| v

ERLANG

Diameter

Copyright © 2011-2011 Ericsson AB. All Rights Reserved.
Diameter 0.10

October 6 2011

Copyright © 2011-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

October 6 2011

Ericsson AB. All Rights Reserved.: Diameter | 1

1.1 Introduction

1 Diameter Users Guide

The diameter application is a framework for building applications on top of the Diameter protocol.

1.1 Introduction

The diameter application is an implementation of the Diameter protocol as defined by RFC 3588. It supports arbitrary
Diameter applications by way of a dictionary interface that allows messages and AV P's to be defined and input into
diameter as configuration. It has support for al roles defined in the RFC: client, server and agent. This chapter provides
ashort overview of the application.

A Diameter peer is implemented by configuring a service and one or more transports using the interface module
diameter. The service configuration defines the Diameter applications to be supported by the peer and, typically, the
capabilitiesthat it should send to remote peersat capabilities exchange upon the establishment of transport connections.
A transport is configured on a service and provides protocol-specific send/receive functionality by way of atransport
interface defined by diameter and implemented by atransport module. The diameter application providestwo transport
modules. diameter_tcp and diameter _sctp for transport over TCP (using gen_t cp) and SCTP (using gen_sct p)
respectively. Other transports can be provided by any module that implements diameter's transport interface.

While a service typically implements a single Diameter peer (as identified by an Origin-Host AV P), transports can
themsel ves be associated with capabilities AVP's so that asingle service be used to implement more than one Diameter
peer.

Each Diameter application defined on a service is configured with a callback modul e that implements the application
interface through which diameter communicates the connectivity of remote peers, requests peer selection for outgoing
reguests, and communicates the reception of incoming Diameter request and answer messages. An application using
diameter implements these application callback modules to provide the functionality of the Diameter peer(s) it
implements.

Each Diameter application is also configured with one or more dictionary modules that provide encode/decode
functionality for outgoing/incoming Diameter messages. A module is generated from a specification file using
the diameterc utility. Dictionaries for the RFC 3588 Diameter Common Messages, Base Accounting and Relay
applications are provided by the diameter application.

1.2 Using the stack

To be written.

1.3 Examples

To be written. Example code can be found in the diameter application's exanpl es subdirectory.

1.4 Standards Compliance

Known points of questionable or non-compliance.

2 | Ericsson AB. All Rights Reserved.: Diameter

1.4 Standards Compliance

1.4.1 RFC 3588

The End-to-End Security framework (section 2.9) isn't implemented sinceit islargely unspecified. The document
that was to describe it (reference [AAACMS]) was abandoned in an uncompleted state several years ago and the
current draft RFC deprecates the framework, including the P Flag in the AV P header.

Thereisno TLS support. It'sunclear (aka uninvestigated) how TL S would impact diameter but | Psec can be used
without it needing to know.

There is no explicit support for peer discovery (section 5.2). It can possibly be implemented on top of diameter
asishbut thisis probably something that diameter should do. The current draft deprecates portions of the original
RFC's mechanisms however.

The peer state machine's el ection process (section 5.6.4) isn't implemented as specified sinceit assumes knowledge
of a peer's Origin-Host before sending it a CER. (The identity becoming known upon reception of CEA.) The
possibility of configuring the peer's Origin-Host could be added, along with handling of the case that it sends
something else, but for many applications this will just be unnecessary configuration of a value that it has no
control over.

1.4.2 RFC 3539

RFC 3539 is more difficult to comply to since it discusses problems as much as it requires functionality but all the
MUST's are covered, the watchdog state machine being the primary one. Of the optional functionality, load balancing
isleft to the diameter user (sinceit's the one deciding who to send to) and there is no Congestion Manager.

Ericsson AB. All Rights Reserved.: Diameter | 3

1.4 Standards Compliance

2 Reference Manual

The Diameter application is aframework for building applications on top of the Diameter protocol.

4 | Ericsson AB. All Rights Reserved.: Diameter

diameter

diameter

Erlang module

This module provides the interface with which a user creates a service that sends and receives messages using the
Diameter protocol as defined in RFC 3588.

Basic usage consists of creating a representation of a locally implemented Diameter peer and its capabilities with
start_service/2, adding transport capability using add_transport/2 and sending Diameter requests and receiving
Diameter answers with call/4. Incoming Diameter requests are communicated as callbacks to a diameter_app(3)
callback modules as specified in the service configuration.

Beware the difference between diameter application and Diameter application. The former refers to the Erlang
application named diameter whose main api is defined here, the latter to an application of the Diameter protocol in the
sense of RFC 3588. More generally, capitalized Diameter refers to the RFC and diameter to this implementation.

The diameter application must be started before calling functions in this module.

DATA TYPES

Addr ess()

D aneterldentity()
Ti me()

Unsi gned32()
UTF8St ri ng()

Types corresponding to RFC 3588 AV P Data Formats. Defined in diameter_dict(4).
application_alias() = term)

A name identifying a Diameter application in service configuration passed to start_service/2 and passed to call/4
when sending requests belonging to the application.

application_nodule() = Mod | [Mbd | ExtraArgs]

Mod = atom()
ExtraArgs = list()

A module implementing the callback interface defined in diameter_app(3), along with any extra arguments to
be appended to those documented for the interface. Any extra arguments are appended to the documented list of
arguments for each function. Note that additional arguments specific to an outgoing request be specified to call/4,
in which case the call-specific arguments are appended to any specified with the callback module.

application_opt ()
Options defining a Diameter application as configured in an appl i cat i on option passed to start_service/2.
{alias, application_alias()}

An unique identifier for the application in the scope of the service. Optional, defaults to the value of the
di cti onary option.

{dictionary, atom()}

The name of an encode/decode module for the Diameter messages defined by the application. These modules are
generated from a specification file whose format is documented in diameter_dict(4).

Ericsson AB. All Rights Reserved.: Diameter | 5

diameter

{modul e, application_nodul e()}

A callback module with which messages of the Diameter application are handled. See diameter_app(3) for
information on the required interface and semantics.

{state, term)}

Theinitial callback state. Defaultsto the value of theal i as option if unspecified. The prevailing state is passed
to certain diameter _app(3) callbacks, which can then return a new state.

{call _nutates_state, true|fal se}

Specifies whether or not the pick_peer/4 application callback (following from a call to call/4) can modifiy state,
Defaultstof al se if unspecified.

Note that pick peer callbacks are serialized when these are alowed to modify state, which is a potential
performance bottleneck. A simple Diameter client may suffer no ill effects from using mutable state but a server
or agent that responds to incoming request but sending its own requests should probably avoid it.

{answer errors, call back|report|discard}

Determines the manner in which incoming answer messages containing decode errorsarehandled. If cal | back
then errors result in a handle_answer/4 callback in the same fashion as for handle_request/3, in the err or s
field of the di anet er _packet record passed into the callback. If r eport then an answer containing errors
is discarded without a callback and awarning report iswritten to thelog. If di scar d then an answer containing
errorsissilently discarded without a callback. In both the r epor t and di scar d casesthe return value for the
call/4 invocation in question is asif a callback had taken place and returned{ error, fail ure}.

Defaultstor epor t if unspecified.

call _opt()
Options available to call/4 when sending an outgoing Diameter request.
{extra, list()}

Extra arguments to append to callbacks to the callback module in question. These are appended to any extra
arguments configured with the callback itself. Multiple options append to the argument list.

{filter, peer filter()}

A filter to apply to thelist of available peers before passing them to the pick_peer/4 callback for the applicationin
question. Multiple optionsare equivalent asingleal | filter onthe corresponding list of filters. Defaultstonone.

{tinmeout, Unsigned32()}
The number of milliseconds after which the request should timeout. Defaults to 5000.
det ach

Causescall/4 toreturn ok as soon asthe request in question has been encoded instead of waiting for and returning
the result from a subsequent handle_answer/4 or handle_error/4 callback.

Aninvalid option will cause call/4 to fail.
capabi lity()

AVP values used in outgoing CER/CEA messages during capabilities exchange. Can be configured both on a
service and atransport, the latter taking precedence over the former.

{"Oigin-Host', Dianeterldentity()}
Value of the Origin-Host AV P in outgoing messages.
{"Oigin-Realm, Dianeterldentity()}
Value of the Origin-Realm AV P in outgoing messages.

6 | Ericsson AB. All Rights Reserved.: Diameter

diameter

{' Host -1 P- Address', [Address()]}
Values of Host-1P-Address AV Ps. Optional.

Thelist of addressesisavailableto the start function of atransport module, which either usesthem asisor returns
anew list (typically asconfigured ast r ansport _confi g() onthetransport modulein question) in order for
the correct list of addresses to be sent in capabilities exchange messages.

{' Vendor-1d', Unsigned32()}

Value of the Vendor-1d AV P sent in an outgoing capabilities exchange message.

{' Product - Nanme', UTF8String()}

Value of the Product-Name AV P sent in an outgoing capabilities exchange message.
{"Origin-State-1d', Unsigned32()}

Value of Origin-State-1d to be included in outgoing messages sent by diameter itself. In particular, the AVP will
beincluded in CER/CEA and DWR/DWA messages. Optional.

Setting a value of 0 (zero) is equivalent to not setting a value as documented in RFC 3588. The function
origin_state id/O can be used asto retrieve avalue that is set when the diameter application is started.

{" Supported-Vendor-1d', [Unsigned32()]}

Values of Supported-Vendor-ld AVPs sent in an outgoing capabilities exchange message. Optional, defaults to
the empty list.

{"Auth-Application-1d', [Unsigned32()]}

Values of Auth-Application-lId AVPs sent in an outgoing capabilities exchange message. Optional, defaults to
the empty list.

{" Acct-Application-1d , [Unsigned32()]}

Values of Acct-Application-Id AVPs sent in an outgoing capabilities exchange message. Optional, defaults to
the empty list.

{" Vendor - Speci fic-Application-1d", [Gouped()]}

Values of Vendor-Specific-Application-ld AVPs sent in an outgoing capabilities exchange message. Optional,
defaults to the empty list.

{' Fi rmnar e- Revi sion', Unsigned32()}

Value of the Firmware-Revision AV P sent in an outgoing capabilities exchange message. Optional.

Note that each tuple communicates one or more AVP values. It is an error to specify duplicate tuples.
evaluable() = {MF, A | fun() | [evaluable() | Al

An expression that can be evaluated as a function in the following sense.

eval ([{MF A | T]) ->
appl y(M F, T ++ A);
eval ([[F Al | T]) ->
eval ([F | T ++ A]);
eval ([F| A]) ->
appl y(F, A);
eval (F) ->
eval ([F]).

Evaluating an evaluable() E on an argument list Ais meant in the sense of eval ([E| A]) .

Ericsson AB. All Rights Reserved.: Diameter | 7

diameter

Beware of using local funs (that is, fun expressions not of theform f un Modul e: Nane/ Ari t y) in situations
in which the fun is not short-lived and code is to be upgraded at runtime since any processes retaining such a
fun will have areference to old code.

peer filter() = term)

A filter passed to call/4 in order to select candidate peers for a pick_peer/4 callback. Has one of the following
types.

none
Matches any peer. Thisis a convenience that provides afilter equivalent to no filter at all.
host

Matches only those peerswhose Or i gi n- Host hasthe samevalueasDest i nat i on- Host inthe outgoing
reguest in question, or any peer if the request does not contain aDest i nat i on- Host AVP.

real m

Matches only those peers whose Ori gi n- Real m has the same value as Dest i nati on- Real min the
outgoing request in question, or any peer if the request does not contain aDest i nat i on- Real mAVP.

{host, any|Di ameterldentity()}

Matches only those peerswhose Or i gi n- Host hasthe specified value, or al peersif the atom any.
{realm any|Di aneterldentity()

Matches only those peerswhose Or i gi n- Real mhasthe value, or al peersif the atom any.

{eval , evaluable()}

Matches only those peers for which the specified evaluable() returns true on the connection's
di armet er _caps record. Any other return value or exception isequivalentto f al se.

{neg, peer _filter()}

Matches only those peers not matched by the specified filter.

{all, [peer _filter()]}

Matches only those peers matched by each filter of the specified list.
{any, [peer _filter()]}

Matches only those peers matched by at least one filter of the specified list.

Note that the host and r eal mfilters examine the outgoing request as passed to call/4, assuming that thisis a
record- or list-valued message() as documented in diameter_app(3), and that the message contains at most one
of each AVP. If thisisnot the casethenthe{ host | real m Di aneterldentity()} filtersmust beused
to achieve the desired result. Note also that an empty host/realm (which should not be typical) is equivalent to
an unspecified one for the purposes of filtering.

Aninvalidfilterisequivalentto{ any, []}, afilter that matches no peer.
service_event () = #dianeter_event{}

Event message sent to processes that have subscribed using subscribe/1.

Thei nf o field of the event record can be one of the following.

{up, Ref, Peer, Config, Pkt}
{up, Ref, Peer, Config}
{down, Ref, Peer, Config}

8 | Ericsson AB. All Rights Reserved.: Diameter

diameter

Ref = transport _ref()

Peer = di anmet er _app: peer ()

Config = {connect|listen, [transport_opt()]}
Pkt = #di amet er _packet {}

Reportsthat the RFC 3539 watchdog state machine hastransitioned into (up) or out of (down) the open state. If a
di anmet er _packet recordispresent in an up tuple then there has been an exchange of capabilities exchange
messages and the record contains the received CER or CEA, otherwise the connection has reestablished without
the loss or transport connectivity.

Note that a single up/down event for a given peer corresponds to as many peer_up/down callbacks as there
are Diameter applications shared by the peer, as determined during capablilities exchange. That is, the event
communicates connectivity with the peer as awhole while the callbacks communicate connectivity with respect
toindividual Diameter applications.

{reconnect, Ref, Opts}

Ref
ot s

transport_ref ()
[transport _opt ()]

A connecting transport is attempting to establish/reestablish a transport connection with a peer following
reconnect _ti mer orwat chdog_ti mer expiry.

For forward compatibility, a subscriber should be prepared toreceivedi anet er _event . i nf o of formsother
than those documented above.

service_name() = term()

The name of a service as passed to start_service/2 and with which the serviceisidentified. There can be at most
one service with a given name on a given node. Note that er | ang: make_r ef / 0 can be used to generate a
service name that is somewhat unique.

service_opt()
Options accepted by start_service/2. Can beany capabi | i t y() tupleaswell asthefollowing.
{application, [application_opt()]}
Defines a Diameter application supported by the service.

A service must define one application for each Diameter application it intends to support. For an outgoing
Diameter request, the application is specified by passing the desired application'sappl i cati on_al i as() to
call/4, while for an incoming request the application identifier in the message header determines the application
(and callback module), the application identifier being specified in the dictionary file defining the application.

transport _opt ()
Options accepted by add_transport/2.
{transport _nodule, atom()}

A module implementing a transport process as defined in diameter_transport(3). Defaultsto di anmet er _tcp
if unspecified.

Theinterface required of atransport module is documented in diameter_transport(3).
{transport_config, term()}

A term passed as the third argument to the start/3 function of the relevant t r ansport _nodul e in order to
start atransport process. Defaults to the empty list if unspecified.

Ericsson AB. All Rights Reserved.: Diameter | 9

diameter

{applications, [application_alias()]}

Thelist of Diameter applications to which usage of the transport should be restricted. Defaultsto all applications
configured on the service in question.

{capabilities, [capability()]}

AVP's used to construct outgoing CER/CEA messages. Any AVP specified takes precedence over a
corresponding value specified for the service in question.

{wat chdog_tinmer, Twinit}

TW ni t Unsi gned32()

| (MF.A

The RFC 3539 watchdog timer. An integer value is interpreted as the RFC's Twinit in milliseconds, ajitter of +
2 seconds being added at each rearming of the timer to compute the RFC's Tw. An MFA is expected to return the
RFC's Tw directly, with jitter applied, allowing the jitter calculation to be performed by the callback.

An integer value must be at least 6000 as required by RFC 3539. Defaults to 30000 if unspecified.
{reconnect _tinmer, Tc}

Tc = Unsi gned32()

For aconnecting transport, the RFC 3588 Tc timer, in milliseconds. Note that thistimer determinesthe frequency
with which the transport will attempt to establish a connection with its peer only before an initial connection is
established: oncethereisaninitial connection it's watchdog_timer that determines the frequency of reconnection
attempts, as required by RFC 3539.

For alistening transport, the timer specifies the time after which a previously connected peer will be forgotten:
a connection after this time is regarded as an initial connection rather than a reestablishment, causing the RFC
3539 state machine to pass to state OPEN rather than REOPEN. Note that these semantics are not goverened by
the RFC and that a listening transport's reconnect_timer should be greater than its peers's Tc plusjitter.

Defaults to 30000 for a connecting transport and 60000 for alistening transport.

Unrecognized options are silently ignored but are returned unmodified by service_info/2 and can be referred to
in predicate functions passed to remove_transport/2.

Exports

add_transport (SvcNanme, {connect|listen, Options}) -> {ok, Ref} | {error,
Reason}

Types.
SvcNanme = service_nane()
Options = [transport_opt ()]
Ref = ref()
Reason = term()

Add transport capability to a service.

The service will start a transport process(es) in order to establish a connection with the peer, either by connecting
to the peer (connect) or by accepting incoming connection requests (1 i st en). A connecting transport establishes
transport connections with at most one peer, an listening transport potentially with many.

10 | Ericsson AB. All Rights Reserved.: Diameter

diameter

The diameter application takes responsibility for exchanging CER/CEA with the peer. Upon successful completion of
capabilities exchange the service calls each relevant application module's peer_up/3 callback after which the caller can
exchange Diameter messages with the peer over thetransport. In addition to CER/CEA, the servicetakesresponsibility
for the handling of DWR/DWA and required by RFC 3539 as well as for DPR/DPA.

The returned reference uniquely identifies the transport within the scope of the service. Note that the function returns
before atransport connection has been established. It isnot an error to add atransport to aservice that has not yet been
configured: a service can be started after configuring transports.

cal | (SvcName, App, Request, Options) -> ok | Answer | {error, Reason}
Types:

SvcName = service_nane()

App = application_alias()

Request = di aneter_app: message() | term)

Answer = term)

Options = [call _opt()]
Send a Diameter request message and possibly return the answer or error.

App identifies the Diameter application in which the request is defined and callbacks to the corresponding callback
modulewill follow as described below and in diameter_app(3). Unlessthedet ach option has been specified to cause
an earlier return, the call returns either when an answer message is received from the peer or an error occurs. In the
case of an answer, the return valueis asreturned by ahandle_answer/4 callback. In the case of an error, whether or not
the error is returned directly by diameter or from a handle_error/4 callback depends on whether or not the outgoing
regquest is successfully encoded for transmission from the peer, the cases being documented below.

If there are no suitable peers, or if pick_peer/4 rejectsthem by returning 'false’, then{ error, no_connecti on}
isreturned. Otherwise pick_peer/4 isfollowed by a prepare request/3 callback, the message is encoded and sent.

There are severa error cases which may prevent an answer from being received and passed to a handle_answer/4
callback:

e |If theinitial encode of the outgoing request fails, then the request process failsand { error, encode} is
returned.

« If therequestissuccessfully encoded and sent but the answer times out then ahandle_error/4 callback takes place
with Reason = ti neout.

« |f therequest is successfully encoded and sent but the service in question is stopped before an answer is received
then ahandle_error/4 callback takes place Reason = cancel .

« |If thetransport connection with the peer goes down after the request has been sent but before an answer has been
received then an attempt is made to resend the request to an alternate peer. If no such peer is available, or if the
subsequent pick_peer/4 callback rejects the candidates, then ahandle_error/4 callback takes place with Reason
= fail over.If apeerisselected then aprepare retransmit/3 callback takes place, after which the semantics
arethe same asfollowing an initial prepare_request/3 callback.

« |If an encode error takes place during retransmission then the request process failsand { error, fail ure}
is returned.

e |f an application callback made in processing the request fails (pick_peer, prepare _request, prepare_retransmit,
handle answer or handle error) then either {error, encode} or {error, failure} is returned
depending on whether or not there has been an attempt to send the request over the transport.

Note that { error, encode} isthe only return value which guarantees that the request has not been sent over
the transport.

Ericsson AB. All Rights Reserved.: Diameter | 11

diameter

origin_state_id() -> Unsigned32()
Return a reasonable value for use as Origin-State-1d in outgoing messages.

The value returned is the number of seconds since 19680120T031408Z, the first value that can be encoded as a
Diameter Time(), at the time the diameter application was started.

renove_transport(SvcNanme, Pred) -> ok

Types:
SvcName = service_nane()
Pred = Fun | MFA | ref() | list() | true | false
Fun = fun((reference(), connect|listen, list()) -> boolean())

| fun((reference(), list()) -> bool ean())
| fun((list()) -> boolean())
MFA = {atom(), atom(), list()}
Remove previously added transports.
Pr ed determineswhich transportsto remove. An arity-3-valued Pr ed removesall transportsfor which Pr ed(Ref ,

Type, Opts) returnstrue, where Type and Opt s are as passed to add_transport/2 and Ref is as returned by
the corresponding call. The remaining forms are equivalent to an arity-3 fun as follows.

Pred = fun(reference(), list()): fun(Ref, _, Opts) -> Pred(Ref, Opts) end

Pred = fun(list()): fun(_, _, Opts) -> Pred(Opts) end

Pred = reference(): fun(Ref, _, _) -> Pred == Ref end

Pred = list(): fun(_, _, Opts) ->[] == Pred -- Opts end
Pred = true: fun(_, _, _) -> true end

Pred = fal se: fun(_, _, _) -> false end

Pred = {MF, A}: fun(Ref, Type, Opts) -> apply(M F, [Ref, Type, Opts | A]) end

Removing atransport causes all associated transport connections to be broken. A base application DPR message with
Disconnect-Cause DO_NOT_WANT_TO _TALK _TO_YQOU will be sent to each connected peer before disassociating
the transport configuration from the service and terminating the transport upon reception of DPA or timeoult.

service_info(SvcNanme, Iten) -> Val ue
Types:

SvcName = service_nane()

Value = term)

Return information about a started service.

services() -> [SvcNane]
Types:

SvcNane = service_nane()
Return the list of started services.

session_id(ldent) -> CctetString()
Types:

Ident = Dianeterldentity()
Return avalue for a Session-1d AVP.

12 | Ericsson AB. All Rights Reserved.: Diameter

diameter

The value has the form required by section 8.8 of RFC 3588. |dent should be the Origin-Host of the peer from which
the message containing the returned value will be sent.

start() -> ok | {error, Reason}
Start the diameter application.

The diameter application must be started before starting a service. In a production system this will typically be
accomplished by aboot file, not by calling st ar t / 0 explicitly.

start_service(SvcNane, Options) -> ok | {error, Reason}
Types.

SvcName servi ce_nane()

Options = [service_opt()]

Reason = term)

Start adiameter service.

A service defines a locally-implemented Diameter peer, specifying the capabilities of the peer to be used during
capabilities exchange and the Diameter applications that it supports. Transports are added to a service using
add_transport/2.

stop() -> ok | {error, Reason}
Stop the diameter application.

stop_service(SvcNane) -> ok | {error, Reason}
Types.

SvcNane = service_nane()

Reason = term()

Stop a diameter service.

subscri be(SvcNane) -> true
Types:
SvcNanme = service_nane()
Subscribeto ser vi ce_event () messages from aservice.

It is not an error to subscribe to events from a service that does not yet exist.

unsubscri be(SvcNane) -> true
Types:

SvcName = service_nane()
Unsubscribe to event messages from a service.

SEE ALSO
diameter_app(3), diameter _transport(3), diameter_dict(4)

Ericsson AB. All Rights Reserved.: Diameter | 13

diameterc

diameterc

Command

Thediameterc utility isused to transform diameter dictionary filesinto Erlang source. The resulting sourceimplements
the interface diameter requires to encode and decode the dictionary's messages and AVP's.

USAGE

diameterc [<options>] <file>
Transforms asingle dictionary file. Valid options are as follows.
-0 <dir>

Specifies the directory into which the generated source should be written. Defaults to the current working
directory.

-i <dir>

Specifies adirectory to add to the code path. Typically used to point at beam files corresponding to dictionaries
included by the one being compiled (using the @ ncl udes directive): inclusion is a beam dependency, not an
erl/hrl dependency.

Multiple- i options can be specified.
-E

Supresses erl generation.

-H

Supresses hrl generation.

EXIT STATUS

Returns 0 on success, non-zero on failure.

BUGS

Theidentification of errorsin the source file is poor.

SEE ALSO
diameter_dict(4)

14 | Ericsson AB. All Rights Reserved.: Diameter

diameter_app

diameter_app

Erlang module

A diameter service as started by diameter: start_service/2 configures one of more Diameter applications, each of whose
configuration specifies a callback that handles messages specific to its application. The messages and AVPs of the
Diameter application aredefined in adictionary filewhoseformat isdocumented in diameter _dict(4) whilethecallback
module is documented here. The callback module implements the Diameter application-specific functionality of a
service.

A callback module must export all of the functions documented below. The functions themselves are of three distinct
flavours:

peer_up/3 and peer_down/3 signal the attainment or loss of connectivity with a Diameter peer.

pick _peer/4, prepare _request/3, prepare retransmit/3, handle_answer/4 and handle_error/4 are (or may be)
called as a consequence of acall to diameter: call/4 to send an outgoing Diameter request message.

handle_request/3 is called in response to an incoming Diameter request message.

Note:

The arities given for the the callback functions here assume no extra arguments. All functionswill also be passed
any extra arguments configured with the callback module itself when calling diameter: start_service/2 and, for
the call-specific callbacks, any extra arguments passed to diameter:call/4.

DATA TYPES

capabilities() = #di ameter_caps{}

A record containing the identities of the local and remote Diameter peers having an established transport
connection, as well as the capabilities as determined by capabilities exchange. Each field of the record is a 2-
tuple consisting of valuesfor the (local) host and (remote) peer. Optional or possibly multiple values are encoded
aslists of values, mandatory values as the bare value.

message() = record() | list()

The representation of a Diameter message as passed to diameter: call/4. Therecord representationisasoutlined in
diameter_dict(4): amessageasdefined inadictionary fileisencoded asarecord with onefield for each component
AVP. Equivalently, a message can also be encoded as a list whose head is the atom-valued message name (the
record name minus any prefix specified in the relevant dictionary file) and whosetail isalist of { Fi el dNane,
Fi el dval ue} pairs.

A third representation allows a message to be specified as a list whose head isa di anet er _header record
and whosetail isalist of di anmet er _avp records. This representation is used by diameter itself when relaying
requests as directed by the return value of ahandle_request/3 callback. It differs from the other other two in that
it bypasses the checks for messages that do not agree with their definitions in the dictionary in question (since
relays agents must handle arbitrary request): messages are sent exactly as specified.

packet () = #di aneter_packet{}

A container for incoming and outgoing Diameters message that's passed through encode/decode and transport.
Fields of a packet() record should not be set in return values except as documented.

peer _ref() = term)

A term identifying atransport connection with a Diameter peer. Should be treated opaquely.

Ericsson AB. All Rights Reserved.: Diameter | 15

diameter_app

peer() = {peer_ref(), capabilities()}

A tuple representing a Diameter peer connection.
service_nanme() = term)

The service supporting the Diameter application. Specified to diameter:start_service/2 when starting the service.
state() = term)

The state maintained by the application callback functions peer_up/3, peer_down/3 and (optionally) pick peer/4.
Theinitial stateis configured in the call to diameter:start_service/2 that configures the application on a service.
Cdlback functionsreturning a state are evaluated in acommon service-specific process while those not returning
state are evaluated in a request-specific process.

Exports

Mod: peer _up(SvcNane, Peer, State) -> NewState
Types.
SvcNanme = service_nane()
Peer = peer()
State = NewState = state()
Invoked when a transport connection has been established and a successful capabilities exchange has indicated that

the peer supports the Diameter application of the application on which the callback module in question has been
configured.

Mod: peer _down(SvcName, Peer, State) -> NewState
Types.

SvcNanme = service_nane()

Peer = peer()

State = NewState = state()

Invoked when a transport connection has been lost following a previous call to peer_up/3.

Mod: pi ck_peer (Candi dat es, Reserved, SvcNanme, State) -> {ok, Peer} | {Peer,
NewSt ate} | false
Types.

Candi dates = [peer ()]

Peer = peer() | false

SvcNanme = service_nane()

State = NewState = state()

Invoked as a consequence of a call to diameter:call/4 to select a destination peer for an outgoing request, the
return value indicating the selected peer. A new application state can also be returned but only if the Diameter
application in question was configured with the option cal | _nut at es_st at e settot r ue, as documented for
diameter: start_service/2.

The candidate peers list will only include those which are selected by any fi | t er option specified in the call to
diameter:call/4, and only those which have indicated support for the Diameter application in question. The order of
the elements is unspecified except that any peers whose Origin-Host and Origin-Realm matches that of the outgoing
request (inthe senseof a{filter, {all, [host, realm}} option to diameter:call/4) will be placed at
the head of thelist.

16 | Ericsson AB. All Rights Reserved.: Diameter

diameter_app

Thereturnvauesf al se and{f al se, St at e} areequivalent when callback stateismutable, asare{ ok, Peer}
and { Peer, State}. Returning apeer asfal se causes{error, no_connection} to be returned from
diameter:call/4. Returning a peer() from an initial pick_peer/4 callback will result in a prepare _request/3 callback
followed by either handle_answer/4 or handle_error/4 depending on whether or not an answer message is received
from the peer. If transport with the peer is lost before this then a new pick peer/4 callback takes place to select an
alternate peer.

Notethat thereisno guarantee that apick peer/4 callback to select an alternate peer will befollowed by any additional
callbacks, only that theinitial pick_peer/4 will be, since aretransmission to an alternate peer is abandoned if an answer
isreceived from a previously selected peer.

Mod: prepar e_request (Packet, SvcNanme, Peer) -> Action
Types:
Packet = packet ()
SvcNane = service_nane()
Peer = peer()
Action = {send, packet() | nessage()} | {discard, Reason} | discard
Invoked to return arequest for encoding and transport. Allows the sender to access the selected peer's capabilitiesin

order to set (for example) Dest i nat i on- Host and/or Dest i nat i on- Real min the outgoing request, although
the callback need not be limited to this usage. Many implementations may simply want toreturn{ send, Packet }

A returned packet() should set the request to be encoded in its nsg field and can set the t ransport data
field in order to pass information to the transport module. Extra arguments passed to diameter:call/4 can be
used to communicate transport data to the callback. A returned packet() can also set the header field to a
di amet er _header record in order to specify valuesthat should be preserved in the outgoing request, although this
should typically not be necessary and allows the callback to set header values inappropriately. A returned | engt h,
cnd_code orappl i cation_i disignored.

Returning { di scard, Reason} causes the request to be aborted and the diameter:call/4 for which the callback
has taken place to return {error, Reason}. Returning di scard is equivalent to returning { di scard,
di scar ded}.

Mod: prepare_retransnit (Packet, SvcName, Peer) -> Result
Types.
Packet = packet ()
SvcNane = service_nane()
Peer = peer()
Result = {send, packet() | nmessage()} | {discard, Reason} | discard
Invoked to return a request for encoding and retransmission. Has the same role as prepare request/3 in the case

that a peer connection is lost an an alternate peer selected but the argument packet() is as returned by the initial
prepare_request/ 3.

Returning { di scar d, Reason} causestherequest to be aborted and ahandle _error/4 callback to take place with
Reason asinitial argument. Returning di scar d isequivaent toreturning { di scard, di scar ded}.

Mod: handl e_answer (Packet, Request, SvcNanme, Peer) -> Result
Types.

Packet = packet ()

Request = nessage()

SvcNanme = service_nane()

Ericsson AB. All Rights Reserved.: Diameter | 17

diameter_app

Peer = peer()
Result = term))

Invoked when an answer message isreceived from apeer. The return value isreturned from the call to diameter:call/4
for which the callback takes place unlessthe det ach option was specified.

The decoded answer record isin the nsg field of the argument packet(), the undecoded binary in the packet field.
Request is the outgoing request message as was returned from prepare request/3 or prepare_retransmit/3 before
the request was passed to the transport.

For any given call to diameter:call/4 there is at most one call to the handle_answer callback of the application
in question: any duplicate answer (due to retransmission or otherwise) is discarded. Similarly, only one of
handl e_answer/ 4 or handl e_error/ 4 iscaled for any given request.

By default, an incoming answer message that cannot be successfully decoded causes the request processin question to
fail, causingtherelevant call todiameter:call/4toreturn{error, failure} (unless the detach option
was speci fied). Inparticular, thereisno handl e_error/ 4 callback in this case. Application configuration
may change this behaviour as described for diameter:start_service/2.

Mod: handl e_error (Reason, Request, SvcNane, Peer) -> Result
Types:
Reason = tinmeout | failover | term()
Request = nessage()
SvcName = service_nane()
Peer = peer()
Result = term)
Invoked when an error occurs before an answer message is received from a peer in response to an outgoing request.

The return value is returned from the call to diameter:call/4 for which the callback takes place (unless the det ach
option was specified).

Reason ti meout indicates that an answer message has not been received within the required time. Reason
fai |l over indicatesthat the transport connection to the peer to which the request has been sent has been lost but that
not alternate node was available, possibly because a pick_peer/4 callback returned false.

Mod: handl e_r equest (Packet, SvcName, Peer) -> Action
Types:
Packet = packet ()
SvcNanme = term()
Peer = peer()
Action = Reply | {relay, Opts} | discard | {eval, Action, PostF}
Reply = {reply, nessage()} | {protocol _error, 3000..3999}
Opts = diameter:call _opts()
Post F = di anet er: eval uabl e()
Invoked when arequest message is received from a peer. The application in which the callback takes place (that is,
the callback module as configured with diameter:start_service/2) is determined by the Application Identifier in the

header of the incoming request message, the selected module being the one whose corresponding dictionary declares
itself as defining either the application in question or the Relay application.

The argument packet() has the following signature.

18 | Ericsson AB. All Rights Reserved.: Diameter

diameter_app

#di amet er _packet { header #di amet er _header {},

avps = [#di ameter_avp{}],

nmsg = record() | undefined,

errors = ['Unsigned32' () | {' Unsigned32' (), #dianeter_avp{}}],
bi n = binary(),

transport_data = tern()}

The msg field will be undef i ned only in case the request has been received in the relay application. Otherwise it
contains the record representing the request as outlined in diameter_dict(4).

The er r or s field specifies any Result-Code's identifying errors that were encountered in decoding the request. In
this case diameter will set both Result-Code and Failed-AVP AVP'sin areturned answer message() before sending it
to the peer: the returned message() need only set any other required AV P's. Note that the errors detected by diameter
areall of the 5xxx series (Permanent Failures). Theer r or s list isempty if the request has been received in the relay
application.

Thet r ansport _dat a field contains an arbitrary term passed into diameter from the transport modulein question,
ortheatomundef i ned if thetransport specified no data. Thetermis preserved in the packet() containing any answer
message sent back to the transport process unless another value is explicitly specified.

The semantics of each of the possible return values are as follows.
{reply, nessage()}
Send the specified answer message to the peer.
{protocol _error, 3000..3999}
Send an answer message to the peer containing the specified protocol error. Equivalent to

{reply, ['answer-nmessage' | Avps]

where Avps setsthe Origin-Host, Origin-Realm, the specified Result-Code and (if the request sent one) Session-
Id AVPs.

Note that RFC 3588 mandates that only answers with a 3xxx series Result-Code (protocol errors) may set the E
bit. Returning anon-3xxx valueinapr ot ocol _err or tuplewill cause the request processin question to fail.

{relay, Opts}

Relay arequest to another peer in the role of a Diameter relay agent. If arouting loop is detected then the request
is answered with 3005 (DIAMETER_LOOP_DETECTED). Otherwise a Route-Record AVP (containing the
sending peer's Origin-Host) is added to the request and pick_peer/4 and subsequent callbacks take place just as
if diameter:call/4 had been called explicitly. The End-to-End Identifier of the incoming request is preserved in
the header of the relayed request.

Thereturned Opt s should not specify det ach. A subsequent handle_answer/4 callback for the relayed request
must return its first argument, the di anet er _packet record containing the answer message. Note that the
ext r a option can be specified to supply arguments that can distinguish the relay case from othersif so desired.
Any other return value (for example, from a handle_error/4 callback) causes the request to be answered with
3002 (DIAMETER_UNABLE_TO_DELIVER).

di scard
Discard the request.
{eval, Action, PostF}
Handle the request asif Act i on has been returned and then evaluate Post F in the request process.

Ericsson AB. All Rights Reserved.: Diameter | 19

diameter_app

Note that protocol errors detected by diameter will result in an answer messagewithout handl e_r equest / 3 being
invoked.

20 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

diameter_dict

Name

A diameter service asconfigured with diameter : start_service/2 specifiesone or more supported Diameter applications.
Each Diameter appli cation specifiesadictionary modul e that knows how to encode and decodeitsmessagesand AV P's.
The dictionary module isin turn generated from afile that defines these messages and AVP's. The format of such a
fileisdefined in FILE FORMAT below. Users add support for their specific applications by creating dictionary files,
compiling them to Erlang modules using diameterc and configuring the resulting dictionaries modules on a service.

The codec generation also results in a hrl file that defines records for the messages and grouped AVP's defined
for the application, these records being what a user of the diameter application sends and receives. (Modulo other
available formats as discussed in diameter_app(3).) These records and the underlying Erlang data types corresponding
to Diameter data formats are discussed in MESSAGE RECORDS and DATA TYPES respectively. The generated hrl
also contains defines for the possible values of AV Ps of type Enumerated.

The diameter application includes three dictionary modules corresponding to applications defined in section 2.4 of
RFC 3588: di anet er _gen_base_r f c3588 for the Diameter Common Messages application with application
identifier O, di amet er _gen_accounti ng for the Diameter Base Accounting application with application
identifier 3 and di amet er _gen_r el aythe Relay application with application identifier OXFFFFFFFF. The
Common Message and Relay applications are the only applications that diameter itself has any specific knowledge
of. The Common Message application is used for messages that diameter itself handles: CER/CEA, DWR/DWA and
DPR/DPA. The Relay application is given specia treatment with regard to encode/decode since the messages and
AVPsit handles are not specifically defined.

FILE FORMAT

A dictionary file consists of distinct sections. Each section starts with a line consisting of a tag followed by zero or
more arguments. Each section ends at the the start of the next section or end of file. Tags consist of an ampersand
character followed by akeyword and are separated from their arguments by whitespace. Whitespace within a section
separates individual tokens but its quantity is insignificant.

The tags, their arguments and the contents of each corresponding section are as follows. Each section can occur at
most once unless otherwise specified. The order in which sections are specified is unimportant.

@d Nunber

Defines the integer Number as the Diameter Application Id of the application in question. Required if the
dictionary defines @ressages. The section has empty content.

The Application Id is set in the Diameter Header of outgoing messages of the application, and the value in the
header of an incoming message is used to identify the relevant dictionary module.

Example:

@d 16777231

@ane Md

Definesthe name of the generated dictionary module. The section has empty content. Mod must match the regular
expression "NazA-Z0-9][-_azA-Z0-9]*$'; that is, contains only al phanumerics, hyphens and underscores begin
with an alphanumeric.

A name is optional and defaults to the name of the dictionary file minus any extension. Note that a generated
module must have a unique name an not colide with another module in the system.

Ericsson AB. All Rights Reserved.: Diameter | 21

diameter_dict

Example:

@nane etsi_e2

@r ef i x Nane

Defines Name as the prefix to be added to record and constant namesin the generated dictionary module and hrl.
The section has empty content. Name must be of the same form as a @name.

A prefix is optional but can be used to disambiguate record and constant names resulting from similarly named
messages and AVP'sin different Diameter applications.

Example:

@refix etsi_e2_

@endor Number Nane

Defines the integer Number as the the default Vendor-1D of AVP'sfor which the V flag is set. Name documents
the owner of the application but is otherwise unused. The section has empty content.

Example:

@endor 13019 ETSI

@vp_vendor _id Nunber

Definestheinteger Number asthe Vendor-1D of the AV P'slisted in the section content, overriding the @ endor
default. The section content consists of AVP names. Can occur zero or more times (with different values of
Number).

Example:

@vp_vendor _id 2937

WAV Aut h
Domai n- | ndex
Regi on- Set

@nherits Md

Defines the name of a generated dictionary module containing AV P definitions referenced by the dictionary but
not defined by it. The section content is empty.

Can occur 0 or more times (with different values of Mod) but al dictionaries should typically inherit RFC3588
AVPsfromdi anet er _gen_base rf c3588.

Example:

@nherits dianeter_gen_base_rfc3588

22 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

@vp_types
Defines the name, code, type and flags of individual AV Ps. The section consists of definitions of the form
Nane Code Type Fl ags

where Codeisthe integer AVP code, Flagsisastring of V, M and P characters indicating the flags to be set on
an outgoing AVP or asingle - (minus) character if none areto be set. Type identifies either an AV P Data Format
as defined in DATA TYPESbelow or atype as defined by a @ ust om t ypes tag.

Example:

@vp_types

Locati on- | nf or mati on 350 G ouped VM
Request ed- I nformati on 353 Enunerated V

Note that the P flag has been deprecated by the Diameter Maintenance and Extensions Working Group of the
IETF: diameter will set the P flag to 0 as mandated by the current draft standard.

@ustom types Md

Defines AVPs for which module Mod provides encode/decode. The section contents consists of type names.
For each AVP Name defined with custom type Type, Mod should export the function Name/3 with arguments
encode|decode, Type and Data, the latter being the term to be encoded/decoded. The function returnsthe encoded/
decoded value.

Can occur 0 or more times (with different values of Mod).

Example:

@ustom types rfc4005 types

Fr aned- | P- Addr ess

@ressages

Definesthe messages of the application. The section content consists of definitions of theform specified in section
3.2 of RFC 3588, "Command Code ABNF specification”.

Proxy-1nfo]
Rout e- Record]
AVP]

EE

@essages
RTR ::= < Dianeter Header: 287, REQ PXY >
< Session-ld >
{ Auth-Application-Id }
{ Auth-Session-State }
{ Oigin-Host }
{ Oigin-Real m}
{ Destination-Host }
{ SIP-Deregistrati on-Reason }
[Destination-Real m]
[User-Nane]
[SIP-ACR]
[
[
[

Di anet er Header: 287, PXY >

3
>

Ericsson AB. All Rights Reserved.: Diameter | 23

diameter_dict

Session-1d >

Aut h- Application-1d }
Resul t - Code }

Aut h- Sessi on-State }

Oi gi n-Host }
Oigin-Real m}

Aut hori zation-Lifetine]
Aut h- G ace- Peri od]

Redi rect - Host]

Redi r ect - Host - Usage |
Redi r ect - Max- Cache- Ti me]
Proxy-Info]

Rout e- Record]

AVP]

el L L R e R e e\

* * *

@r ouped

Defines the contents of the AVPs of the application having type Grouped. The section content consists of
definitions of the form specified in section 4.4 of RFC 3588, "Grouped AVP Values'.

Example:

@r ouped

AVP Header: 383 >

S| P-Der egi strati on- Reason ::= <
{ Sl P- Reason- Code }
[
[

S| P- Reason-1nfo]
AVP]

@num Nanme

Defines values of AVP Name having type Enumerated. Section content consists of names and corresponding
integer values. Integer values can be prefixed with Ox to be interpreted as hexidecimal.

Can occur 0 or more times (with different values of Name). The AVP in question can be defined in an inherited
dictionary in order to introduce additional values. An AV P so extended must be referenced by in a @ressages
or @r ouped section.

Example:

@num S| P- Reason- Code

PERVANENT _TERM NATI ON
NEW SI P_SERVER ASS| GNED
SI P_SERVER CHANGE
REMOVE_S| P_SERVER

W Nk O

Comments can be included in adictionary file using semicolon: text from a semicolon to end of line isignored.

MESSAGE RECORDS

The hrl generated from a dictionary specification defines records for the messages and grouped AV Ps defined in
@ressages and @r ouped sections. For each message or grouped AV P definition, arecord is defined whose name
is the message or AVP name prefixed with any dictionary prefix defined with @r ef i x and whose fields are the
names of the AV Ps contained in the message or grouped AV P in the order specified in the definition in question. For
example, the grouped AVP

24 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

S| P- Der egi strati on- Reason ::= < AVP Header: 383 >
{ Sl P- Reason- Code }
[SIP-Reason-Info]

* [AVP]

will result in the following record definition given an empty prefix.

-record("' Sl P-Deregistration-Reason' {'SI|P-Reason-Code',
' Sl P- Reason- | nfo',
"AVP' }).

The values encoded in the fields of generated records depends on the type and number of times the AV P can occur.
In particular, an AVP which is specified as occurring exactly once is encoded as a value of the AVP's type while an
AVP with any other specification is encoded as a list of values of the AVP's type. The AVP's typeis as specified in
the AV P definition, the RFC 3588 types being described below.

DATA TYPES

The dataformats defined in sections 4.2 ("Basic AVP Data Formats") and 4.3 ("Derived AV P Data Formats") of RFC
3588 are encoded as values of the types defined here. Values are passed to diameter:call/4 in a request record when
sending a request, returned in a resulting answer record and passed to a handle_request callback upon reception of
an incoming request.

Basic AVP Data Formats

Cctet String()
I nt eger 32()

I nt eger 64()
Unsi gned32()
Unsi gned64()

[0..255]

- 2147483647, . 2147483647
-9223372036854775807. . 9223372036854775807
0..4294967295

0..18446744073709551615

Fl oat 32() "-infinity' | float() | infinity
Fl oat 64() "-infinity' | float() | infinity
G ouped() record()

On encode, an OctetString() can be specified as an iolist(), excessively large floats (in absolute value) are equivalent
toinfinityor'-infinity' andexcessively large integers result in encode failure. The records for grouped
AVPs are as discussed in the previous section.

Derived AVP Data Formats

Address() = CctetString()
| tuple()

On encode, an OctetString() 1Pv4 addressis parsed in the usual x.x.x.x format while an IPv6 addressis parsed in any
of the formats specified by section 2.2 of RFC 2373, "Text Representation of Addresses’. An IPv4 tuple() has length
4 and contains values of type 0..255. An IPv6 tuple() has length 8 and contains values of type 0..65535. The tuple
representation is used on decode.

Time() = {date(), time()}

wher e

Ericsson AB. All Rights Reserved.: Diameter | 25

diameter_dict

date() = {Year, Month, Day}
time() = {Hour, Mnute, Second}

Year = integer()
Month = 1..12
Day =1..31
Hour = 0..23
M nute = 0..59
Second = 0..59

Additionally, values that can be encoded are limited by way of their encoding as four octets as required by RFC 3588
with the required extension from RFC 2030. In particular, only values between { { 1968, 1, 20}, {3, 14, 8}} and
{{2104, 2, 26}, {9, 42, 23}} (bothinclusive) can be encoded.

UTF8String() = [integer()]

List elements are the UTF-8 encodings of the individual characters in the string. Invalid codepoints will result in
encode/decode failure.

Di aneterldentity() = CctetString()

A value must have length at least 1.

Di anmeterURI () = OctetString()

| #dianeter _URI {type = Type,
fqgdn = FQDN,
port = Port,
transport = Transport,
protocol = Protocol}
wher e

Type = aaa | aaas

FQDN = CctetString()

Port = integer()

Transport = sctp | tcp

Protocol = dianmeter | radius | 'tacacs+

On encode, fields port, transport and protocol default to 3868, sctp and diameter respectively. The grammar of an
OctetString-valued DiameterURI() is as specified in section 4.3 of RFC 3588. The record representation is used on
decode.

Enunerated() = | nteger32()

On encode, values can be specified using the macros defined in adictionary's hrl file.

| PFi | terRul e()
QoSFi | terRul e()

Cctet String()
Cctet String()

26 | Ericsson AB. All Rights Reserved.: Diameter

diameter_dict

Values of these types are not currently parsed by diameter.

SEE ALSO
diameterc(1), diameter(3), diameter_app(3)

Ericsson AB. All Rights Reserved.: Diameter | 27

diameter_transport

diameter_transport

Erlang module

A module specified as a transport _nodul e to diameter:add transport/2 must implement the interface
documented here. The interface consists of a function with which diameter starts a transport process and a message
interface with which the transport process communicates with the process that starts it (aka its parent).

Exports

Mod: start ({Type, Ref}, Svc, Opts) -> {ok, Pid} | {ok, Pid, LAddrs} | {error,
Reason}

Types.
Type = connect | accept
Ref = reference()
Svc = #di aneter_service{}
Opts = term)
Pid = pid()
LAddrs = [ip_address()]
Reason = term()

Start atransport process. Called by diameter asaconsequence of acall todiameter:add_transport/2in order to establish
or accept atransport connection respectively. A transport process maintains a connection with a single remote peer.

The first argument indicates whether the transport process in question is being started for a connecting (connect)
or listening (accept) transport. In the latter case, transport processes are started as required to accept connections
from multiple peers. Ref isin each case the same value that was returned from the call to diameter:add_transport/2
that has lead to starting of atransport process.

A transport process must implement the message interface documented below. It should retain the pid of its parent,
monitor the parent and terminate if it dies. It should not link to the parent. It should exit if its transport connection
with its peer islost.

Transport processes for a given service are started sequentially.

The sart function should use the ‘'Host-IP-Address list on the service, namely
Svc#di anet er _servi ce. host _i p_addr ess, and/or Opt s to select an appropriate list of local |P addresses,
and should returnthislist if different from the service addresses. Thereturned list is used to popul ate 'Host-1P-Address
AVPsin outgoing capabilities exchange messages, the service addresses being used otherwise.

MESSAGES

All messages sent over the transport interface are of theform { di aneter, term()}.
A transport process can expect the following messages from diameter.
{di ameter, {send, Packet}}

An outbound Diameter message. Packet can be either bi nary() (the message to be sent) or a
#di amet er _packet {} whoset r ansport _dat a field containes a value other than undefined.

{di ameter, {close, Pid}}

A request to close the transport connection. The transport process should terminate after closing the connection.
Pid isthe pid() of the parent process.

28 | Ericsson AB. All Rights Reserved.: Diameter

diameter_transport

A transport process should send the following messages to its parent.
{diameter, {self(), connected}}

Inform the parent that the transport process with Type = accept has established a connection with the peer. Not
sent if the transport process has Type = connect.

{diameter, {self(), connected, Renote}}

Inform the parent that the transport process with Type = connect has established a connection with a peer. Not
sent if the transport process has Type = accept. Remote is an arbitrary term that uniquely identifies the remote
endpoint to which the transport has connected.

{di aneter, {recv, Packet}}

An inbound Diameter message. Packet can be either binary() (the message to be sent) or
#di amet er _packet {} whose packet field contains abi nary() . Any vaue (cther than undefined) set
in thetransport dat a field will be passed back with a corresponding answer message in the case that
the inbound message is a request unless the sender sets another value. How thet ransport _dat a is used/
interpreted is up to the transport module.

SEE ALSO
diameter_tcp(3), diameter_sctp(3)

Ericsson AB. All Rights Reserved.: Diameter | 29

diameter_tcp

diameter_tcp

Erlang module

This module implements diameter transport over TCP using gen tcp. It can be specified as the value
of a transport module option to diameter:add transport/2 and implements the behaviour documented in
diameter_transport(3).

Exports

start ({Type, Ref}, Svc, [Opt]) -> {ok, Pid, [LAddr]} | {error, Reason}
Types.
Type = connect | accept

Ref = reference()

Svc = #di aneter_service{}

Opt = {raddr, ip_address()} | {rport, integer()} | ternm()
Pid = pid()

LAddr = i p_address()
Reason = term()

The start function required by diameter _transport(3).

The only diameter_tcp-specific argument is the options list. Optionsr addr and r por t specify the remote address
and port for a connecting transport and not valid for a listening transport. Remaining options are any accepted
by gen_tcp:connect/3 for a connecting transport, or gen_tcp:listen/2 for a listening transport, with the exception of
bi nary, packet and acti ve. Also, option port can be specified for a listening transport to specify the local
listening port, the default being the standardized 3868 if unspecified. Note that option i p specifies the local address.

If the service specifies more than one Host-IP-Address and option i p isunspecified then then the first of the service's
addressesis used as the |ocal address.

Thereturned local address list has length one.

SEE ALSO
diameter_transport(3)

30 | Ericsson AB. All Rights Reserved.: Diameter

diameter_sctp

diameter_sctp

Erlang module

This module implements diameter transport over SCTP using gen sctp. It can be specified as the value
of a transport module option to diameter:add transport/2 and implements the behaviour documented in
diameter_transport(3).

Exports

start({Type, Ref}, Svc, [Opt]) -> {ok, Pid, [LAddr]} | {error, Reason}
Types.

Type = connect | accept

Ref = reference()

Svc = #di aneter_service{}
Opt = {raddr, ip_address()} | {rport, integer()} | term()
Pid = pid()

LAddr = i p_address()
Reason = term()

The start function required by diameter_transport(3).

The only diameter_sctp-specific argument is the options list. Optionsr addr and r por t specify the remote address
and port for aconnecting transport and not valid for alistening transport. The former isrequired whilelatter defaultsto
3868 if unspecified. More than oner addr option can be specified, in which case the connecting transport in question
attempts each in sequence until an association is established. Remaining options are any accepted by gen_sctp:open/1,
with the exception of optionsnode, bi nary, i st,active andsct p_event s. Notethat optionsi p and por t
specify the local address and port respectively.

Multiplei p options can be specified for a multihomed peer. If none are specified then the values of Host-1P-Address
on the service are used. (In particular, one of these must be specified.) Option por t defaults to 3868 for a listening
transport and O for a connecting transport.

diameter_sctp usesthet r ansport _dat a field of thedi anet er _packet record to communicate the stream on
which an inbound message has been received, or on which an outbound message should be sent: the value will be
of the form { st ream | d} on an inbound message passed to a handle request or handle _answer callback. For
an outbound message, either undef i ned (explicitly of by specifying the outbound message as abi nary()) or a
tuple should be set in the return value of handle_request (typically by retaining the value passed into this function) or
prepare_request. Thevalue undef i ned uses a"next outbound stream” id and then increments this modul o the total
number outbound streams. That is, successive values of undef i ned cycle through all outbound streams.

SEE ALSO
diameter_transport(3)

Ericsson AB. All Rights Reserved.: Diameter | 31

	Diameter
	Diameter Users Guide
	Introduction
	Using the stack
	Examples
	Standards Compliance
	RFC 3588
	RFC 3539

	Reference Manual
	diameter
	add_transport/2
	call/4
	origin_state_id/0
	remove_transport/2
	service_info/2
	services/0
	session_id/1
	start/0
	start_service/2
	stop/0
	stop_service/1
	subscribe/1
	unsubscribe/1

	diameterc
	diameter_app
	Mod:peer_up/3
	Mod:peer_down/3
	Mod:pick_peer/4
	Mod:prepare_request/3
	Mod:prepare_retransmit/3
	Mod:handle_answer/4
	Mod:handle_error/4
	Mod:handle_request/3

	diameter_dict
	diameter_transport
	Mod:start/3

	diameter_tcp
	start/3

	diameter_sctp
	start/3

