| v

ERLANG

Secure Socket Layer

Copyright © 1999-2011 Ericsson AB. All Rights Reserved.
Secure Socket Layer 4.1.6
October 6 2011

Copyright © 1999-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

October 6 2011

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.1 Transport Layer Security (TLS) and its predecessor, Secure Socket Layer (SSL)

1 SSL User's Guide

The SS_ application provides secure communication over sockets.

1.1 Transport Layer Security (TLS) and its predecessor, Secure
Socket Layer (SSL)

The erlang ssl application currently supports SSL 3.0 and TLS 1.0 RFC 2246, and will in the future al so support later
versions of TLS. SSL 2.0 is not supported.

By default erlang ssl isrun over the TCP/IP protocol even though you could plugin any other reliabletransport protocol
with the same APl asgen_tcp.

If aclient and server wants to use an upgrade mechanism, such as defined by RFC2817, to upgrade a regular TCP/
IP connection to an ssl connection the erlang ssl API supports this. This can be useful for things such as supporting
HTTP and HTTPS on the same port and implementing virtual hosting.

1.1.1 Security overview

To achieve authentication and privacy the client and server will perform a TLS Handshake procedure before
transmitting or receiving any data. During the handshake they agree on a protocol version and cryptographic
algorithms, they generate shared secrets using public key cryptographics and optionally authenticate each other with
digital certificates.

1.1.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast compared to public key algorithms (using two keys, a public and a private one) and are therefore typically
used for encrypting bulk data.

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TL S handshake.

The TL S handshake protocol and data transfer is run on top of the TLS Record Protocol that uses a keyed-hash MAC
(Message Authenticity Code), or HMAC, to protect the message's data integrity. From the TLS RFC "A Message
Authentication Code is aone-way hash computed from a message and some secret data. It is difficult to forge without
knowing the secret data. Its purposeis to detect if the message has been altered.”

1.1.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is build by having the issuer
in its turn being certified by an other certificate and so on until you reach the so called root certificate that is self
signedi.e. issued by itself.

Certificatesareissued by certification authorities (CAs) only. Thereareahandful of top CAsintheworld that issueroot
certificates. Y ou can examine the certificates of several of them by clicking through the menus of your web browser.

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.2 Using the SSL API

1.1.4 Authentication of Sender

Authentication of the sender is done by public key path validation as defined in RFC 3280. Simplified that means that
each certificate in the certificate chain is issued by the one before, the certificates attributes are valid ones, and the
root cert isatrusted cert that is present in the trusted certs database kept by the peer.

The server will always send a certificate chain as part of the TLS handshake, but the client will only send one if the
server requestsit. If the client does not have an appropriate certificate it may send an "empty" certificate to the server.

The client may choose to accept some path evaluation errors for instance aweb browser may ask the user if they want
to accept an unknown CA root certificate. The server, if it request a certificate, will on the other hand not accept any
path validation errors. It is configurable if the server should accept or reject an "empty" certificate as response to a
certificate request.

1.1.5 TLS Sessions

From the TLS RFC "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session datais by default kept by the ssl application in amemory storage hence session datawill belost at application
restart or takeover. Users may definetheir own callback moduleto handle session data storageif persistent data storage
isrequired. Session datawill also beinvalidated after 24 hours from it was saved, for security reasons. It is of course
possible to configure the amount of time the session data should be saved.

Sdl clients will by default try to reuse an available session, ssl servers will by default agree to reuse sessions when
clients ask to do so.

1.2 Using the SSL API

1.2.1 General information
To seerelevant version information for ssl you can call s3:versions/O

To seeall supported cipher suitescall sdl:cipher_suites/O. Notethat available cipher suitesfor aconnection will depend
onyour certificate. It isalso possible to specify a specific cipher suite(s) that you want your connection to use. Default
isto use the strongest available.

1.2.2 Setting up connections

Here follows some small example of how to set up client/server connections using the erlang shell. Thereturned value
of the sslsocket has been abbreviated with [. . .] asit can befairly large and is opague.

Minmal example

Note:

The minimal setup is not the most secure setup of sdl.

Start server side

1 server> ssl:start().
ok

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.2 Using the SSL API

Create an sd listen socket

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem'}, {keyfile, "key.penm'}, {reuseaddr, true}]).
{ok, {ssl socket, [...]}}

Do atransport accept on the sdl listen socket

3 server> {ok, Socket} = ssl:transport_accept (ListenSocket).
{ok, {sslsocket, [...]}}

Start client side

1 client> ssl:start().
ok

2 client> {ok, Socket} = ssl:connect("local host", 9999, [], infinity).
{ok, {sslsocket, [...]}}

Do the ssl handshake

4 server> ok = ssl:ssl_accept (Socket).
ok

Send a messag over sl

5 server> ssl:send(Socket, "foo").
ok

Flush the shell message queue to see that we got the message sent on the server side

3 client> flush().
Shel | got {ssl,{sslsocket,[...]},"foo"}
ok

Upgrade example

Note:

To upgrade a TCP/IP connection to an ssl connection the client and server have to aggre to do so. Agreement
may be accompliced by using a protocol such the one used by HTTP specified in RFC 2817.

Start server side

1 server> ssl:start().
ok

Create anormal tcp listen socket

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.2 Using the SSL API

2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Accept client connection

3 server> {ok, Socket} = gen_tcp: accept (ListenSocket).
{ok, #Port<0.476>}

Start client side

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen_tcp:connect("local host", 9999, [], infinity).

Make sure active is set to false before trying to upgrade a connection to an ssl connection, otherwhise ssl handshake
messages may be deliverd to the wrong process.

4 server> inet:setopts(Socket, [{active, false}]).
ok

Do the sdl handshake.

5 server> {ok, SSLSocket} = ssl:ssl_accept(Socket, [{cacertfile, "cacerts.peni},
{certfile, "cert.pen'}, {keyfile, "key.peni'}]).
{ok, {ssl socket,[...]}}

Upgrade to an sdl connection. Note that the client and server must agree upon the upgrade and the server must call
ssl:accept/2 before the client calls ssl:connect/3.

3 client>{ok, SSLSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.peni'},
{certfile, "cert.pent'}, {keyfile, "key.pen'}], infinity).
{ok, {ssl socket,[...]}}

Send a messag over ssl

4 client> ssl:send(SSLSocket, "foo").
ok

Set active true on the ssl socket

4 server> ssl:setopts(SSLSocket, [{active, true}]).
ok

Flush the shell message queue to see that we got the message sent on the client side

5 server> flush().
Shel | got {ssl,{sslsocket,[...]},"foo"}
ok

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL for Erlang Distribution

1.3 Using SSL for Erlang Distribution

This chapter describes how the Erlang distribution can use SSL to get additional verification and security.

Note:

Note this documentation is written for the old ssl implementation and will be updated for the new one once this
functionality is supported by the new implementation.

1.3.1 Introduction

TheErlang distribution canin theory use amost any connection based protocol asbearer. A modul ethat implementsthe
protocol specific parts of connection setup is however needed. The default distribution moduleisi net _t cp_di st
whichisincluded inthe Kernel application. When starting an Erlang node distributed, net _ker nel usesthismodule
to setup listen ports and connections.

In the SSL application there is an additional distribution module, i net _ssl _di st which can be used as an
aternative. All distribution connections will be using SSL and all participating Erlang nodes in a distributed system
must use this distribution module.

The security depends on how the connections are set up, one can use key files or certificates to just get a encrypted
connection. Onecan also makethe SSL package verify the certificates of other nodesto get additional security. Cookies
are however always used as they can be used to differentiate between two different Erlang networks.

Setting up Erlang distribution over SSL involves some simple but necessary steps:
» Building boot scriptsincluding the SSL application

e Specifying the distribution module for net_kernel

* Specifying security options and other SSL options

The rest of this chapter describes the above mentioned steps in more detail.

1.3.2 Building boot scripts including the SSL application

Boot scripts are built using the syst ool s utility in the SASL application. Refer to the SASL documentations for
more information on systools. Thisis only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
Erlang distributions bin directory. The source for the script can be found under the Erlang installation top directory
under r el eases/ <OTP version>start_cl ean. rel . Copy that script to another location (and preferably
another name) and add the SSL application with its current version number after the STDLIB application.

An example .rel filewith SSL added may look like this:

{rel ease, {"OTP APN 181 01","P7A"}, {erts, "5.0"},
[{kernel,"2.5"},

{stdlib,"1.8.1"},

{ssl,"2.2.1"}1}.

Note that the version numbers surely will differ in your system. Whenever one of the applications included in the
script is upgraded, the script has to be changed.

Assuming the above .rel fileis stored in afilest art _ssl . rel inthe current directory, a boot script can be built
likethis:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL for Erlang Distribution

1> systool s: make_script("start_ssl",[]).

There will now beafilest art _ssl . boot inthe current directory. To test the boot script, start Erlang with the -
boot command line parameter specifying this boot script (with its full path but without the . boot suffix), in Unix
it could look like this:

$ erl -boot /home/ne/ssl/start_ssl
Erl ang (BEAM enul ator version 5.0

Eshell V5.0 (abort with ~"Q
1> wherei s(ssl _server).
<0. 32. 0>

Thewher ei s function call verifies that the SSL application isrealy started.

As an alternative to building a bootscript, one can explicitly add the path to the sd ebi n directory on the command
line. This is done with the command line option - pa. This works as the ssl application really need not be started for
the distribution to come up, aprimitive version of the ssl server is started by the distribution module itself, so aslong
as the primitive code server can reach the code, the distribution will start. The - pa method is only recommended for
testing purposes.

1.3.3 Specifying distribution module for net_kernel

The distribution module for SSL is named i net _ssl _di st and is specified on the command line whit the -
pr ot o_di st option. The argument to - pr ot o_di st should be the module name without the _di st suffix, so
this distribution module is specified with - pr ot o_di st i net _ssl onthe command line.

Extending the command line from above gives us the following:

$ erl -boot /home/ne/ssl/start_ssl -proto_dist inet_ssl

For the distribution to actually be started, we need to give the emulator a name as well:

$ erl -boot /hone/ne/ssl/start_ssl -proto_dist inet_ssl -sname ssl_test
Erl ang (BEAM) emnul ator version 5.0 [source]

Eshell V5.0 (abort with ~"Q
(ssl _test @yhost) 1>

Note however that anode started in thisway will refuseto talk to other nodes, asno certificates or key filesare supplied
(see below).

When the SSL distribution starts, the OTP system isin its early boot stage, why neither appl i cat i on nor code are
usable. As SSL needs to start a port program in this early stage, it tries to determine the path to that program from the
primitive code loaders code path. If thisfails, one need to specify the directory where the port program resides. This
can be done either with an environment variable ERL_SSL_ PORTPROGRAM DI R or with the command line option -
ssl _port program di r. Thevaue should be the directory wherethessl _esock port program islocated. Note
that this option is never needed in anormal Erlang installation.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL for Erlang Distribution

1.3.4 Specifying security options and other SSL options

For SSL to work, you either need certificate files or a key file. Certificate files can be specified both when working
asclient and as server (connecting or accepting).

On the er| command line one can specify options that the ssl distribution will add when creation a socket. It is
mandatory to specify at least akey file or client and server certificates. One can specify any S option on the command
line, but must not specify any socket options (like packet size and such). The SSL options are listed in the Reference
Manual. The only difference between the options in the reference manual and the ones that can be specified to the
distribution on the command lineisthat cert f i | e can (and usually needsto) be specifiedascl i ent _certfile
andserver_certfile.Theclient _certfil e isusedwhenthedistribution initiates a connection to another
node andtheserver certfil e isused when accepting a connection from aremote node.

The command line argument for specifying the SSL optionsis named - ssl _di st _opt and should be followed by
an even number of SSL options/option values. The- ssl _di st _opt argument can be repeated any number of times.

An example command line would now look something like this (line breaks in the command are for readability, they
should not be there when typed):

$ erl -boot /home/ne/ssl/start_ssl -proto_dist inet_ssl
-ssl _dist_opt client_certfile "/hone/ me/ssl/erlclient.pent
-ssl _dist_opt server_certfile "/hone/ me/ssl/erlserver. pent
-ssl _dist_opt verify 1 depth 1
-snanme ssl _test

Erl ang (BEAM emul ator version 5.0 [source]

Eshell V5.0 (abort with ~"Q
(ssl _test @yhost) 1>

A node started in this way will be fully functional, using SSL as the distribution protocol.

1.3.5 Setting up environment to always use SSL

A convenient way to specify argumentsto Erlangisto usethe ERL_FLAGS environment variable. All the flags needed
to use SSL distribution can be specified in that variable and will then be interpreted as command line arguments for
all subsequent invocations of Erlang.

In aUnix (Bourne) shell it could look like this (line breaks for readability):

$ ERL_FLAGS="-boot \\"/hone/ne/ssl/start_ssl\\" -proto_dist inet_ssl
-ssl _dist_opt client_certfile \\"/hone/ me/ssl/erlclient.pem\"
-ssl _dist_opt server_certfile \\"/hone/ me/ssl/erlserver.pem\"
-ssl _dist_opt verify 1 -ssl_dist_opt depth 1"

$ export ERL_FLAGS

$ erl -snane ssl_test

Erl ang (BEAM) emul ator version 5.0 [source]

Eshell V5.0 (abort with ~"Q

(ssl _test @yhost) 1> init:get_arguments().
[{root,["/usr/local/erlang"]},

{prognane, ["erl "]},

{snane, ["ssl _test"]},

{boot, ["/ home/ ne/ssl| /start_ssl "]},

{proto_dist,["inet_ssl"]},

{ssl _dist_opt,["client_certfile","/home/ne/ssl/erlclient.peni]},
{ssl _dist_opt,["server_certfile","/home/ne/ssl/erlserver.peni]},
{ssl _dist_opt,["verify","1"]},

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL for Erlang Distribution

{ssl _dist_opt,["depth","1"]},
{hone, ["/ hone/ ne"]}]

Theini t: get _argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.3 Using SSL for Erlang Distribution

2 Reference Manual

The SS_ application provides secure communication over sockets.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl
Application

Environment

The following application environment configuration parameters are defined for the SSL application. Refer to
application(3) for more information about configuration parameters.

Note that the environment parameters can be set on the command line, for instance,
erl ... -ssl protocol_version '[sslv3, tlsvl]'
protocol version = [sslv3|tlsvl] <optional >.

Protocol that will be supported by started clients and servers. If thisoption is not set it will default to all protocols
currently supported by the erlang ssl application. Note that this option may be overridden by the version option
to ssl:connect/[2,3] and sdl:listen/2.

session_lifetine = integer() <optional >
The lifetime of session datain seconds.
session_cb = atom() <optional >

Name of session cache callback module that implements the ssl_session cache api behavior, defaults to
ssl_session_cache.erl.

session_cb_init_args = list() <optional>

List of arguments to the init function in session cache callback module, defaultsto [].

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

ssl

ssl

Erlang module

This module contains interface functions to the Secure Socket Layer.

SSL

» s requiresthe crypto and public_key applications.

e Supported SSL/TLS-versionsare SSL-3.0and TLS-1.0

» For security reasons sslv2 is not supported.

» Ephemera Diffie-Hellman cipher suites are supported but not Diffie Hellman Certificates cipher suites.
» Export cipher suites are not supported asthe U.S. lifted its export restrictions in early 2000.

* CRL and policy certificate extensions are not supported yet.

COMMON DATA TYPES
The following data types are used in the functions below:

bool ean() = true | false
option() = socketoption() | ssloption() | transportoption()

socketoption() = proplists:property() - The default socket options are
[{nrode, |ist}, {packet, 0}, {header, 0},{active, true}].

For valid options see inet(3) and gen_tcp(3) .

ssloption() = {verify, wverify type()} | {verify fun, {fun(), term()}} |
{fail _if_no_peer_cert, boolean()} {depth, integer()} | {cert, der_encoded()}|
{certfile, path()} | {key, der_encoded()} | {keyfile, path()} | {password,
string()} | {cacerts, [der_encoded()]} | {cacertfile, path()} | |{dh,
der _encoded()} | {dhfile, path()} | {ciphers, ciphers()} | {ssl_inmp, ssl _inp()}
| {reuse_sessions, boolean()} | {reuse_session, fun()}

transportoption() = {Cal | backMdul e, DataTag, C osedTag} - defaults to {gen_tcp,
tcp, tcp_closed}. Ssl may be run over any reliable transport protocol that has
an equi valent APl to gen_tcp's.

Cal | backModul e = aton()
DataTag = aton{) - tag used in socket data nessage.
Cl osedTag = atom() - tag used in socket close nessage.
verify type() = verify_none | verify_peer
path() = string() - representing a file path.
der _encoded() = binary() -Asnl DER encoded entity as an erlang binary.
host () = hostnane() | ipaddress()
host nane() = string()
i p_address() = {NI, N2, N3, N4} % I Pv4 | {K1, K2, K3, K4, K5, K6, K7, K8} % | Pv6
ssl socket () - opaque to the user.
protocol () = sslv3 | tlsvl

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ci phers() = [ciphersuite()] | string() (according to old API)

ci phersuite() = {key_exchange(), cipher(), hash()}

key_exchange() = rsa | dhe_dss | dhe_rsa | dh_anon

cipher() =rc4_128 | des_chc | '3des_ede _cbc' | aes_128 chc | aes_256_chbc
hash() = md5 | sha

ssl _imp() = new | old - default is new.

SSL OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT
Options described here are options that are have the same meaning in the client and the server.

{ cert, der_encoded()}
The DER encoded users certificate. If thisoption is supplied it will override the certfile option.

{ certfile, path()}
Path to afile containing the user's certificate.

{key, der_encoded()}
The DER encoded users private key. If thisoption is supplied it will override the keyfile option.

{keyfile, path()}
Path to file containing user's private PEM encoded key. As PEM-files may contain several entries this option
defaults to the same file as given by certfile option.

{ password, string()}
String containing the user's password. Only used if the private keyfile is password protected.

{ cacerts, [der_encoded()]}
The DER encoded trusted certificates. If this option is supplied it will override the cacertfile option.

{ cacertfile, path()}
Path to file containing PEM encoded CA certificates (trusted certificates used for verifying a peer certificate).
May be omitted if you do not want to verify the peer.

{ ciphers, ciphers()}
The cipher suites that should be supported. The function ci pher _sui t es/ 0 can be used to find all available
ciphers. Additionally some anonymous cipher suites ({ dh_anon, rc4_128, md5}, { dh_anon, des _cbc, sha},
{dh_anon, '3des ede chc', sha}, {dh_anon, aes 128 chc, sha}, {dh_anon, aes 256 chc, sha}) are supported
for testing purposes and will only work if explicitly enabled by this option and they are supported/enabled by
the peer also.

{sdl_imp, ss_imp()}
Specify which ssl implementation you want to use. Defaults to new.

{'secure_renegotiate, boolean()}
Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secure_renegotiate is
set to falsei.e. secure renegotiation will be used if possible but it will fallback to unsecure renegotiation if the
peer does not support RFC 5746.

{ depth, integer()}
Specifies the maximum verification depth, i.e. how far in achain of certificates the verification process can
proceed before the verification is considered to fail. Peer certificate = 0, CA certificate = 1, higher level CA
certificate = 2, etc. The value 2 thus means that a chain can at most contain peer cert, CA cert, next CA cert,
and an additional CA cert. The default valueis 1.

{verify_fun, {Verifyfun :: fun(), Initial UserState :: term()} }

The verification fun should be defined as:

fun(OtpCert :: # OIPCertificate' {}, Event :: {bad_cert, Reason :: atom()} |
{extension, # Extension'{}}, InitialUserState :: ternm()) ->
{valid, UserState :: term()} | {valid_peer, UserState :: tern()} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

ssl

{fail, Reason :: term()} | {unknown, UserState :: tern()}.

The verify fun will be called during the X509-path validation when an error or an extension unknown to the
sdl application is encountered. Additionally it will be called when a certificate is considered valid by the path
validation to allow access to each certificate in the path to the user application. Note that it will differentiate
between the peer certificate and CA certificates by using valid_peer or valid as the second argument to the verify
fun. See the public_key User's Guide for definition of #OTPCertificate'{} and #Extension{}.

If the verify callback fun returns {fail, Reason}, the verification process is immediately stopped and an alert is
sent to the peer and the TLS/SSL handshake is terminated. If the verify callback fun returns {valid, UserState},
the verification process is continued. If the verify callback fun always returns {valid, UserState}, the TLS/SSL
handshake will not be terminated with respect to verification failures and the connection will be established. If
called with an extension unknown to the user application the return value { unknown, UserState} should be used.

The default verify fun option in verify _peer mode:

{fun(_, {bad_cert, _} = Reason, _) ->
{fail, Reason};
(_,{extension, _}, UserState) ->
{unknown, User State};
(_, valid, UserState) ->
{valid, UserState};
(_, valid_peer, UserState) ->
{valid, UserState}
end, []}

The default verify_fun option in verify_none mode:

{fun(_, {bad_cert, _}, UserState) ->
{valid, UserState};
(_,{extension, _}, UserState) ->
{unknown, User State};
(_, valid, UserState) ->
{valid, UserState};
(_, valid_peer, UserState) ->
{valid, UserState}
end, []}

Possible path validation errors:

{bad_cert, cert_expired}, {bad_cert, invalid issuer}, {bad cert, invalid_signature}, {bad_cert, unknown_ca},
{bad_cert, selfsigned peer}, {bad cert, name _not_permitted}, { bad_cert, missing_basic_constraint}, { bad_cert,
invalid_key usage}

{hibernate_after, integer()|undefined}
When an integer-value is specified, the

ssl _connecti on

will go into hibernation after the specified number of milliseconds of inactivity, thus reducing its memory
footprint. When

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

undef i ned

is specified (thisisthe default), the process will never go into hibernation.

SSL OPTION DESCRIPTIONS - CLIENT SIDE

Options described here are client specific or has a dightly different meaning in the client than in the server.

{verify, verify_type()}
In verify_none mode the default behavior will be to allow all x509-path validation errors. See also the

verify_fun option.
{reuse_sessions, boolean()}
Specifiesif client should try to reuse sessions when possible.

SSL OPTION DESCRIPTIONS - SERVER SIDE
Options described here are server specific or has a dightly different meaning in the server than in the client.

{dh, der_encoded()}
The DER encoded Diffie Hellman parameters. If this option is supplied it will override the dhfile option.

{dnfile, path()}
Path to file containing PEM encoded Diffie Hellman parameters, for the server to use if a cipher suite using
Diffie Hellman key exchange is negotiated. If not specified default parameters will be used.

{verify, verify_type()}
Servers only do the x509-path validation in verify _peer mode, asit then will send a certificate request to the
client (this message is not sent if the verify option is verify_none) and you may then also want to specify the
option fail_if no_peer_cert.

{fail_if_no_peer_cert, boolean()}
Used together with { verify, verify _peer} by an ssl server. If set to true, the server will fail if the client does
not have a certificate to send, i.e. sends aempty certificate, if set to false it will only fail if the client sends an
invalid certificate (an empty certificate is considered valid).

{reuse_sessions, boolean()}
Specifiesif the server should agree to reuse sessions when the clients request to do so. See also the
reuse_session option.

{reuse_session, fun(SuggestedSessionld, PeerCert, Compression, CipherSuite) -> boolean()}
Enables the ssl server to have alocal policy for deciding if a session should be reused or not, only meaningful
if reuse_sessi ons isset to true. SuggestedSessionld is abinary(), PeerCert is a DER encoded certificate,
Compression is an enumeration integer and CipherSuiteis of type ciphersuite().

General

When an ssl socket is in active mode (the default), data from the socket is delivered to the owner of the socket in
the form of messages:

e {sdl, Socket, Data}
e {sd_closed, Socket}
e {sd_error, Socket, Reason}

A Ti meout argument specifiesatimeout in milliseconds. The default valuefor aTi neout argumentisi nfinity.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

ssl

Exports

ci pher_suites() ->
ci pher_suites(Type) -> ciphers()
Types.

Type = erlang | openssl

Returnsalist of supported cipher suites. cipher_suites() isequivalent to cipher_suites(erlang). Type openssl isprovided
for backwards compatibility with old ssl that used openssl.

connect (Socket, Ssl Options) ->
connect (Socket, Ssl Options, Tineout) -> {ok, SslSocket} | {error, Reason}
Types:

Socket = socket ()

Ssl Options = [ssloption()]

Timeout = integer() | infinity

Ssl Socket = ssl socket ()

Reason = term()

Upgrades agen_tcp, or equivalent, connected socket to an ssl socket i.e. performs the client-side ssl handshake.

connect (Host, Port, Options) ->
connect (Host, Port, Options, Tinmeout) -> {ok, SslSocket} | {error, Reason}
Types:

Host host ()

Por t i nteger()

Options = [option()]

Timeout = integer() | infinity

Ssl Socket = ssl socket ()

Reason = term()

Opens an sd connection to Host, Port.

cl ose(Ssl Socket) -> ok | {error, Reason}
Types.

Ssl Socket = ssl socket ()

Reason = term()

Close an ssl connection.

control Iing_process(Ssl Socket, NewOwer) -> ok | {error, Reason}
Types:

Ssl Socket = ssl socket ()

NewOaner = pid()

Reason = term()

Assigns a new controlling process to the ssl-socket. A controlling process is the owner of an ssl-socket, and receives
all messages from the socket.

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

connection_i nfo(Ssl Socket) -> {ok, {Protocol Version, Ci pherSuite}} | {error,
Reason}

Types:
Ci pherSuite = ciphersuite()
Pr ot ocol Versi on = protocol ()

Returns the negotiated protocol version and cipher suite.

format _error (Reason) -> string()
Types:
Reason = term()
Presents the error returned by an ssl function as a printable string.

get opt s(Socket, OptionNanes) -> {ok, [socketoption()]} | {error, Reason}
Types.

Socket = ssl socket ()

OptionNanmes = [atom()]

Get the value of the specified socket options.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = integer()

Options = options()

Li stenSocket = sslsocket ()
Creates an sdl listen socket.

peercert(Socket) -> {ok, Cert} | {error, Reason}
Types:

Socket = ssl socket ()

Cert = binary()

The peer certificate is returned as a DER encoded binary. The certificate can be decoded with
publ i c_key: pki x_decode_cert/ 2.

peer name(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types:

Socket = ssl socket ()

Address = i paddress()

Port = integer()

Returns the address and port number of the peer.

recv(Socket, Length) ->
recv(Socket, Length, Tineout) -> {ok, Data} | {error, Reason}
Types:

Socket = ssl socket ()

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

ssl

Length = integer()
Ti meout = integer()
Data = [char()] | binary()

Thisfunction receives apacket from asocket in passive mode. A closed socket isindicated by areturnvalue{ er r or ,
cl osed}.

TheLengt h argument isonly meaningful when the socket isin r awmode and denotes the number of bytesto read. If
Lengt h =0, al available bytesarereturned. If Lengt h > 0, exactly Lengt h bytesarereturned, or an error; possibly
discarding less than Lengt h bytes of data when the socket gets closed from the other side.

The optional Ti meout parameter specifies atimeout in milliseconds. The default valueisi nfinity.

renegoti at e(Socket) -> ok | {error, Reason}
Types:
Socket = ssl socket ()
Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the

peer refused to go through with the renegotiation but the connection is still active using the previously negotiated
session.

send(Socket, Data) -> ok | {error, Reason}
Types:

Socket = ssl socket ()

Data = iodata()

Writes Dat a to Socket .
A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

set opt s(Socket, Options) -> ok | {error, Reason}
Types.

Socket = ssl socket ()

Options = [socketoption]()

Sets options according to Opt i ons for the socket Socket .

shut down(Socket, How) -> ok | {error, Reason}
Types:
Socket = ssl socket ()
How = read | wite | read wite
Reason = reason()
Immediately close a socket in one or two directions.
How == wr it e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, the{ exi t _on_cl ose, fal se} option
isuseful.

ssl _accept (Li stenSocket) ->

ssl _accept (Li stenSocket, Tineout) -> ok | {error, Reason}
Types:

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Li stenSocket = sslsocket ()
Ti meout = integer()
Reason = term()

The ssl _accept function establish the SSL connection on the server side. It should be called directly after
transport _accept, inthe spawned server-loop.

ssl _accept (Li stenSocket, Ssl Options) ->

ssl _accept (Li stenSocket, Ssl Options, Tineout) -> {ok, Socket} | {error,
Reason}

Types.
Li st enSocket = socket ()
Ssl Options = ssloptions()
Ti meout = integer()
Reason = term()
Upgrades agen_tcp, or equivalent, socket to an sl socket i.e. performs the ssl server-side handshake.

Warning:

Note that the listen socket should be in {active, false} mode before telling the client that the server is ready to
upgrade and calling this function, otherwise the upgrade may or may not succeed depending on timing.

socknane(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types.

Socket = ssl socket ()

Address = i paddress()

Port = integer()
Returns the local address and port number of the socket Socket .

start() ->
start(Type) -> ok | {error, Reason}
Types:
Type = permanent | transient | tenporary
Starts the Sdl application. Default type is temporary. application(3)

stop() -> ok
Stops the Ssl application. application(3)

transport _accept (Socket) ->
transport_accept (Socket, Tinmeout) -> {ok, NewSocket} | {error, Reason}

Types:
Socket = NewSocket = sslsocket ()
Ti meout = integer()

Reason = reason()

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

ssl

Accepts an incoming connection request on a listen socket. Li st enSocket must be a socket returned from
I i st en/ 2. The socket returned should be passed to ss| _accept to complete ssl handshaking and establishing
the connection.

Warning:
The socket returned can only be used with ss| _accept , no traffic can be sent or received before that call.

The accepted socket inherits the options set for Li st enSocket inli sten/ 2.

The default value for Ti meout isi nfinity.If Ti meout is specified, and no connection is accepted within the
giventime, {error, timeout} isreturned.

versions() -> [{Ssl| AppVer, SupportedSsl Ver, Avail abl eSsl Vsn}]
Types.

Ssl AppVer = string()

SupportedSsl Ver = [protocol ()]

Avai | abl eSsl Vsn = [protocol ()]

Returns version information relevant for the ssl application.

SEE ALSO
inet(3) and gen tcp(3)

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

old_ssl

old_ssl

Erlang module

This module contains interface functions to the Secure Socket Layer.

General

This manual page describes functions that are defined in the ssl module and represents the old sdl implementation that
coexists with the new one until it has been totally phased out.

The old implementation can be accessed by providing the option {sd_imp, old} to the ssl:connect and sdl:listen
functions.

Thereader isadvised to also read the ssl (6) manual page describing the SSL application.

Warning:

It isstrongly advised to seed the random generator after the ssl application has been started (seeseed/ 1 below),
and before any connections are established. Although the port program interfacing to the sdl libraries does a
"random" seeding of its own in order to make everything work properly, that seeding is by no means random for
the world since it has a constant value which is known to everyone reading the source code of the port program.

Common data types

The following datatypes are used in the functions below:

e options() = [option()]

e option() = socketoption() | ssloption()

e socketoption() = {node, list} | {node, binary} | binary | {packet,

packettype()} | {header, integer()} | {nodelay, boolean()} | {active,
activetype()} | {backlog, integer()} | {ip, ipaddress()} | {port, integer()}

e ssloption() = {verify, code()} | {depth, depth()} | {certfile, path()} |
{keyfile, path()} | {password, string()} | {cacertfile, path()} | {ciphers,

string()}
 packettype() (seeinet(3))
e« activetype() (seeinet(3))
e reason() = atom() | {aton(), string()}
* bytes() = [byte()]
« string() = [byte()]
e byte() =0 | 1| 2| ... | 255
e code() =0 | 1] 2
e depth() = byte()
e address() = hostnane() | ipstring() | ipaddress()
e ipaddress() = ipstring() | iptuple()
e hostnane() = string()
e ipstring() = string()
« iptuple() = {byte(), byte(), byte(), byte()}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

old_ssl

e sslsocket ()
e protocol () = sslv2 | sslv3 | tlsvl

The socket option { backl og, integer()} isforlisten/2 only, andtheoption{port, integer()} is
for connect/ 3/ 4 only.

The following socket options are set by default: { rode, i st},{packet, 0},{header, O0},{nodel ay,
fal se},{active, true},{backlog, 5},{ip, {0,0,0,0}},and{port, O}.

Note that the options{ node, bi nary} andbi nary areequivalent. Similarly { node, 1i st} and the absence
of option bi nary are equivalent.

The sdl options are for setting specific SSL parameters as follows:

« {verify, code()} Specifiestype of verification: O = do not verify peer; 1 = verify peer, 2 = verify peer,
fail if no peer certificate. The default valueisO.

e {depth, depth()} Specifies the maximum verification depth, i.e. how far in a chain of certificates the
verification process can proceed before the verification is considered to fail.

Peer certificate = 0, CA certificate = 1, higher level CA certificate = 2, etc. The value 2 thus means that a chain
can at most contain peer cert, CA cert, next CA cert, and an additional CA cert.
The default valueis 1.

« {certfile, path()} Pathtoafilecontaining the user's certificate. chain of PEM encoded certificates.

« {keyfile, path()} Pathtofilecontaining user'sprivate PEM encoded key.

e {password, string()} String containing the user's password. Only used if the private keyfile is password
protected.

e {cacertfile, path()} Pathtofilecontaining PEM encoded CA certificates (trusted certificates used for
verifying a peer certificate).

« {ciphers, string()} Stringof ciphersasacolon separated list of ciphers. Thefunction ci pher s/ 0 can
be used to find all available ciphers.

Thetypessl socket () isopaqueto the user.

The owner of a socket isthe onethat created it by acall tot ransport _accept/[1, 2],connect/[3, 4], or
listen/2.

When a socket isin active mode (the default), data from the socket is delivered to the owner of the socket in the form
of messages:

e {ssl, Socket, Data}

e {ssl _closed, Socket}

e {ssl _error, Socket, Reason}

A Ti meout argument specifiesatimeout in milliseconds. The default valuefor aTi meout argumentisi nfinity.

Functions listed below may return the value { error, cl osed}, which only indicates that the SSL socket is
considered closed for the operation in question. It isfor instance possibleto have{ er r or, cl osed} returned from
an call to send/ 2, and asubsequent call tor ecv/ 3 returning { ok, Dat a}.

Hence areturn value of { error, cl osed} must not be interpreted as if the socket was completely closed. On
the contrary, in order to free all resources occupied by an SSL socket, cl ose/ 1 must be called, or else the process
owning the socket has to terminate.

For each SSL socket there is an Erlang process representing the socket. When a socket is opened, that process links
to the calling client process. Implementations that want to detect abnormal exits from the socket process by receiving
{"EXIT", Pid, Reason} messages, should use the function pi d/ 1 to retrieve the process identifier from the
socket, in order to be able to match exit messages properly.

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

old_ssl

Exports

ci phers() -> {ok, string()} | {error, enotstarted}

Returns a string consisting of colon separated cipher designations that are supported by the current SSL library
implementation.

The SSL application has to be started to return the string of ciphers.

cl ose(Socket) -> ok | {error, Reason}
Types:
Socket = ssl socket ()

Closesasocket returned by t ransport _accept/[1, 2] ,connect/[3,4],orlisten/2

connect (Address, Port, Options) -> {ok, Socket} | {error, Reason}
connect (Address, Port, Options, Tineout) -> {ok, Socket} | {error, Reason}
Types:
Address = address()
Port = integer()
Options = [connect _option()]
connect _option() = {node, list} | {node, binary} | binary | {packet,
packettype()} | {header, integer()} | {nodelay, boolean()} | {active,
activetype()} | {ip, ipaddress()} | {port, integer()} | {verify, code()}

| {depth, depth()} | {certfile, path()} | {keyfile, path()} | {password,
string()} | {cacertfile, path()} | {ciphers, string()}

Ti meout = integer()
Socket = ssl socket ()

Connects to Port at Addr ess. If the optional Ti meout argument is specified, and a connection could not be
established withinthegiventime, { error, ti neout} isreturned. Thedefault valuefor Ti meout isi nfinity.

Thei p and port options are for binding to a particular local address and port, respectively.

connection_i nfo(Socket) -> {ok, {Protocol, Cipher}} | {error, Reason}

Types:
Socket = ssl socket ()
Prot ocol = protocol ()

Ci pher = string()
Gets the chosen protocol version and cipher for an established connection (accepted och connected).

control I i ng_process(Socket, NewOmer) -> ok | {error, Reason}
Types:
Socket = ssl socket ()
NewOmner = pid()
Assignsanew controlling processto Socket . A controlling processisthe owner of asocket, and receivesall messages
from the socket.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

old_ssl

format _error(ErrorCode) -> string()
Types:

ErrorCode = term))
Returns a diagnostic string describing an error.

get opt s(Socket, OptionsTags) -> {ok, Options} | {error, Reason}
Types:

Socket = ssl socket ()

OptionTags = [optiontag()]()
Returns the options the tags of which are Opt i onTags for for the socket Socket .

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}

Types:
Port = integer()
Options = [listen_option()]
listen option() = {node, list} | {node, binary} | binary | {packet,
packettype()} | {header, integer()} | {active, activetype()} | {backl og,
integer()} | {ip, ipaddress()} | {verify, code()} | {depth, depth()}
| {certfile, path()} | {keyfile, path()} | {password, string()}
{cacertfile, path()} | {ciphers, string()}

Li stenSocket = sslsocket ()

Sets up a socket to listen on port Por t at thelocal host. If Port iszero, | i st en/ 2 picks an available port number
(useport/ 1 toretrieveit).

The listen queue size defaults to 5. If a different value is wanted, the option { backl og, Si ze} should be added
to thelist of options.

Anempty Opt i ons listisconsidered an error, and { err or, enoopti ons} isreturned.
Thereturned Li st enSocket canonly beusedincalstotransport _accept/[1, 2].

peercert (Socket) -> {ok, Cert} | {error, Reason}
Types.

Socket = ssl socket ()

Cert = binary()()

Subject =term) ()

Retuns the DER encoded peer certificate, the certificate can be decoded with
publ i c_key: pki x_decode_cert/ 2.

peer name(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types.

Socket = ssl socket ()

Address = i paddress()

Port = integer()
Returns the address and port number of the peer.

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

old_ssl

pi d(Socket) -> pid()
Types:
Socket = ssl socket ()
Returns the pid of the socket process. The returned pid should only be used for receiving exit messages.

recv(Socket, Length) -> {ok, Data} | {error, Reason}
recv(Socket, Length, Tineout) -> {ok, Data} | {error, Reason}
Types.
Socket = ssl socket ()
Length = integer() >= 0
Ti meout = integer()
Data = bytes() | binary()
Receives data on socket Socket when the socket is in passive mode, i.e. when the option { act i ve, fal se}
has been specified.
A notablereturn valueis{ error, cl osed} whichindicatesthat the socket is closed.

A positive value of the Lengt h argument is only valid when the socket is in raw mode (option { packet, 0} is
set, and the option bi nar y is not set); otherwise it should be set to 0, whence all available bytes are returned.

If the optional Ti neout parameter is specified, and no data was available within the given time, {error,
ti meout } isreturned. The default value for Ti meout isi nfinity.

seed(Data) -> ok | {error, Reason}
Types:
Data = iolist() | binary()
Seeds the sdl random generator.
Itisstrongly advised to seed the random generator after the ssl application has been started, and before any connections
are established. Although the port program interfacing to the OpenSSL libraries does a "random™ seeding of its own

in order to make everything work properly, that seeding is by no means random for the world since it has a constant
value which is known to everyone reading the source code of the seeding.

A notablereturn valueis{ error, edata}} indicating that Dat a was not abinary nor aniolist.

send(Socket, Data) -> ok | {error, Reason}
Types.
Socket = ssl socket ()
Data = iolist() | binary()
Writes Dat a to Socket .
A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

set opt s(Socket, Options) -> ok | {error, Reason}
Types.

Socket = ssl socket ()

Options = [socketoption]()

Sets options according to Opt i ons for the socket Socket .

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

old_ssl

ssl _accept (Socket) -> ok | {error, Reason}
ssl _accept (Socket, Tineout) -> ok | {error, Reason}

Types:
Socket = ssl socket ()
Ti reout = integer()

Reason = atom()

The ssl _accept function establish the SSL connection on the server side. It should be called directly after
transport _accept, inthe spawned server-loop.

Note that the ssl connection is not complete until ssl _accept hasreturned t r ue, and if an error is returned, the
socket is unavailable and for instance cl ose/ 1 will crash.

socknane(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types:

Socket = ssl socket ()

Address = i paddress()

Port = integer()
Returns the local address and port number of the socket Socket .

transport _accept (Socket) -> {ok, NewSocket} | {error, Reason}
transport_accept (Socket, Tinmeout) -> {ok, NewSocket} | {error, Reason}
Types.

Socket = NewSocket = sslsocket()

Ti meout = integer()

Reason = atom()

Accepts an incoming connection request on a listen socket. Li st enSocket must be a socket returned from
I i st en/ 2. The socket returned should be passed to ss| _accept to complete ssl handshaking and establishing
the connection.

Warning:

The socket returned can only be used with ssl _accept , no traffic can be sent or received before that call.

The accepted socket inherits the options set for Li st enSocket inli sten/ 2.

The default value for Ti meout isi nfinity. If Ti meout is specified, and no connection is accepted within the
giventime, {error, tineout} isreturned.

version() -> {ok, {SSLVsn, ConpVsn, LibVsn}}
Types:
SSLVsn = CompVsn = LibVsn = string()()

Returns the SSL application version (SSLVsn), the library version used when compiling the SSL application port
program (ConpVsn), and the actual library version used when dynamically linking in runtime (Li bVsn).

If the SSL application has not been started, ConpVsn and Li bVsn are empty strings.

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

old_ssl

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by f or mat _err or/ 1 are either the
same as those defined inthei net (1 3) reference manual, or asfollows:

cl osed

Connection closed for the operation in question.
ebadsocket

Connection not found (internal error).
ebadst at e

Connection not in connect state (internal error).
ebr okertype

Wrong broker type (internal error).
ecacertfile

Own CA certificate fileisinvalid.
ecertfile

Own certificate fileisinvalid.
echai nt ool ong

The chain of certificates provided by peer istoo long.
eci pher

Own list of specified ciphersisinvalid.
ekeyfile

Own private key fileisinvalid.
ekeym snat ch

Own private key does not match own certificate.
enoi ssuercert

Cannot find certificate of issuer of certificate provided by peer.
enoservercert

Attempt to do accept without having set own certificate.
enot | i st ener

Attempt to accept on a non-listening socket.
enopr oxysocket

No proxy socket found (internal error).
enoopti ons

Thelist of optionsis empty.
enotstarted

The SSL application has not been started.
eopti ons

Invalid list of options.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

old_ssl

epeercert

Certificate provided by peer isin error.
epeercertexpired

Certificate provided by peer has expired.
epeercertinvalid

Certificate provided by peer isinvalid.
esel f si gnedcert

Certificate provided by peer is self signed.
essl accept

Server SSL handshake procedure between client and server failed.
essl connect

Client SSL handshake procedure between client and server failed.
essl errssl

SSL protocol failure. Typically because of afatal aert from peer.
ewant connect

Protocol wants to connect, which is not supported in this version of the SSL application.
ex5091 ookup

Protocol wants X.509 lookup, which is not supported in this version of the SSL application.
{badcal |, Call}

Call not recognized for current mode (active or passive) and state of socket.
{badcast, Cast}

Call not recognized for current mode (active or passive) and state of socket.
{badi nfo, Info}

Call not recognized for current mode (active or passive) and state of socket.

SEE ALSO
gen_tcp(3), inet(3) public_key(3)

28| Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Common Data Types

The following data types are used in the functions below:

cache_ref () = opaque()

key() = {partial key(), session_id()}
opaque()

bi nary()

partial key()

session_id()
session() = opaque()

Exports

del et e(Cache, Key) -> _

Types:
Cache = cache_ref ()
Key = key()

Deletes a cache entry. Will only be called from the cache handling process.

fol dl (Fun, AccO, Cache) -> Acc
Types:

Calls Fun(Elem, Accln) on successive elements of the cache, starting with Accln == Acc0. Fun/2 must return a new
accumulator which is passed to the next call. The function returns the final value of the accumulator. AccO is returned

if the cacheis empty.

init() -> opaque()
Types:

Performs possible initializations of the cache and returns a reference to it that will be used as parameter to the other
api functions. Will be called by the cache handling processes init function, hence putting the same requirements on

it asanormal processinit function.

| ookup(Cache, Key) -> Entry

Types:
Cache = cache_ref()
Key = key()

Entry = session() | undefined

Looks up a cache entry. Should be callable from any process.

sel ect _session(Cache, Partial Key) -> [session()]

Types:
Cache = cache_ref()

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

ssl_session_cache_api

Partial Key = partial key()
Sessi on = session()

Selects sessions that could be reused. Should be callable from any process.

term nate(Cache) -> _
Types:
Cache = term() - as returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

updat e(Cache, Key, Session) -> _

Types:
Cache = cache_ref()
Key = key()

Session = session()

Caches a new session or updates a aready cached one. Will only be called from the cache handling process.

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

	Secure Socket Layer
	SSL User's Guide
	Transport Layer Security (TLS) and its predecessor, Secure Socket Layer (SSL)
	Security overview
	Data Privacy and Integrity
	Digital Certificates
	Authentication of Sender
	TLS Sessions

	Using the SSL API
	General information
	Setting up connections
	Minmal example
	Upgrade example

	Using SSL for Erlang Distribution
	Introduction
	Building boot scripts including the SSL application
	Specifying distribution module for net_kernel
	Specifying security options and other SSL options
	Setting up environment to always use SSL

	Reference Manual
	ssl
	ssl
	cipher_suites/0
	cipher_suites/1
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	controlling_process/2
	connection_info/1
	format_error/1
	getopts/2
	listen/2
	peercert/1
	peername/1
	recv/2
	recv/3
	renegotiate/1
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	transport_accept/1
	transport_accept/2
	versions/0

	old_ssl
	ciphers/0
	close/1
	connect/3
	connect/4
	connection_info/1
	controlling_process/2
	format_error/1
	getopts/2
	listen/2
	peercert/1
	peername/1
	pid/1
	recv/2
	recv/3
	seed/1
	send/2
	setopts/2
	ssl_accept/1
	ssl_accept/2
	sockname/1
	transport_accept/1
	transport_accept/2
	version/0

	ssl_session_cache_api
	delete/2
	foldl/3
	init/0
	lookup/2
	select_session/2
	terminate/1
	update/3

