

Parameters
shape : int or tuple of int

Shape of the empty array
dtype : data-type, optional

Desired output data-type.
order : {‘C’, ‘F’}, optional

Whether to store multi-dimensional data in C (row-major) or Fortran (column-major)
order in memory.

463

NumPy Reference, Release 1.6.0

See Also:

empty_1like, zeros, ones

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other
hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty ([2, 21)
array ([[—-9.74499359e+001, 6.69583040e-3097,
[2.13182611e-314, 3.06959433e-30911) #random

>>> np.empty([2, 2], dtype=int)
array ([[-1073741821, -1067949133],
[496041986, 1924976011) #random

numpy .empty_like (a, dtype=None, order="K’, subok=True)
Return a new array with the same shape and type as a given array.

Parameters
a: array_like

The shape and data-type of a define these same attributes of the returned array.
dtype : data-type, optional
Overrides the data type of the result.
order : {‘C’, ‘F’, ‘A’, or ‘K’ }, optional
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’

means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a
as closely as possible.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will
be a base-class array. Defaults to True.

Returns
out : ndarray

Array of uninitialized (arbitrary) data with the same shape and type as a.
See Also:
ones_like
Return an array of ones with shape and type of input.

zeros_like

Return an array of zeros with shape and type of input.
empty

Return a new uninitialized array.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

464 Chapter 3. Routines

NumPy Reference, Release 1.6.0

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be
marginally faster than the functions that do set the array values.

Examples
>>> a = ([1,2,31, [4,5,6]) # a is array-like
>>> np.empty_like (a)
array ([[-1073741821, -1073741821, 31, #random
[0, 0, -107374182111)
>>> a = np.array([[1., 2., 3.1,[4.,5.,6.11)

>>> np.empty_like (a)
array ([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000], #random
[4.38791518e-305, -2.00000715e+000, 4.17269252e-30911)

numpy . eye (N, M=None, k=0, dtype=<type ‘float’>)
Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters
N :int

Number of rows in the output.
M : int, optional

Number of columns in the output. If None, defaults to N.
k : int, optional

Index of the diagonal: O (the default) refers to the main diagonal, a positive value refers
to an upper diagonal, and a negative value to a lower diagonal.

dtype : data-type, optional
Data-type of the returned array.

Returns
I : ndarray of shape (N,M)

An array where all elements are equal to zero, except for the k-th diagonal, whose values
are equal to one.

See Also:
identity
(almost) equivalent function

diag
diagonal 2-D array from a 1-D array specified by the user.

Examples

>>> np.eye (2, dtype=int)

array ([[1, 0],
(0, 111

>>> np.eye (3, k=1)

array ([[O., 1., 0.1,
[0., 0., 1.7,
[0., 0., 0.1D1)

numpy . identity (n, dtype=None)
Return the identity array.

3.1. Array creation routines 465

NumPy Reference, Release 1.6.0

The identity array is a square array with ones on the main diagonal.

Parameters
n: int

Number of rows (and columns) in n X n output.
dtype : data-type, optional
Data-type of the output. Defaults to f1oat.

Returns
out : ndarray

n X n array with its main diagonal set to one, and all other elements 0.

Examples
>>> np.identity (3)
array ([[1., 0., 0.1,
[o., 1., 0.1,
[0., 0., 1.1D)

numpy . ones (shape, dtype=None, order="C’)
Return a new array of given shape and type, filled with ones.

Please refer to the documentation for zeros for further details.

See Also:

zeros,ones_like

Examples

>>> np.ones (5)
array ([1., 1., 1., 1., 1.1)

>>> np.ones ((5,),
array (1, 1, 1, 1,

dtype=np.int)
17)

>>> np.ones((2,
array ([[1.]

1))

[1.11)
>>> s = (2,2)
>>> np.ones(s)
array ([[1., 1.1,
(1., 1.11)

numpy .ones_like (x[, out])
Returns an array of ones with the same shape and type as a given array.

Equivalentto a.copy () . £i11(1).
Please refer to the documentation for zeros_like for further details.

See Also:

zeros_like, ones

Examples

466

Chapter 3. Routines

NumPy Reference, Release 1.6.0

>>> a = np.array ([[1, 2, 31, [4, 5, 611)
>>> np.ones_like (a)
array ([[1, 1, 17,

(1, 1, 111

numpy . zeros (shape, dtype=float, order="C")
Return a new array of given shape and type, filled with zeros.

Parameters
shape : int or sequence of ints

Shape of the new array, e.g., (2, 3) or 2.
dtype : data-type, optional

The desired data-type for the array, e.g., numpy . int 8. Default is numpy . float 64.
order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory.

Returns
out : ndarray

Array of zeros with the given shape, dtype, and order.
See Also:
zeros_like
Return an array of zeros with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

empty_like
Return an empty array with shape and type of input.

ones
Return a new array setting values to one.

empty
Return a new uninitialized array.
Examples

>>> np.zeros (5)
array ([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=numpy.int)
array ([0, 0, 0, 0, 01])

>>> np.zeros ((2, 1))

array ([[0.7,
[0.11)
>>> 5 = (2,2)
>>> np.zeros(s)
array ([[0., 0.1,
[0., 0.11)

3.1. Array creation routines 467

NumPy Reference, Release 1.6.0

>>> np.zeros((2,), dtype=[('x", 71i4"), ('y’, 7147)]1) # custom dtype
array ([(0, 0), (O, 0)1,
dtype=[("x', '<i4"), ('y', '<i4")1)

numpy . zeros_1like (a, dtype=None, order="K’, subok=True)
Return an array of zeros with the same shape and type as a given array.
With default parameters, is equivalent to a . copy () .£111 (0).

Parameters
a: array_like

The shape and data-type of a define these same attributes of the returned array.
dtype : data-type, optional

Overrides the data type of the result.
order : {‘C’, ‘F’, ‘A’, or ‘K’ }, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as
closely as possible.

Returns
out : ndarray

Array of zeros with the same shape and type as a.
See Also:
ones_like
Return an array of ones with shape and type of input.

empty_ like
Return an empty array with shape and type of input.

zeros
Return a new array setting values to zero.

ones
Return a new array setting values to one.
empty
Return a new uninitialized array.

Examples
>>> x = np.arange (6)
>>> x = x.reshape ((2, 3))
>>> X
array ([[0, 1, 21,

(3, 4, 511)
>>> np.zeros_like (x)
array ([[0, 0, 071,

(0, 0, 0I1)

>>> y = np.arange (3, dtype=np.float)
>>> y

array ([0., 1., 2.1)

>>> np.zeros_like (y)

array ([0., 0., 0.])

468 Chapter 3. Routines

NumPy Reference, Release 1.6.0

3.1.2 From existing data

array(object[, dtype, copy, order, subok, Create an array.

ndmin])

asarray(al, dtype, order]) Convert the input to an array.

asanyarray(a[, dtype, order]) Convert the input to an ndarray, but pass ndarray subclasses
through.

ascontiguousarray(al, dtypel) Return a contiguous array in memory (C order).

asmatrix(data[, dtype]) Interpret the input as a matrix.

copy(a) Return an array copy of the given object.

frombuf fer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.

fromfile(file[, dtype, count, sep]) Construct an array from data in a text or binary file.

fromfunction(function, shape, **kwargs) Construct an array by executing a function over each

fromiter(iterable, dtype[, count])
fromstring(string[, dtype, count, sep])

coordinate.
Create a new 1-dimensional array from an iterable object.

string.

loadtxt(fnamel, dtype, comments, delimiter, Load data from a text file.

)]

numpy . array (object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
Create an array.

Parameters

object : array_like

An array, any object exposing the array interface, an object whose __array__ method
returns an array, or any (nested) sequence.

dtype : data-type, optional

The desired data-type for the array. If not given, then the type will be determined as the
minimum type required to hold the objects in the sequence. This argument can only be
used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy : bool, optional

If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (dtype, order, etc.).

order : {‘C’, ‘F’, ‘A’}, optional
Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then

the returned array may be in any order (either C-, Fortran-contiguous, or even discon-
tiguous).

subok : bool, optional

If True, then sub-classes will be passed-through, otherwise the returned array will be
forced to be a base-class array (default).

ndmin : int, optional

Specifies the minimum number of dimensions that the resulting array should have. Ones
will be pre-pended to the shape as needed to meet this requirement.

Returns

out : ndarray

3.1. Array creation routines

A new 1-D array initialized from raw binary or text data in a

NumPy Reference, Release 1.6.0

An array object satisfying the specified requirements.
See Also:

empty, empty_like, zeros, zeros_like, ones,ones_like, fill

Examples

>>> np.array([1, 2, 3])
array ([1, 2, 31)

Upcasting:
>>> np.array([1l, 2, 3.0])
array ([1., 2., 3.1)
More than one dimension:

>>> np.array ([[1, 2], [3, 411)
array ([[1, 21,
(3, 411)
Minimum dimensions 2:
>>> np.array([1l, 2, 3], ndmin=2)
array ([[1, 2, 3]1])
Type provided:
>>> np.array([1l, 2, 3], dtype=complex)
array ([1.+0.7, 2.+0.7, 3.+40.731)
Data-type consisting of more than one element:

>>> X np.array ([(1,2), (3,4)],dtype=[("a’,’'<i4"), ("b’,"<i4")1)

>>> x["a’]
array ([1, 31)

Creating an array from sub-classes:

>>> np.array(np.mat ("1 2; 3 47))
array ([[1, 21,
[3, 411)

>>> np.array(np.mat ("1 2; 3 47), subok=True)
matrix ([[1, 27,
[3, 411)

numpy .asarray (a, dtype=None, order=None)
Convert the input to an array.

Parameters
a: array_like

Input data, in any form that can be converted to an array. This includes lists, lists of
tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtype : data-type, optional
By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

470 Chapter 3. Routines

NumPy Reference, Release 1.6.0

Whether to use row-major (‘C’) or column-major (‘F’ for FORTRAN) memory repre-
sentation. Defaults to ‘C’.

Returns
out : ndarray

Array interpretation of a. No copy is performed if the input is already an ndarray. If a
is a subclass of ndarray, a base class ndarray is returned.

See Also:
asanyarray
Similar function which passes through subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfarray
Convert input to a floating point ndarray.

asfortranarray
Convert input to an ndarray with column-major memory order.

asarray_chkfinite
Similar function which checks input for NaNs and Infs.

fromiter
Create an array from an iterator.

fromfunction

Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray (a)
array ([1, 21)

Existing arrays are not copied:

>>> a = np.array([1l, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1l, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True

>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass (np.matrix, np.ndarray)

True

>>> a = np.matrix([[1l, 2]])
>>> np.asarray(a) is a
False

3.1. Array creation routines 471

NumPy Reference, Release 1.6.0

>>> np.asanyarray(a) is a
True

numpy .asanyarray (a, dtype=None, order=None)
Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters
a: array_like

Input data, in any form that can be converted to an array. This includes scalars, lists,
lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {‘C’, ‘F’}, optional

Whether to use row-major (‘C’) or column-major (‘F’) memory representation. Defaults
to ‘C’.
Returns
out : ndarray or an ndarray subclass

Array interpretation of a. If a is an ndarray or a subclass of ndarray, it is returned as-is
and no copy is performed.

See Also:

asarray
Similar function which always returns ndarrays.

ascontiguousarray
Convert input to a contiguous array.

asfarray
Convert input to a floating point ndarray.

asfortranarray
Convert input to an ndarray with column-major memory order.

asarray_chkfinite
Similar function which checks input for NaNs and Infs.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

Examples
Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray (a)
array ([1, 21)

Instances of ndarray subclasses are passed through as-is:

>>> a

= np.matrix ([1, 21])
>>> np.asanyarray(a) is a

True

472 Chapter 3. Routines

NumPy Reference, Release 1.6.0

numpy .ascontiguousarray (a, dtype=None)
Return a contiguous array in memory (C order).

Parameters
a: array_like

Input array.
dtype : str or dtype object, optional
Data-type of returned array.

Returns
out : ndarray

Contiguous array of same shape and content as a, with type dtype if specified.

See Also:

asfortranarray

Convert input to an ndarray with column-major memory order.

require

Return an ndarray that satisfies requirements.

ndarray. flags

Information about the memory layout of the array.

Examples

>>> x = np.arange (6) .reshape (2, 3)

>>> np.ascontiguousarray(x, dtype=np.float32)

array ([[O., 1., 2.1,

[3., 4., 5.]1]1, dtype=float32)

>>> x.flags[’C_CONTIGUOUS']
True

numpy .asmatrix (data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to

matrix (data, copy=False).

Parameters
data : array_like

Input data.

Returns
mat : matrix

data interpreted as a matrix.

Examples
>>> x = np.array([[1, 2], [3, 411)
>>> m = np.asmatrix(x)
>>> x[0,0] =5

3.1. Array creation routines

473

NumPy Reference, Release 1.6.0

>>> m
matrix ([[5, 271,
[3, 41])

numpy . copy (a)
Return an array copy of the given object.

Parameters
a: array_like

Input data.

Returns
arr : ndarray

Array interpretation of a.

Notes
This is equivalent to

>>> np.array(a, copy=True)

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([1l, 2, 31)
>>> y = X
>>> 7z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[0]
False

numpy . fErombuf fer (buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.

Parameters
buffer : buffer_like

An object that exposes the buffer interface.
dtype : data-type, optional

Data-type of the returned array; default: float.
count : int, optional

Number of items to read. —1 means all data in the buffer.
offset : int, optional

Start reading the buffer from this offset; default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

474 Chapter 3. Routines

NumPy Reference, Release 1.6.0

>>> dt = np.dtype (int)
>>> dt = dt.newbyteorder (’'>")
>>> np.frombuffer (buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = "hello world’
>>> np.frombuffer (s, dtype=’S1l’, count=5, offset=6)
array(['w’, 'o', 'x’, 17, 'd"],

dtype='|S1")

numpy . fromfile (file, dtype=float, count=-1, sep="")
Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text
files. Data written using the fofile method can be read using this function.

Parameters
file : file or str

Open file object or filename.
dtype : data-type

Data type of the returned array. For binary files, it is used to determine the size and
byte-order of the items in the file.

count : int
Number of items to read. —1 means all items (i.e., the complete file).
sep : str

(132]

Separator between items if file is a text file. Empty (*”’) separator means the file should
be treated as binary. Spaces (") in the separator match zero or more whitespace char-
acters. A separator consisting only of spaces must match at least one whitespace.

See Also:
load, save, ndarray.tofile

loadtxt
More flexible way of loading data from a text file.

Notes

Do not rely on the combination of tofile and fromfile for data storage, as the binary files generated are are not
platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in the
platform independent . npy format using save and load instead.

Examples
Construct an ndarray:

>>> dt = np.dtype ([('time’, [('min’, int), (’'sec’, int)]),
. ("temp’, float)l])
>>> x = np.zeros((l,), dtype=dt)

>>> x[’time’] ['min’] = 10; x[’'temp’] = 98.25
>>> x
array ([((10, 0), 98.25)1],
dtype=[("time’, [('min’, ’'<id4’"), ('sec’, ’'<i4’)]), ('temp’, ’'<£f8')1)

3.1. Array creation routines 475

NumPy Reference, Release 1.6.0

Save the raw data to disk:

>>> import os
>>> fname = os.tmpnam()
>>> x.tofile (fname)

Read the raw data from disk:

>>> np.fromfile (fname, dtype=dt)
array ([((10, 0), 98.25)171,
dtype=[("time’, [('min’, ’'<id4’"), ('sec’, ’'<i4’)]), ("temp’, ’'<£8')1)
The recommended way to store and load data:

>>> np.save (fname, x)
>>> np.load(fname + ’.npy’)
array ([((10, 0), 98.25)1,
dtype=[("time’, [('min’, ’'<id4’"), ('sec’, ’'<i4’)]), ("temp’, ’'<£8')1)

numpy . Eromfunction (function, shape, **kwargs)
Construct an array by executing a function over each coordinate.
The resulting array therefore has a value £n (x, y, =z) atcoordinate (x, y, z).

Parameters
function : callable

The function is called with N parameters, each of which represents the coordinates of
the array varying along a specific axis. For example, if shape were (2, 2), then the
parameters would be two arrays, [[0, 0], [1, 1]]land [[O, 1], [O, 111.
function must be capable of operating on arrays, and should return a scalar value.

shape : (N,) tuple of ints

Shape of the output array, which also determines the shape of the coordinate arrays
passed to function.

dtype : data-type, optional
Data-type of the coordinate arrays passed to function. By default, dtype is float.

Returns
out : any

The result of the call to function is passed back directly. Therefore the type and shape
of out is completely determined by function.

See Also:

indices, meshgrid

Notes

Keywords other than shape and dtype are passed to function.

Examples
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array ([[True, False, False],

[False, True, False],
[False, False, True]], dtype=bool)

476 Chapter 3. Routines

NumPy Reference, Release 1.6.0

>>> np.fromfunction(lambda i, j: i + J, (3, 3), dtype=int)
array ([[0, 1, 21,

(1, 2, 31,

(2, 3, 411)

numpy . £romiter (iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.

Parameters
iterable : iterable object

An iterable object providing data for the array.
dtype : data-type

The data-type of the returned array.
count : int, optional

The number of items to read from iterable. The default is -1, which means all data is
read.

Returns
out : ndarray

The output array.

Notes

Specify count to improve performance. It allows fromiter to pre-allocate the output array, instead of resizing
it on demand.

Examples
>>> iterable = (xxx for x in range(5))
>>> np.fromiter (iterable, np.float)
array ([0., 1., 4., 9., 16.])

numpy . fromstring (string, dtype=float, count=-1, sep="")
A new 1-D array initialized from raw binary or text data in a string.

Parameters
string : str

A string containing the data.

dtype : data-type, optional
The data type of the array; default: float. For binary input data, the data must be in
exactly this format.

count : int, optional

Read this number of dfype elements from the data. If this is negative (the default), the
count will be determined from the length of the data.

sep : str, optional

If not provided or, equivalently, the empty string, the data will be interpreted as binary
data; otherwise, as ASCII text with decimal numbers. Also in this latter case, this
argument is interpreted as the string separating numbers in the data; extra whitespace
between elements is also ignored.

3.1. Array creation routines 477

NumPy Reference, Release 1.6.0

Returns
arr : ndarray

The constructed array.

Raises
ValueError :

If the string is not the correct size to satisfy the requested dfype and count.
See Also:

frombuffer, fromfile, fromiter

Examples

>>> np.fromstring (' \x01\x02’, dtype=np.uint8)

array ([1l, 2], dtype=uint8)

>>> np.fromstring(’1 2’, dtype=int, sep=' ')

array ([1, 21])

>>> np.fromstring(’1, 2’, dtype=int, sep=',"’)

array ([1, 21])

>>> np.fromstring (’ \x01\x02\x03\x04\x05’, dtype=np.uint8, count=3)
array ([1l, 2, 3], dtype=uint8)

numpy . loadtxt (fname, dtype=<type ‘float’>, comments="#", delimiter=None, converters=None,

skiprows=0, usecols=None, unpack=False, ndmin=0)
Load data from a text file.

Each row in the text file must have the same number of values.

Parameters
fname : file or str

File, filename, or generator to read. If the filename extension is .gz or .bz2, the file
is first decompressed. Note that generators should return byte strings for Python 3k.

dtype : data-type, optional

Data-type of the resulting array; default: float. If this is a record data-type, the resulting
array will be 1-dimensional, and each row will be interpreted as an element of the array.
In this case, the number of columns used must match the number of fields in the data-

type.
comments : str, optional

The character used to indicate the start of a comment; default: ‘#’.
delimiter : str, optional

The string used to separate values. By default, this is any whitespace.
converters : dict, optional

A dictionary mapping column number to a function that will convert that column to a
float. E.g., if column O is a date string: converters = {0: datestr2num}.
Converters can also be used to provide a default value for missing data (but see also gen-
fromixt): converters = {3: lambda s: float(s.strip() or 0)}.
Default: None.

skiprows : int, optional
Skip the first skiprows lines; default: 0.

usecols : sequence, optional

478 Chapter 3. Routines

NumPy Reference, Release 1.6.0

Which columns to read, with O being the first. For example, usecols = (1,4,5)
will extract the 2nd, 5th and 6th columns. The default, None, results in all columns
being read.

unpack : bool, optional

If True, the returned array is transposed, so that arguments may be unpacked using x,
vy, z = loadtxt (...). When used with a record data-type, arrays are returned
for each field. Default is False.

ndmin : int, optional

The returned array will have at least ndmin dimensions. Otherwise mono-dimensional
axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0

Returns
out : ndarray

Data read from the text file.
See Also:
load, fromstring, fromregex

genfromtxt
Load data with missing values handled as specified.

scipy.io.loadmat
reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The genfromtxt function provides more sophis-

ticated handling of, e.g., lines with missing values.

Examples

>>> from StringIO import StringIO # StringIO behaves like a file object
>>> ¢ = StringIO("0 1\n2 3")
>>> np.loadtxt (c)
array ([[0., 1.1,
[2., 3.11)

>>> d = StringIO("M 21 72\nF 35 58")
>>> np.loadtxt (d, dtype={’'names’: (’'gender’, ’'age’, ’"weight’),
R "formats’: (’/S1’, ’"id4’, "f£47)})
array ([('M", 21, 72.0), ('"r’, 35, 58.0)1,
dtype=[("gender’, " |S1’"), ("age’, ’'<i4d4’), ('weight’, ’'<£f47)])

>>> ¢ = StringIO("1,0,2\n3,0,4™)
>>> x, y = np.loadtxt (c, delimiter=’,’, usecols=(0, 2), unpack=True)

>>> x
array ([1., 3.1)
>>> y
array ([2., 4.17)

3.1.3 Creating record arrays (numpy . rec)

Note: numpy . rec is the preferred alias for numpy.core.records.

3.1. Array creation routines

479

NumPy Reference, Release 1.6.0

core.records.array(obj[, dtype, shape, ...]) Construct a record array from a wide-variety of objects.
core.records.fromarrays(arrayList[, dtype, create a record array from a (flat) list of arrays

)]

core.records.fromrecords(recList[, dtype, create a recarray from a list of records in text form
)]

core.records. fromstring(datastring[, dtype, create a (read-only) record array from binary data
) contained in

core.records.fromfile(fd[, dtype, shape, Create an array from binary file data

)]

numpy .core.records.array (obj, dtype=None, shape=None, offset=0, strides=None, formats=None,

names=None, titles=None, aligned=False, byteorder=None, copy=True)
Construct a record array from a wide-variety of objects.

numpy.core.records. fromarrays (arrayList, dtype=None, shape=None, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
create a record array from a (flat) list of arrays

>>> xl=np.array([1,2,3,4])

>>> x2=np.array([’a’,’dd", ' xyz’',"12"])

>>> x3=np.array([1.1,2,3,41)

>>> r = np.core.records.fromarrays ([x1l,x2,x3],names="a,b,c’)
>>> print r[l]

(2, rdd’, 2.0)

>>> x1[1]=34

>>> r.a

array ([1, 2, 3, 41)

numpy .core.records.fromrecords (recList, dtype=None, shape=None, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
create a recarray from a list of records in text form

The data in the same field can be heterogeneous, they will be promoted to the highest data type. This
method is intended for creating smaller record arrays. If used to create large array without formats
defined

r=fromrecords([(2,3.,”abc’)]*100000)
it can be slow.

If formats is None, then this will auto-detect formats. Use list of tuples rather than list of lists for
faster processing.

>>> r=np.core.records.fromrecords ([(456, dbe’,1.2),(2,7de’,1.3)1,
names=’'coll,col2,col3")
>>> print r[0]
(456, ’'dbe’, 1.2)
>>> r.coll
array ([456, 21)
>>> r.col2
chararray ([’dbe’, 'de’],
dtype='[S3")
>>> import cPickle
>>> print cPickle.loads (cPickle.dumps (r))
[(456, "dbe’, 1.2) (2, "de’, 1.3)]

numpy .core.records. fromstring (datastring, dtype=None, shape=None, offset=0, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
create a (read-only) record array from binary data contained in a string

480 Chapter 3. Routines

NumPy Reference, Release 1.6.0

numpy.core.records.fromfile (fd, dtype=None, shape=None, offset=0, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
Create an array from binary file data

If file is a string then that file is opened, else it is assumed to be a file object.

>>> from tempfile import TemporaryFile
>>> a = np.empty (10,dtype="£8,14,a5")

>>> a[5] = (0.5,10,"abcde’)
>>>

>>> fd=TemporaryFile ()

>>> a = a.newbyteorder (’'<’")
>>> a.tofile (fd)

>>>

>>> fd.seek (0)

>>> r=np.core.records.fromfile (fd, formats=’'f8,14,a5", shape=10,
.. byteorder=’'<")

>>> print r([5]

(0.5, 10, ’"abcde’)

>>> r.shape

(10,)

3.1.4 Creating character arrays (numpy . char)

Note: numpy.char is the preferred alias for numpy .core.defchararray.

core.defchararray.array(obj[, itemsize, Create a chararray.

)]

core.defchararray.asarray(obj|, Convert the input to a chararray, copying the data only if
itemsize, ...]) necessary.

numpy . core.defchararray.array (0bj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type string_ or unicode_ and use the free functions in numpy . char for fast
vectorized string operations instead.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:
1.values automatically have whitespace removed from the end when indexed
2.comparison operators automatically remove whitespace from the end when comparing values
3.vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +, *,
%)
Parameters
obj : array of str or unicode-like
itemsize : int, optional

itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and o0bj is an object array or a Python list, the itemsize will be automatically
determined. If itemsize is provided and obj is of type str or unicode, then the obj string
will be chunked into itemsize pieces.

copy : bool, optional

3.1. Array creation routines 481

NumPy Reference, Release 1.6.0

If true (default), then the object is copied. Otherwise, a copy will only be made if
__array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (itemsize, unicode, order, etc.).

unicode : bool, optional

When true, the resulting chararray can contain Unicode characters, when false only
8-bit characters. If unicode is None and obj is one of the following:

* achararray,

* an ndarray of type str or unicode

* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.
order : {‘C’, ‘F’, ‘A’}, optional

Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then

the returned array may be in any order (either C-, Fortran-contiguous, or even discon-
tiguous).

numpy .core.defchararray.asarray (obj, itemsize=None, unicode=None, order=None)
Convert the input to a chararray, copying the data only if necessary.

Versus a regular Numpy array of type str or unicode, this class adds the following functionality:
1.values automatically have whitespace removed from the end when indexed
2.comparison operators automatically remove whitespace from the end when comparing values
3.vectorized string operations are provided as methods (e.g. str.endswith) and infix operators (e.g. +, *, %)

Parameters
obj : array of str or unicode-like
itemsize : int, optional
itemsize is the number of characters per scalar in the resulting array. If itemsize is

None, and obj is an object array or a Python list, the ifemsize will be automatically

determined. If itemsize is provided and obj is of type str or unicode, then the obj string
will be chunked into itemsize pieces.

unicode : bool, optional

When true, the resulting chararray can contain Unicode characters, when false only
8-bit characters. If unicode is None and obj is one of the following:

* achararray,

* an ndarray of type str or ‘unicode’

* a Python str or unicode object,
then the unicode setting of the output array will be automatically determined.

order : {‘C’, ‘F’}, optional

Specify the order of the array. If order is ‘C’ (default), then the array will be in C-
contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest).

482 Chapter 3. Routines

NumPy Reference, Release 1.6.0

3.1.5 Numerical ranges

arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.

linspace(start, stop[, num, endpoint, Return evenly spaced numbers over a specified interval.

retstep])

logspace(start, stop[, num, endpoint, Return numbers spaced evenly on a log scale.

base])

meshgrid(x,y) Return coordinate matrices from two coordinate vectors.

mgrid nd_grid instance which returns a dense multi-dimensional
“meshgrid”.

ogrid nd_grid instance which returns an open multi-dimensional
“meshgrid”.

numpy .arange ([start], stop[, step], dtype=None)
Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding sfop). For integer arguments the function is equivalent to the Python built-in range function,
but returns a ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use 1inspace
for these cases.

Parameters
start : number, optional

Start of interval. The interval includes this value. The default start value is 0.
stop : number

End of interval. The interval does not include this value, except in some cases where
step is not an integer and floating point round-off affects the length of out.

step : number, optional

Spacing between values. For any output out, this is the distance between two adjacent
values, out [1+1] — out [i]. The default step size is 1. If step is specified, start
must also be given.

dtype : dtype

The type of the output array. If dfype is not given, infer the data type from the other
input arguments.

Returns
out : ndarray

Array of evenly spaced values.

For floating point arguments, the length of the result is ceil ((stop -
start) /step). Because of floating point overflow, this rule may result in the last
element of out being greater than stop.

See Also:
linspace
Evenly spaced numbers with careful handling of endpoints.

ogrid
Arrays of evenly spaced numbers in N-dimensions

3.1. Array creation routines 483

http://docs.python.org/lib/built-in-funcs.html

NumPy Reference, Release 1.6.0

mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions

Examples

>>> np.arange (3)

array ([0, 1, 21)

>>> np.arange (3.0)
array ([0., 1., 2.1)
>>> np.arange (3,

array ([3, 4, 5

>>> np.arange (

array ([3, 51)

.
, 61)
3,7,2)
numpy . linspace (start, stop, num=50, endpoint=True, retstep=False)
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].

The endpoint of the interval can optionally be excluded.

Parameters
start : scalar

The starting value of the sequence.
stop : scalar

The end value of the sequence, unless endpoint is set to False. In that case, the sequence
consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded.
Note that the step size changes when endpoint is False.

num : int, optional

Number of samples to generate. Default is 50.
endpoint : bool, optional

If True, stop is the last sample. Otherwise, it is not included. Default is True.
retstep : bool, optional

If True, return (samples, step), where step is the spacing between samples.

Returns
samples : ndarray

There are num equally spaced samples in the closed interval [start, stop] or
the half-open interval [start, stop) (depending on whether endpoint is True or
False).

step : float (only if retstep is True)
Size of spacing between samples.
See Also:
arange
Similiar to linspace, but uses a step size (instead of the number of samples).

logspace
Samples uniformly distributed in log space.

484 Chapter 3. Routines

NumPy Reference, Release 1.6.0

Examples

>>> np.linspace (2.0, 3.0, num=5)
array ([2. , 2.25, 2.5, 2.75, 3. 1)

>>> np.linspace (2.0, 3.0, num=5, endpoint=False)
array ([2. , 2.2, 2.4, 2.6, 2.8])

>>> np.linspace (2.0, 3.0, num=5, retstep=True)
(array ([2. , 2.25, 2.5, 2.75, 3. 1), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt

>>> N = 8

>>> y = np.zeros (N)

>>> x1 = np.linspace (0, 10, N, endpoint=True)
>>> x2 = np.linspace (0, 10, N, endpoint=False)

>>> plt.plot(xl, vy, "0o")
[<matplotlib.lines.Line2D object at Ox...>]
>>> plt.plot(x2, y + 0.5, "0o")
[<matplotlib.lines.Line2D object at Ox...>]
>>> plt.ylim([-0.5, 17)

(-0.5, 1)

>>> plt.show/()

1.0 T T T T

0.6} -
0.4 -
0.2} -

0.0p [o [[o [4

-0.4f -

numpy . logspace (start, stop, num=50, endpoint=True, base=10.0)
Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at base *x start (base to the power of start) and ends with base *=x
stop (see endpoint below).

Parameters
start : float

base *x start is the starting value of the sequence.
stop : float

base % stop is the final value of the sequence, unless endpoint is False. In that
case, num + 1 values are spaced over the interval in log-space, of which all but the
last (a sequence of length num) are returned.

3.1. Array creation routines 485

NumPy Reference, Release 1.6.0

num : integer, optional

Number of samples to generate. Default is 50.
endpoint : boolean, optional

If true, stop is the last sample. Otherwise, it is not included. Default is True.
base : float, optional

The base of the log space. The step size between the elements in 1n (samples) /
1n (base) (or log_base (samples)) is uniform. Default is 10.0.

Returns
samples : ndarray

num samples, equally spaced on a log scale.
See Also:
arange

Similiar to linspace, with the step size specified instead of the number of samples. Note that, when used
with a float endpoint, the endpoint may or may not be included.

linspace
Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space.

Notes
Logspace is equivalent to the code

>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)

>>> power (base, V)

Examples
>>> np.logspace (2.0, 3.0, num=4)
array ([100. , 215.443469 464.15888336, 1000. 1)
>>> np.logspace (2.0, 3.0, num=4, endpoint=False)
array ([100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace (2.0, 3.0, num=4, base=2.0)
array ([4. , 5.0396842 , 6.34960421, 8. 1)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 10

>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace (0.1, 1, N, endpoint=False)
>>> y = np.zeros (N)

>>> plt.plot(xl, y, "0")
[<matplotlib.lines.Line2D object at Ox...>]
>>> plt.plot(x2, y + 0.5, "0o")
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 17)

(-0.5, 1)

>>> plt.show()

486 Chapter 3. Routines

NumPy Reference, Release 1.6.0

1.0 T T T T T T T T

0.8
0.6 i
00 ® @ © O () ()]
0.4 B
0.2 i
tofeeo® @6 ¢ ©]]] 4
02} i

—0.4f .

numpy .meshgrid (x, y)
Return coordinate matrices from two coordinate vectors.

Parameters
X, y : ndarray
Two 1-D arrays representing the x and y coordinates of a grid.
Returns
X, Y : ndarray

For vectors x, y with lengths Nx=1en (x) and Ny=1len (y), return X, ¥ where X and
Y are (Ny, Nx) shaped arrays with the elements of x and y repeated to fill the matrix
along the first dimension for x, the second for y.

See Also:
index_tricks.mgrid
Construct a multi-dimensional “meshgrid” using indexing notation.

index_tricks.ogrid
Construct an open multi-dimensional “meshgrid” using indexing notation.

Examples
>>> X, Y = np.meshgrid([1,2,3], [4,5,6,7])
>>> X
array ([[1, 2, 31,
[1, 2, 31,
[1, 2, 31,
(1, 2, 311
>>> Y
array ([[4, ’ ’

~

~ o U1
~

~ o U1
~

~ o U1

~

meshgrid is very useful to evaluate functions on a grid.

3.1. Array creation routines 487

NumPy Reference, Release 1.6.0

>>> x = np.arange (-5, 5, 0.1)
>>> y = np.arange (-5, 5, 0.1)
>>> xx, yy = np.meshgrid(x, y)
>>> 7z = NP.SIin(Xx*#*x2+yy*%2) / (Xx#*x2+yy*+2)

numpy .mgrid

nd_grid instance which returns a dense multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an dense (or fleshed out) mesh-grid
when indexed, so that each returned argument has the same shape. The dimensions and number of the output
arrays are equal to the number of indexing dimensions. If the step length is not a complex number, then the stop
is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid ‘ndarrays‘ all of the same dimensions :

See Also:

numpy.lib.index_ tricks.nd_grid
class of ogrid and mgrid objects

ogrid
like mgrid but returns open (not fleshed out) mesh grids
r_
array concatenator
Examples
>>> np.mgrid[0:5,0:5]
array([[[0O, O, O, O, O],
(1, 1, 1, 1, 11,
(2, 2, 2, 2, 21,
[3, 3, 3, 3, 31,
[4, 4, 4, 4, 411,
[to, 1, 2, 3, 41,
(0, 1, 2, 3, 41,
(o, 1, 2, 3, 4j,
(0, 1, 2, 3, 41,
(0, 1, 2, 3, 4111)
>>> np.mgrid[-1:1:57]
array([-1. , -0.5, 0. , 0.5, 1. 1)

numpy .ogrid

nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open (i.e. not fleshed out) mesh-
grid when indexed, so that only one dimension of each returned array is greater than 1. The dimension and
number of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex
number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid ‘ndarrays‘ with only one dimension :math:‘neq 1¢ :

See Also:

488

Chapter 3. Routines

NumPy Reference, Release 1.6.0

np.lib.index_tricks.nd_grid
class of ogrid and mgrid objects

mgrid
like ogrid but returns dense (or fleshed out) mesh grids

array concatenator

Examples

>>> from numpy import ogrid

>>> ogrid[-1:1:57]

array([-1. , -0.5, 0. , 0.5, 1. 1)
>>> ogrid[0:5,0:5]

larray ([[0],
]I
]
]
]

4

— — — —
DWW NN PO —

1), array([[0, 1, 2, 3, 411)]

3.1.6 Building matrices

diag(v[, k]) Extract a diagonal or construct a diagonal array.

diagflat(v[, k]) Create a two-dimensional array with the flattened input as a diagonal.
tri(N[, M, k, dtype]) An array with ones at and below the given diagonal and zeros elsewhere.
tril(ml, k]) Lower triangle of an array.

triu(ml, k]) Upper triangle of an array.

vander(x[, N]) Generate a Van der Monde matrix.

numpy .diag (v, k=0)
Extract a diagonal or construct a diagonal array.

Parameters
v : array_like

If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a 2-D
array with v on the k-th diagonal.

k : int, optional

Diagonal in question. The default is 0. Use k>0 for diagonals above the main diagonal,
and k<0 for diagonals below the main diagonal.

Returns
out : ndarray

The extracted diagonal or constructed diagonal array.

See Also:

diagonal
Return specified diagonals.

diagflat
Create a 2-D array with the flattened input as a diagonal.

trace
Sum along diagonals.

3.1. Array creation routines 489

NumPy Reference, Release 1.6.0

triu

Upper triangle of an array.
tril

Lower triange of an array.

Examples
>>> x = np.arange (9) .reshape ((3,3))
>>> x
array ([[0, 1, 2],
[3, 4, 51,
(6, 7, 811)

>>> np.diag(x)

array ([0, 4, 81])

>>> np.diag(x, k=1)
array ([1, 51)

>>> np.diag(x, k=-1)
array ([3, 71)

>>> np.diag(np.diag(x))

(
array ([[0, 0, 01,
[0, 4, 0],
[0, 0, 811)

numpy .diagflat (v, k=0)

Create a two-dimensional array with the flattened input as a diagonal.

Parameters
v : array_like

Input data, which is flattened and set as the k-th diagonal of the output.

k : int, optional

Diagonal to set; 0, the default, corresponds to the “main” diagonal, a positive (negative)

k giving the number of the diagonal above (below) the main.

Returns
out : ndarray

The 2-D output array.
See Also:

diag

MATLAB work-alike for 1-D and 2-D arrays.

diagonal
Return specified diagonals.

trace
Sum along diagonals.
Examples

>>> np.diagflat ([[1,2], [3,411)
array ([[1, 0, 0, 01,
[6, 2, 0, 01,

490

Chapter 3. Routines

NumPy Reference, Release 1.6.0

(6, 0, 3, 01,
(0, 0, 0, 411)

>>> np.diagflat ([1,2], 1)
array ([[0, 1, 07,

[o, o, 21,

[0, O, 011)

numpy . tri (N, M=None, k=0, dtype=<type ‘float’>)
An array with ones at and below the given diagonal and zeros elsewhere.

Parameters
N :int

Number of rows in the array.
M : int, optional

Number of columns in the array. By default, M is taken equal to N.
k : int, optional

The sub-diagonal at and below which the array is filled. k£ = 0 is the main diagonal,
while k < 0 is below it, and k > 0 is above. The default is O.

dtype : dtype, optional
Data type of the returned array. The default is float.

Returns
T : ndarray of shape (N, M)

Array with its lower triangle filled with ones and zero elsewhere; in other words

T[i,J] == 1fori <= j + k, O otherwise.
Examples
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, O],
[1I 1’ ll 1/ O]l
[, 1, 1, 1, 111)
>>> np.tri(3, 5, -1)
array ([[O., 0., 0., 0., 0.1,
[1., 0., 0., 0., 0.1,
(1., 1., 0., 0., 0.11)

numpy . tril (m, k=0)
Lower triangle of an array.

Return a copy of an array with elements above the k-th diagonal zeroed.

Parameters
m : array_like, shape (M, N)

Input array.
k : int, optional

Diagonal above which to zero elements. k = O (the default) is the main diagonal, k < 0
is below it and k > 0 is above.

Returns
L : ndarray, shape (M, N)

3.1. Array creation routines

491

NumPy Reference, Release 1.6.0

Lower triangle of m, of same shape and data-type as m.

See Also:

triu
same thing, only for the upper triangle

Examples
>>> np.tril([[1,2,3]1,[4,5,61,17,8,9],[10,11,1211, -1)
array([[O, 0, 01,
[4, 0, O],
[7, 8, 0I,
[10, 11, 1211)

numpy . triu (m, k=0)
Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal zeroed.
Please refer to the documentation for #ril for further details.
See Also:

tril
lower triangle of an array

Examples
>>> np.triu(([1,2,3]1,[4,5,61,17,8,91,(10,11,1211, -1)
array ([[1, 2, 3],
[4, 5, 61,
[o, 8, 91,
[0, 0, 1211)

numpy . vander (x, N=None)
Generate a Van der Monde matrix.

The columns of the output matrix are decreasing powers of the input vector. Specifically, the i-th output column
is the input vector raised element-wise to the power of N — i - 1. Such a matrix with a geometric progression
in each row is named for Alexandre-Theophile Vandermonde.

Parameters
x : array_like

1-D input array.
N : int, optional

Order of (number of columns in) the output. If N is not specified, a square array is
returned (N = len (x)).

Returns
out : ndarray

Van der Monde matrix of order N. The first column is x~ (N-1), the second x* (N-2)
and so forth.

Examples

492 Chapter 3. Routines

NumPy Reference, Release 1.6.0

>>> x = np.array([1l, 2, 3, 51)
>>> N = 3
>>> np.vander (x, N)
array ([[1, 1, 11,
[4, 2, 17,
[9, 3, 11,
[25 5 111)

14 ’

>>> np.column_stack ([xx* (N-1-i) for i in range(N)])

array ([[1, I, 11,
[4, 2, 11,
[9’ 3’ 1:|I
[25, 5, 111)
>>> x np.array([l, 2, 3, 5])

>>> np.vander (x)

array ([[1, 1, 1, 17,
[8, 4, 2, 1],
[27, 9, 3, 17,
[125, 25, 5, 111)

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det (np.vander (x))
48.000000000000043

>>> (5-3) # (5-2) #x (5-1) (3-2) » (3-1) » (2-1)
48

3.1.7 The Matrix class

mat (data[, dtype]) Interpret the input as a matrix.
bmat(obj[, Idict, gdict]) Build a matrix object from a string, nested sequence, or array.

numpy .mat (data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix (data, copy=False).

Parameters
data : array_like

Input data.

Returns
mat : matrix

data interpreted as a matrix.

Examples

>>> X

np.array ([[1, 2], [3, 411)

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

3.1. Array creation routines 493

NumPy Reference, Release 1.6.0

>>> m
matrix ([

L5,
[3,

21,
411)

numpy . bmat (0bj, Idict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters

obj : str or array_like

Returns

Input data. Names of variables in the current scope may be referenced, even if 0bj is a
string.

out : matrix

See Also:

matrix

Examples

>>>
>>>
>>>
>>>

o Qw >
Il

Returns a matrix object, which is a specialized 2-D array.

np.
.mat (2
.mat ('3
.mat ("7

np
np
np

mat ("1

’
’

’

0 N

’

14

’

14

o o N

)
)
)
)

o o N

All the following expressions construct the same block matrix:

>>> np.bmat (

matrix ([

matrix ([[1,
[1,
[31
[51
>>> np.bmat (
matrix ([[1,
[ll
[3,
[51

[1,

[
1
[1, 1
[3, 4
[5, 6
>>> np.bmat (np.
1
1
4
6

[a,
’ 2/
;2
14 7/
14 9/

r
’ 2/
4 2/
’ 7/
4 9/
A, B;
1, 2,
1, 2,
4, 17,
6, 9

4

~

B,

[C, DI11)

21,
21,
81,
011)

[np.c[A, B], np.c_I[C, D]I])

21,
21,
81,
011)
Cc,D")
21,
2]/
8],
011)

3.2 Array manipulation routines

3.2.1 Changing array shape

reshape(a, newshape[, order])

ravel(a[, order])
ndarray.flat

ndarray.flatten(order=)

Gives a new shape to an array without changing its data.
Return a flattened array.

A 1-D iterator over the array.

Return a copy of the array collapsed into one dimension.

numpy . reshape (a, newshape, order="C’)
Gives a new shape to an array without changing its data.

494

Chapter 3.

Routines

NumPy Reference, Release 1.6.0

Parameters
a: array_like

Array to be reshaped.
newshape : int or tuple of ints

The new shape should be compatible with the original shape. If an integer, then the
result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order : {‘C’, ‘F’, ‘A’}, optional

Determines whether the array data should be viewed as in C (row-major) order, FOR-
TRAN (column-major) order, or the C/FORTRAN order should be preserved.

Returns
reshaped_array : ndarray

This will be a new view object if possible; otherwise, it will be a copy.

See Also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to be
raise if the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros((10, 2))

A transpose make the array non-contiguous

>>> b = a.T

Taking a view makes it possible to modify the shape without modiying the
initial object.

>>> c = b.view()

>>> c.shape = (20)

AttributeError: incompatible shape for a non-contiguous array

Examples

>>> a = np.array([[1,2,3], [4,5,6]11])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 61])

>>> np.reshape(a, 6, order="F’)
array ([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 27,

[3, 41,

[5, 611)

numpy . ravel (a, order="C’)
Return a flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

Parameters
a: array_like

3.2. Array manipulation routines 495

NumPy Reference, Release 1.6.0

Input array. The elements in a are read in the order specified by order, and packed as a
1-D array.

order : {‘C’)F’, ‘A’, ‘K’}, optional

The elements of a are read in this order. ‘C’ means to view the elements in C (row-
major) order. ‘F’ means to view the elements in Fortran (column-major) order. ‘A’
means to view the elements in ‘F’ order if a is Fortran contiguous, ‘C’ order otherwise.
‘K’ means to view the elements in the order they occur in memory, except for reversing
the data when strides are negative. By default, ‘C’ order is used.

Returns
1d_array : ndarray

Output of the same dtype as a, and of shape (a.size(),).

See Also:

ndarray. flat
1-D iterator over an array.

ndarray.flatten
1-D array copy of the elements of an array in row-major order.

Notes

In row-major order, the row index varies the slowest, and the column index the quickest. This can be generalized
to multiple dimensions, where row-major order implies that the index along the first axis varies slowest, and the
index along the last quickest. The opposite holds for Fortran-, or column-major, mode.

Examples
It is equivalent to reshape (-1, order=order).

>>> x = np.array([[1, 2, 31, [4, 5, 611)
>>> print np.ravel (x)
[1 2 3 45 6]

>>> print x.reshape(-1)
[1 2 345 6]

>>> print np.ravel (x, order='F’)
[1 425 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print np.ravel (x.T)

[1 4 2 5 3 6]

>>> print np.ravel(x.T, order='A")
[1 2 3 45 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array ([2, 1, 0])

>>> a.ravel (order='C")

array ([2, 1, 0])

>>> a.ravel (order="K")

array ([2, 1, 0])

496 Chapter 3. Routines

NumPy Reference, Release 1.6.0

>>> a = np.arange(12) .reshape(2,3,2) .swapaxes(1,2); a

array ([[[O, 2, 41,
1, 3, 511,
[l 6, 8, 1071,
L7, 9 11111)

>>> a.ravel (order='C")

array([0, 2, 4, 1, 3, 5,

>>> a.ravel (order="K’)

array ([O, 1, 2, 3, 4, 5,

ndarray.flat
A 1-D iterator over the array.

0, 7, 9, 111])

Thisis a numpy . flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator

object.
See Also:

flatten

Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(l, 7).reshape(2,

>>> x

array ([[1, 2, 31,
(4, 5, 611)

>>> x.flat[3]

4],
5]
[3, 6]
>>> x.T.flat|
5

>>> type (x.flat)
<type 'numpy.flatiter’>

1)
3]

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 3],

(3, 3, 311
>>> x.flat[[1,4]1] = 1; x
array ([[3, 1, 31,

(3, 1, 311

ndarray.flatten (order="C’)

3)

Return a copy of the array collapsed into one dimension.

Parameters
order : {‘C’, ‘F’, ‘A’}, optional

Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the
C/Fortran ordering from a. The default is ‘C’.

Returns
y : ndarray

3.2. Array manipulation routines

497

NumPy Reference, Release 1.6.0

A copy of the input array, flattened to one dimension.

See Also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,41])
>>> a.flatten()

array ([1, 2, 3, 41)
>>> a.flatten('F’)
array ([1, 3, 2, 4])

3.2.2 Transpose-like operations

rollaxis(a, axis[, start]) Roll the specified axis backwards, until it lies in a given position.
swapaxes(a, axisl, axis2) Interchange two axes of an array.

ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2.
transpose(al, axes]) Permute the dimensions of an array.

numpy .rollaxis (a, axis, start=0)
Roll the specified axis backwards, until it lies in a given position.

Parameters
a : ndarray

Input array.

axis : int
The axis to roll backwards. The positions of the other axes do not change relative to one
another.

start : int, optional

29

The axis is rolled until it lies before this position. The default, 0, results in a “complete
roll.

Returns
res : ndarray

Output array.
See Also:

roll
Roll the elements of an array by a number of positions along a given axis.

Examples
>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1) .shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)

498 Chapter 3. Routines

NumPy Reference, Release 1.6.0

>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a: array_like

Input array.
axis1 : int

First axis.
axis2 : int

Second axis.

Returns
a_swapped : ndarray

If a is an ndarray, then a view of a is returned; otherwise a new array is created.

Examples

>>> x = np.array([[1,2,3]1])
>>> np.swapaxes (x,0,1)
array ([[1],

(21,

[311)
>>> x = np.array ([[[0,1]1,[2,311,[04,51,16,7111)
>>> x
array ([[[0, 11,

[2, 311,

(14, 51,

[6, 7111)

>>> np.swapaxes (x,0,2)
array ([[[0, 471,
(2, 611,
(rL, si,
(3, 7111
ndarray.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples
>>> x = np.array([[1.,2.]1,[3.,4.1])
>>> x
array ([[1., 2.1,
[3., 4.11)
>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1l.,2.,3.,4.])
>>> x

array ([1., 2., 3., 4.7)

3.2. Array manipulation routines 499

NumPy Reference, Release 1.6.0

>>> x.T
array ([1., 2., 3., 4.7)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a: array_like

Input array.
axes : list of ints, optional

By default, reverse the dimensions, otherwise permute the axes according to the values

given.
Returns
p : ndarray
a with its axes permuted. A view is returned whenever possible.
See Also:
rollaxis
Examples
>>> x = np.arange (4) .reshape ((2,2))
>>> X
array ([[0, 1]

(2, 311

>>> np.transpose (x)

array ([[0, 2],
(1, 311
>>> x = np.ones ((1l, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

3.2.3 Changing number of dimensions

atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
atleast_2d(*arys) View inputs as arrays with at least two dimensions.
atleast_3d(*arys) View inputs as arrays with at least three dimensions.
broadcast Produce an object that mimics broadcasting.
broadcast_arrays(¥args) Broadcast any number of arrays against each other.
expand_dims(a, axis) Expand the shape of an array.

squeeze(a) Remove single-dimensional entries from the shape of an array.

numpy .atleast_1d (*arys)
Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters
arrayl, array?2, ... : array_like

One or more input arrays.

500 Chapter 3. Routines

NumPy Reference, Release 1.6.0

Returns
ret : ndarray

An array, or sequence of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See Also:

atleast_2d,atleast_3d

Examples

>>> np.atleast_1d(1.0)
array ([1.])

>>> x = np.arange (9.0) .reshape (3, 3)
>>> np.atleast_1d(x

_)
array ([[0., 1., 2.1,
[3., 4., 5.1,
[6., 7., 8.11)
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d (1, [3, 4])
l[array ([1]), array([3, 4])]

numpy .atleast_2d (*arys)
View inputs as arrays with at least two dimensions.

Parameters
arrayl, array2, ... : array_like

One or more array-like sequences. Non-array inputs are converted to arrays. Arrays
that already have two or more dimensions are preserved.

Returns
res, res2, ... : ndarray

An array, or tuple of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.

See Also:

atleast_1d,atleast_3d

Examples
>>> np.atleast_2d(3.0)
array ([[3.11)
>>> x = np.ar