| v

ERLANG

Kernel

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.
Kernel 2.14.5
October 6 2011

Copyright © 1997-2011 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

October 6 2011

Ericsson AB. All Rights Reserved.: Kernel | 1

1 Reference Manual

The Kernel application has all the code necessary to run the Erlang runtime system itself: file servers and code servers
and so on.

2 | Ericsson AB. All Rights Reserved.: Kernel

kernel

kernel
Application

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. The Kernel application contains the following services:

e application controller, seeappl i cati on(3)

 code

« disk_log

e di st _ac, distributed application controller

e erl_boot_server

e« erl _ddl

e« error_| ogger
« file

gl obal

« global _group
* heart

* inet

« net_kernel

e 0S

* pg2

e rpc

* seq_trace

e user

Error Logger Event Handlers

Two standard error logger event handlersare defined in the Kernel application. These are describedin error_logger (3).

Configuration

The following configuration parameters are defined for the Kernel application. See app(3) for more information
about configuration parameters.

browser_cnmd = string() | {MF, A}

When pressing the Help button in atool such as Debugger or TV, the help text (an HTML fileFi | e) isby default
displayed in a Netscape browser which is required to be up and running. This parameter can be used to change
the command for how to display the help text if another browser than Netscape is preferred, or another platform
than Unix or Windows is used.

If set to astring Command, the command " Conmand Fi | " will be evaluated using os: cnd/ 1.

If set to amodule-function-argstuple{ M F, A}, thecal appl y(M F, [Fi | e| A]) will be evaluated.
distributed = [Distrib]

Specifies which applications are distributed and on which nodes they may execute. In this parameter:

e Distrib = {App, Nodes} | {App, Ti ne, Nodes}

* App = aton()

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel

e« Tinme = integer()>0

* Nodes = [node() | {node(),..., node()}1]

The parameter is described in appl i cat i on(3), function| oad/ 2.
di st _aut o_connect = Val ue

Specifies when nodes will be automatically connected. If this parameter is not specified, a node is aways
automatically connected, e.g when amessage is to be sent to that node. Val ue isone of:

never
Connections are never automatically connected, they must be explicitly connected. Seenet _ker nel (3).
once

Connections will be established automatically, but only once per node. If anode goes down, it must thereafter
be explicitly connected. Seenet _ker nel (3).

perm ssions = [Pernm
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

* Appl Nane = atom()
e Bool = bool ean()

Permissions are described in appl i cat i on(3), function perni t/ 2.
error _| ogger = Val ue
Val ue isoneof:

tty
Installs the standard event handler which prints error reportsto st di o. Thisisthe default option.

{file, FileNane}

Installs the standard event handler which prints error reportsto thefile Fi | eNane, where Fi | eNane isa
string.

fal se

No standard event handler isinstalled, but theinitial, primitive event handler iskept, printing raw event messages
to tty.

si |l ent
Error logging is turned off.
gl obal _groups = [G oupTupl €]
Defines global groups, seegl obal _gr oup(3).
e GoupTuple = {GoupNane, [Node]} | {G oupNane, PublishType, [Node]}
e GoupName = atom()
e PublishType = nornal | hidden

* Node = node()
i net_default_connect _options = [{Opt, Val}]

Specifies default optionsfor connect sockets, seei net (3) .
inet_default _listen_options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .
{inet _dist use interface, ip_address()}

If the host of an Erlang node has several network interfaces, this parameter specifies which one to listen on. See
i net (3) for thetypedefinition of i p_addr ess().

4 | Ericsson AB. All Rights Reserved.: Kernel

kernel

{inet _dist listen_mn, First}

See below.
{inet_dist_listen_nax, Last}

DefinetheFi r st . . Last port range for the listener socket of a distributed Erlang node.
i net_parse_error_log = silent

If this configuration parameter is set, no err or _| ogger messages are generated when erroneous lines are
found and skipped in the various Inet configuration files.

inetrc = Fil enane
The name (string) of an Inet user configuration file. See ERTS User's Guide, Inet configuration.
net _setuptinme = SetupTi ne

Set upTi me must beapositiveinteger or floating point number, and will beinterpreted asthe maximally allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is 120; if higher values are given, 120 will be used. The default value if the variable is not given, or if the value
isincorrect (e.g. not anumber), is 7 seconds.

Note that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.
net ticktime = TickTinme

Specifiesthe net _ker nel tick time. Ti ckTi ne is given in seconds. Once every Ti ckTi ne/ 4 second, all
connected nodes are ticked (if anything else has been written to a node) and if nothing has been received from
another node within the last four (4) tick timesthat node is considered to be down. This ensures that nodes which
are not responding, for reasons such as hardware errors, are considered to be down.

Thetime T, in which anode that is not responding is detected, iscalculated as: M nT < T < MaxT where:

M nT
MaxT

TickTinme - TickTime / 4
TickTinme + TickTime / 4

Ti ckTi me ishby default 60 (seconds). Thus, 45 < T < 75 seconds.

Note: All communicating nodes should have the same Ti ckTi me value specified.

Note: Normally, aterminating node is detected immediately.
sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes must be alive in order for this node to start properly. If some node in the list does
not start within the specified time, this node will not start either. If this parameter is undefined, it defaultsto [].

sync_nodes_opti onal = [NodeNane]

Specifies which other nodes can be alive in order for this node to start properly. If some nodein thislist does not
start within the specified time, this node starts anyway. If this parameter is undefined, it defaultsto the empty list.

sync_nodes_tinmeout = integer() | infinity

Specifies the amount of time (in milliseconds) this node will wait for the mandatory and optional nodes to start.
If this parameter is undefined, no node synchronization is performed. This option also makes sure that gl obal
is synchronized.

Ericsson AB. All Rights Reserved.: Kernel | 5

kernel

start_dist_ac = true | false

Startsthe di st _ac server if the parameter ist r ue. This parameter should be settot r ue for systemsthat use
distributed applications.

Thedefault valueisf al se. If this parameter is undefined, the server is started if the parameter di st ri but ed
isset.

start _boot _server = true | false

Startsthe boot _ser ver if the parameter ist r ue (seeer| _boot _ser ver (3)). This parameter should be
settot r ue in an embedded system which uses this service.

The default valueisf al se.
boot server_slaves = [Sl avel P

If the start _boot _server configuration parameter is t r ue, this parameter can be used to initialize
boot server with a list of dave IP addresses. SlavelP = string() | atom |
{integer(),integer(),integer(),integer()}

where0 <= integer() <=255.

Examples of SI avel P in atom, string and tuple form are:
' 150. 236. 16. 70", "150, 236, 16, 70", {150, 236, 16, 70}.

The default valueis[] .
start_disk_log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_| og(3)). This parameter should be set
to true in an embedded system which uses this service.

The default valueisf al se.
start_pg2 = true | fal se

Starts the pg2 server (see pg2(3)) if the parameter ist r ue. This parameter should be set to t r ue in an
embedded system which uses this service.

The default valueisf al se.
start_timer = true | false

Startstheti mer _server if the parameter ist rue (seeti mer (3)). This parameter should be settot r ue
in an embedded system which uses this service.

The default valueisf al se.
shut down_func = {Mdd, Func}
Where:
e Md = atom()
e Func = atom()
Setsafunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as:
Mod: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.
See Also

app(4), application(3), code(3), disk log(3), erl_boot_server(3), erl_ddlI(3), error_logger(3), file(3), global(3),
global_group(3), heart(3), inet(3), net_kernel(3), 0s(3), pg2(3), rpc(3), seq_trace(3), user(3)

6 | Ericsson AB. All Rights Reserved.: Kernel

application

application

Erlang module

In OTP, application denotes acomponent implementing some specific functionality, that can be started and stopped as
aunit, and which can be re-used in other systems aswell. This module interfaces the application controller, aprocess
started at every Erlang runtime system, and contains functions for controlling applications (for example starting and
stopping applications), and functionsto accessinformation about applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resourcefile called Appl i cati on. app, where Appl i cat i on isthe name of the application. Refer to app(4) for
more information about the application specification.

This module can also be viewed as a behaviour for an application implemented according to the OTP design principles
as a supervision tree. The definition of how to start and stop the tree should be located in an application callback
modul e exporting a pre-defined set of functions.

Refer to OTP Design Principles for more information about applications and behaviours.

Data Types
start _type() = nornmal
| {takeover, Node :: node()}
| {failover, Node :: node()}
restart_type() = pernmanent | transient | tenporary
tuple_of (T)
A tuple where the elements are of type T.
Exports
get _all _env() -> Env
get _all _env(Application) -> Env
Types.
Application = aton()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get _all _key() ->[] | {ok, Keys}
get _all _key(Application) -> undefined | Keys

Types:
Application = aton()
Keys = {ok, [{Key :: aton(), Val :: term()}, ...]1}

Returns the application specification keys and their valuesfor Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

Ericsson AB. All Rights Reserved.: Kernel | 7

application

If the specified application is not loaded, the function returnsundef i ned. If the process executing the call does not
belong to any application, the function returns|[] .

get _application() -> undefined | {ok, Application}
get _application(Pi dOr Modul e) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Mdule :: nodule())
Application = aton()

Returns the name of the application to which the process Pi d or the module Modul e belongs. Providing no argument
isthesameascallingget _application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get _env(Par) -> undefined | {ok, Val}
get _env(Application, Par) -> undefined | {ok, Val}

Types:
Application = Par = atom()
Val = tern()

Returns the value of the configuration parameter Par for Appl i cat i on. If the application argument is omitted, it
defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist, or if the process executing the
call does not belong to any application, the function returnsundef i ned.

get _key(Key) -> undefined | {ok, Val}
get _key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom)
Val = ternm()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument isomitted,
it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the process executing the call
does not belong to any application, the function returnsundef i ned.

| oad(AppDescr) -> ok | {error, Reason}

| oad(AppDescr, Distributed) -> ok | {error, Reason}

Types.
AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed = {Application, Nodes}
| {Application, Tine, Nodes}

8 | Ericsson AB. All Rights Reserved.: Kernel

application

| default
Nodes = [node() | tuple_of(node())]
Time = integer() >=1

Reason = term()
application_spec() =
{application,
Application :: atom),
AppSpecKeys :: [application_opt()]}
application_opt() = {description, Description :: string()}
| {vsn, Vsn :: string()}
| {id, Id:: string()}
| {rnodul es,
[(Modul e :: nmodule()) |
{Modul e :: nodule(), Version :: term()}]}
| {registered, Nanmes :: [Name :: atom()]}
| {applications, [Application :: aton()]}
| {included_applications,
[Application :: atom()]}
| {env, [{Par :: aton(), Val :: term()}]}

| {start_phases,
[{Phase :: atom(), PhaseArgs :: term()}] |

undef i ned}
| {maxT, MaxT :: timeout()}
| {maxP, MaxP :: integer() >= 1| infinity}
| {nod,

Start

{I\/Baule ;. nodul e(),
StartArgs :: term()}}

L oads the application specification for an application into the application controller. It will also load the application
specifications for any included applications. Note that the function does not load the actual Erlang object code.

The application can be given by itsname Appl i cat i on. In this case the application controller will search the code
path for the application resource file Appl i cat i on. app and load the specification it contains.

The application specification can aso be given directly as atuple AppSpec. This tuple should have the format and
contents as described in app(4) .

If Distributed == {Application,[Tinme,]Nodes}, the application will be distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the name of the application (same asin thefirst argument). If anode crashesand Ti e has been specified, then the
application controller will wait for Ti me milliseconds before attempting to restart the application on another node. If
Ti me isnot specified, it will default to 0 and the application will be restarted immediately.

Nodes isalist of node nameswhere the application may run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority. Example:

Nodes = [cpl@ave, {cp2@ave, cp3@ave}]

This means that the application should preferably be started at cpl@ave. If cpl@ave is down, the application
should be started at either cp2@ave or cp3@ave.

Ericsson AB. All Rights Reserved.: Kernel | 9

application

IfDi stributed == def aul t,thevaluefor theapplicationintheKernel configuration parameter di st ri but ed
will be used.

| oaded_applications() -> [{Application, Description, Vsn}]

Types:
Application = aton()
Description = Vsn = string()

Returns a list with information about the applications which have been loaded using | oad/ 1, 2, also included
applications. Appl i cat i on isthe application name. Descri pti on and Vsn arethevaluesof itsdescri pti on
and vsn application specification keys, respectively.

permit (Application, Pernission) -> ok | {error, Reason}
Types.

Application = aton()

Per ni ssi on = bool ean()

Reason = term()

Changes the permission for Appl i cat i on to run at the current node. The application must have been loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application issetto f al se, st art will return ok but the application
will not be started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application will be stopped. If the permission later is
settot r ue, it will be restarted.

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (see| oad/ 2 above).

The function does not return until the application is started, stopped or successfully moved to another node. However,
in some cases where permissionis set to t r ue the function may return ok even though the application itself has not
started. Thisistrue when an application cannot start because it has dependencies to other applications which have not
yet been started. When they have been started, Appl i cat i on will be started as well.

By default, all applications are loaded with permission t r ue on all nodes. The permission is configurable by using
the Kernel configuration parameter per ni ssi ons.

set _env(Application, Par, Val) -> ok
set _env(Application, Par, Val, Tineout) -> ok

Types:
Application = Par = atom()
Val = term()

Ti meout = timeout ()
Sets the value of the configuration parameter Par for Appl i cati on.

set _env/ 3 usesthe standard gen_ser ver timeout value (5000 ms). A Ti meout argument can be provided if
another timeout value is useful, for example, in situations where the application controller is heavily loaded.

10 | Ericsson AB. All Rights Reserved.: Kernel

application

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the valueisread by the application, and careless use
of this function may put the application in aweird, inconsistent, and malfunctioning state.

start (Application) -> ok | {error, Reason}
start (Application, Type) -> ok | {error, Reason}
Types:
Application = aton()
Type = restart _type()
Reason = term()
Starts Appl i cat i on. If it is not loaded, the application controller will first load it using | oad/ 1. It will make

sure any included applications are loaded, but will not start them. That is assumed to be taken care of in the code
for Appl i cati on.

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications that should be started before this application are running. If not, { error, { not _started, App}} is
returned, where App isthe name of the missing application.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Modul e: st ar t / 2 asdefined by the application specification key nod.

The Ty pe argument specifies the type of the application. If omitted, it defaultstot enpor ary.

e |f apermanent application terminates, al other applications and the entire Erlang node are also terminated.

« |If atransient application terminates with Reason == nor ral , thisisreported but no other applications are
terminated. If atransient application terminates abnormally, all other applications and the entire Erlang node are
also terminated.

« |f atemporary application terminates, thisis reported but no other applications are terminated.

Note that it is always possible to stop an application explicitly by calling st op/ 1. Regardless of the type of the
application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree terminates, the reason is set
to shut down, not nor rral .

start_type() -> StartType | undefined | |ocal
Types:
Start Type = start_type()

This function is intended to be called by a process belonging to an application, when the application is being started,
to determine the start type which is either St art Type or | ocal .

SeeModul e: st art/ 2 for adescription of St art Type.

| ocal isreturned if only parts of the application is being restarted (by a supervisor), or if the function is called
outside a startup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

Ericsson AB. All Rights Reserved.: Kernel | 11

application

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
Stops Appl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthe top supervisor of the application to shutdown (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe calback module as defined by the application specification key nod.

Last, the application master itself terminates. Note that all processes with the application master as group leader, i.e.
processes spawned from a process bel onging to the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, st op/ 1 has to be caled on all nodes where it can execute (that is, on all
nodes where it has been started). The call to st op/ 1 on the node where the application currently executes will stop
its execution. The application will not be moved between nodes dueto st op/ 1 being called on the node where the
application currently executes before st op/ 1 is caled on the other nodes.

t akeover (Application, Type) -> ok | {error, Reason}
Types:

Application = aton()

Type = restart _type()

Reason = term()
Performs a takeover of the distributed application Appl i cati on, which executes at another node Node. At
the current node, the application is restarted by calling Modul e: start ({t akeover, Node}, Start Args).
Mbdul e and Start Args are retrieved from the loaded application specification. The application at the

other node is not stopped until the startup is completed, i.e. when Mbdul e: start/2 and any cdls to
Modul e: start _phase/ 3 have returned.

Thus two instances of the application will run simultaneously during the takeover, which makesit possible to transfer
datafrom the old to the new instance. If thisisnot acceptabl e behavior, parts of the old instance may be shut down when
the new instance is started. Note that the application may not be stopped entirely however, at least the top supervisor
must remain alive.

Seestart/ 1, 2 for adescription of Type.

unl oad(Application) -> ok | {error, Reason}
Types:
Application = aton()
Reason = term()
Unloads the application specification for Appl i cat i on from the application controller. It will also unload the

application specifications for any included applications. Note that the function does not purge the actual Erlang object
code.

unset _env(Application, Par) -> ok
unset _env(Application, Par, Tinmeout) -> ok
Types:

12 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = Par = atom()
Ti meout = tinmeout ()

Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset _env/ 2 usesthe standard gen_ser ver timeout value (5000 ms). A Ti meout argument can be provided
if another timeout valueis useful, for example, in situations where the application controller is heavily loaded.

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the valueisread by the application, and careless use
of this function may put the application in aweird, inconsistent, and malfunctioning state.

whi ch_applications() -> [{Application, Description, Vsn}]
whi ch_applications(Tineout) -> [{Application, Description, Vsn}]
Types:
Ti meout = timeout ()
Application = aton()
Description = Vsn = string()
Returns alist with information about the applications which are currently running. Appl i cat i on isthe application

name. Descri ption and Vsn are the values of its descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver timeout value (5000 ms). A Ti meout argument can
be provided if another timeout value is useful, for example, in situations where the application controller is heavily
loaded.

CALLBACK MODULE

The following functions should be exported from an appl i cat i on callback module.

Exports

Modul e: start (Start Type, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types:
Start Type = normal | {takeover, Node} | {fail over, Node}
Node = node()
StartArgs = tern()
Pid = pid()
State = term)
This function is called whenever an application is started using appl i cati on: start/ 1, 2, and should start the

processes of the application. If the application is structured according to the OTP design principles as a supervision
tree, this means starting the top supervisor of the tree.

St ar t Type definesthe type of start:
e nornal ifit'sanormal startup.

Ericsson AB. All Rights Reserved.: Kernel | 13

application

« nornal asoif theapplication isdistributed and started at the current node due to afailover from another node,
and the application specification key st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node due to a takeover from
Node, either because appl i cati on: t akeover/ 2 has been called or because the current node has higher
priority than Node.

« {failover, Node} if theapplication is distributed and started at the current node due to afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function should return { ok, Pi d} or { ok, Pi d, St at e} where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If later the application is stopped, St at e is passed to
Modul e: prep_stop/ 1.

Modul e: st art _phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types:
Phase = aton()

Start Type = start_type()
PhaseArgs = term))
Pid = pid()

State = state()

This function is used to start an application with included applications, when there is a need for synchronization
between processes in the different applications during startup.

The start phases is defined by the application specification key st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

See Modul e: start/ 2 for adescription of St art Type.

Modul e: prep_stop(State) -> NewState
Types:
State = NewState = term))
Thisfunctioniscalled when an applicationisabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
will be passed to Modul e: st op/ 1.

The function is optional. If it is not defined, the processes will be terminated and then Modul e: st op(St at e) is
called.

Modul e: st op(St at e)
Types:
State = term))

This function is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and should do any necessary cleaning up. The return value isignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
the return value of Modul e: start/ 2.

14 | Ericsson AB. All Rights Reserved.: Kernel

application

Modul e: confi g_change(Changed, New, Renoved) -> ok
Types:

Changed = [{Par, Val }]

New = [{Par, Val }]

Renmoved = [Par]

Par = atom()

Val = term()

This function is called by an application after a code replacement, if there are any changes to the configuration
parameters.

Changed isalist of parameter-value tuples with al configuration parameters with changed values, Newis alist of
parameter-value tupleswith all configuration parametersthat have been added, and Renoved isalist of all parameters
that have been removed.

SEE ALSO
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 15

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types
cookie() = atom)

Exports

i s_aut h(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node is authorized. Note that a connection to Node will be established in this
case. Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinks
it has).

Use net_adm: ping(Node) instead.

cooki e() -> Cookie
Types:

Cooki e = cooki e()
Use erlang: get_cookie() instead.

cooki e(TheCooki e) -> true

Types:
TheCooki e = Cooki e | [Cookie]
The cookie may also be given asalist with asingle atom element.
Cooki e = cooki e()

Use erlang: set_cookie(node(), Cookie) instead.

node_cooki e([Node, Cookie]) -> yes | no
Types:

Node = node()

Cooki e = cooki e()
Equivalent to node_cookie(Node, Cookie).

node_cooki e(Node, Cookie) -> yes | no
Types.

16 | Ericsson AB. All Rights Reserved.: Kernel

auth

Node = node()
Cooki e = cooki e()

Sets the magic cookie of Node to Cooki e, and verifies the status of the authorization. Equivalent to calling
erlang:set_cookie(Node, Cookie), followed by auth:is_auth(Node).

Ericsson AB. All Rights Reserved.: Kernel | 17

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
lineflag - node.

%erl -node interactive

Default modeisi nt er acti ve.

e Inembedded mode, all codeisloaded during system start-up according to the boot script. (Code can also be loaded
later by explicitly ordering the code server to do so).

* Ininteractive mode, only some code is loaded during system startup-up, basically the modules needed by the
runtime system itself. Other code is dynamically loaded when first referenced. When a call to a function in a
certain module is made, and the module is not loaded, the code server searches for and tries to load the module.

To prevent accidentally reloading modules affecting the Erlang runtime system itself, the ker nel , st dl i b and
conpi | er directories are considered sticky. This means that the system issues a warning and rejects the request if
a user tries to reload a module residing in any of them. The feature can be disabled by using the command line flag
-nosti ck.

Code Path

In interactive mode, the code server maintains a search path -- usualy called the code path -- consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under the library
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directoriescan be named Nane[- Vsn] and the code server, by default, choosesthe directory with the highest version
number among those which have the same Nane. The - Vsn suffix is optional. If an ebi n directory exists under
Nane[- Vsn] , it isthisdirectory which is added to the code path.

The environment variable ERL_ LI BS (defined in the operating system) can be used to define additiona library
directories that will be handled in the same way as the standard OTP library directory described above, except that
directories that do not have an ebi n directory will beignored.

All application directories found in the additional directorieswill appear before the standard OTP applications, except
for the Kernel and STDLIB applications, which will be placed before any additional applications. In other words,
modules found in any of the additional library directories will override modules with the same name in OTP, except
for modulesin Kernel and STDLIB.

The environment variable ERL_LI BS (if defined) shold contain a colon-separated (for Unix-like systems) or
semicolon-separated (for Windows) list of additional libraries.

Example: On an Unix-like system, ERL_LI BS could be set to/ usr/ | ocal /j unger| : / honme/ sone_user/
my_erl ang_li b. (OnWindows, use semi-colon as separator.)

Code Path Cache

The code server incorporates a code path cache. The cache functionality is disabled by default. To activate it, start the
emulator with the command line flag - code_pat h_cache or cal code: r ehash() . When the cache is created

18 | Ericsson AB. All Rights Reserved.: Kernel

code

(or updated), the code server searches for modules in the code path directories. This may take some time if the the
code path islong. After the cache creation, the time for loading modulesin alarge system (one with alarge directory
structure) issignificantly reduced compared to having the cache disabled. The code server isabletolook up thelocation
of amodule from the cache in constant time instead of having to search through the code path directories.

Application resource files (. app files) are aso stored in the code path cache. This feature is used by the application
controller (see application(3)) to load applications efficiently in large systems.

Note that when the code path cacheis created (or updated), any relative directory namesin the code path are converted
to absolute.

Loading of Code From Archive Files

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready isto obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.
Thefunctionl i b_di r/ 2 andtheflag - code_pat h_choi ce are also experimental.

Inthe current implementation, Erlang archivesare ZI Pfileswith. ez extension. Erlang archives may al so be enclosed
inescri pt fileswhose file extension is arbitrary.

Erlang archivefilesmay contain entire Erlang applicationsor partsof applications. Thestructurein an archivefileisthe
same asthe directory structure for an application. If you for example would create an archive of mesi a- 4. 4. 7, the
archivefilemust benamed nmesi a- 4. 4. 7. ez andit must contain atop directory withthenamemmesi a- 4. 4. 7.
If the version part of the nameis omitted, it must also be omitted in the archive. That is, ammesi a. ez archive must
contain ammesi a top directory.

An archive file for an application may for example be created like this:

zip:create("mesia-4.4.7.ez",
["mesia-4.4.7"],
[{cwd, code:lib_dir()},
{conpress, all},
{unconpress, [". bean', ".app"]1}]).

Any file in the archive may be compressed, but in order to speed up the access of frequently read files, it may be a
good ideato store beamand app files uncompressed in the archive.

Normally thetop directory of an applicationislocated either in thelibrary directory $OTPROOT/ | i b or inadirectory
referred to by the environment variable ERL_ LI BS. At startup when theinitial code path is computed, the code server
will also look for archivefilesin these directories and possibly add ebi n directoriesin archivesto the code path. The
code path will then contain paths to directories that looks like $OTPROOT/ | i b/ mesi a. ez/ rmesi a/ ebi n or
$OTPROOT/ | i b/ mesi a-4. 4. 7. ez/ mesi a-4. 4. 7/ ebi n.

The code server uses the module er| _pri m | oader (possibly via the erl _boot server) to read code
files from archives. But the functions in erl _prim| oader may aso be used by other applications to
read files from archives. For example, the cal erl _prim/loader:list _dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. See erl_prim loader(3)

An application archive file and a regular application directory may coexist. This may be useful when there is a need
of having parts of the application as regular files. A typical caseisthe pri v directory which must reside as aregular
directory in order to be able to dynamically link in drivers and start port programs. For other applications that do not

Ericsson AB. All Rights Reserved.: Kernel | 19

code

have this need, the pr i v directory may reside in the archive and the files under the pr i v directory may be read via
theer|l prim.l oader.

At the time point when a directory is added to the code path as well as when the entire code path is (re)set,
the code server will decide which subdirectories in an application that shall be read from the archive and which
that shall be read as regular files. If directories are added or removed afterwards, the file access may fail if
the code path is not updated (possibly to the same path as before in order to trigger the directory resolution
update). For each directory on the second level (ebin, priv, src etc.) in the application archive, the code server will
firstly choose the regular directory if it exists and secondly from the archive. The function code: lib_dir/2
returns the path to the subdirectory. For example code: | i b_di r (megaco, ebi n) may return / ot p/ r oot /
i b/ megaco-3.9. 1. 1. ez/megaco-3.9. 1. 1/ ebi nwhilecode: | i b_di r (negaco, pri v) may return
/otp/root/lib/megaco-3.9.1.1/priv.

When anescri pt file contains an archive, there are neither restrictions on the name of the escr i pt nor on how
many applications that may be stored in the embedded archive. Single beamfiles may aso reside on thetop level in
the archive. At startup, both the top directory in the embedded archive as well as all (second level) ebi n directories
in the embedded archive are added to the code path. See escript(1)

When the choice of directories in the code path is stri ct, the directory that ends up in the code path will be
exactly the stated one. This means that if for example the directory $OTPROOT/ | i b/ mesi a- 4. 4. 7/ ebin is
explicitly added to the code path, the code server will not load files from $OTPROOT/ | i b/ mesi a-4. 4. 7. ez/
mesi a- 4. 4. 7/ ebi n and vice versa.

This behavior can be controlled via the command line flag - code_pat h_choi ce Choi ce. If theflag is set to
r el axed, the code server will instead choose a suitable directory depending on the actual file structure. If there exists
aregular application ebin directory,situation it will be choosen. But if it does not exist, the ebin directory in the archive
ischoosen if it exists. If neither of them exists the original directory will be choosen.

Thecommandlineflag- code_pat h_choi ce Choi ce doesalsoaffect howi ni t interpretstheboot scri pt.
The interpretation of the explicit code paths in the boot scri pt may bestrict orrel axed. Itis particular
useful to set the flag to r el axed when you want to elaborate with code loading from archives without editing the
boot scri pt.Thedefaultisr el axed. Seeinit(3)

Current and Old Code

The code of a module can exists in two variants in a system: current code and old code. When a module is loaded
into the system for the first time, the code of the module becomes 'current’ and the global export table is updated with
references to all functions exported from the module.

If then a new instance of the module is loaded (perhaps because of the correction of an error), then the code of the
previous instance becomes 'old', and al export entries referring to the previous instance are removed. After that the
new instance isloaded asif it was loaded for the first time, as described above, and becomes "current’.

Both old and current code for a module are valid, and may even be evaluated concurrently. The difference is that
exported functionsin old code are unavailable. Hence there is no way to make a global call to an exported function in
old code, but old code may still be evaluated because of processes lingering in it.

If athird instance of the modul e isloaded, the code server will remove (purge) the old code and any processeslingering
init will be terminated. Then the third instance becomes 'current’ and the previously current code becomes ‘old'.

For more information about old and current code, and how to make a process switch from old to current code, refer
to Erlang Reference Manual.
Argument Types and Invalid Arguments

Generally, module and application names are atoms, while file and directory names are strings. For backward
compatibility reasons, some functions accept both strings and atoms, but a future release will probably only allow the
arguments that are documented.

20 | Ericsson AB. All Rights Reserved.: Kernel

code

From the R12B release, functions in this module will generally fail with an exception if they are passed an incorrect
type (for instance, an integer or atuple where an atom was expected). An error tuplewill bereturned if type of argument
was correct, but there was some other error (for instance, a non-existing directory giventoset _pat h/ 1.

Data Types
load ret() = {error, Wat :: load error_rsn()}
| {nodule, Mdule :: nodule()}
| oad_error_rsn() = badfile
| native_code
| nofile
| not_purged
| on_l oad
|

sticky_directory

Exports

set _path(Path) -> true | {error, \Wat}

Types:
Path = [Dir :: file:filenane()]
What = bad _directory | bad_path

Sets the code path to the list of directories Pat h.

Returnst r ue if successful,or{ error, bad _directory} ifany D r isnotthenameof adirectory,or{ error,
bad_pat h} if theargument isinvalid.

get _path() -> Path

Types:
Path = [Dir :: file:filenane()]
Returns the code path

add_path(Dir) -> add_path_ret()
add_pathz(Dir) -> add_path_ret()
Types:
Dir =file:fil ename()
add _path ret() = true | {error, bad_directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r already existsin the
path, it is not added.

Returnst r ue if successful, or{error, bad_directory} if D r isnotthe nameof adirectory.

add _patha(Dir) -> add path_ret()
Types:
Dir = file:filenane()
add_path_ret() = true | {error, bad_directory}
AddsDi r tothebeginning of the code path. If Di r aready exists, it isremoved from the old position in the code path.

Returnst r ue if successful, or { error, bad_di rectory} if Di r isnot the name of adirectory.

Ericsson AB. All Rights Reserved.: Kernel | 21

code

add_paths(Dirs) -> ok
add_pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filename()]
Addsthedirectoriesin Di r s to the end of the code path. If aDi r already exists, it is not added. This function always
returns ok, regardless of the validity of each individual Di r .

add_pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filename()]
Adds the directoriesin Di r s to the beginning of the code path. If aDi r aready exists, it is removed from the old
position in the code path. This function always returns ok, regardiess of the validity of each individual Di r .

del _path(NameOrDir) -> boolean() | {error, Wat}
Types.
NameOrDir = Name | Dir
Name = atom()
Dir = file:filenanme()
What = bad_nane
Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the

name. ../ Name[- Vsn] [/ ebi n] isdeleted from the code path. It is also possible to give the complete directory
nameDi r asargument.

Returnst r ue if successful, or f al se if the directory is not found, or { err or, bad_nane} if the argument is
invalid.

replace_path(Nane, Dir) -> true | {error, Wat}
Types:
Name = atom()
Dir =file:filename()
Wiat = bad_directory | bad_nane | {badarg, term()}
This function replaces an old occurrence of adirectory named . . . / Name[- Vsn] [/ ebi n] , in the code path, with
Di r.If Name doesnot exist, it addsthe new directory Di r last in the code path. The new directory must also be named

.../ Name[- Vsn] [/ ebi n] . This function should be used if a new version of the directory (library) is added to
arunning system.

Returnst r ue if successful, or { error, bad_nane} if Name isnot found, or { error, bad_directory} if
Di r doesnot exist,or {error, {badarg, [Name, Dir]}} if Nane or D r isinvalid.

load_file(Mdule) -> load_ret()

Types:
Modul e = nodul e()
load_ret() = {error, What :: load_error_rsn()}

| {nodule, Mdule :: nodule()}

Triesto load the Erlang module Mbdul e, using the code path. It looks for the object code file with an extension that
corresponds to the Erlang machine used, for example Modul e. beam Theloading failsif the module name found in

22 | Ericsson AB. All Rights Reserved.: Kernel

code

the object code differs from the name Modul e. load_binary/3 must be used to load object code with a module name
that is different from the file name.

Returns { nrodul e, Mbdul e} if successful, or {error, nofil e} if no object codeis found, or {error,
sticky_directory} if the object code resides in a sticky directory. Also if the loading fails, an error tuple is
returned. See erlang:load_module/2 for possible values of What .

| oad_abs(Filenane) -> load ret()

Types.
Filename = file:fil ename()
load ret() = {error, What :: load error_rsn()}
| {nodule, Mdule :: nodule()}
| oaded_filename() = (Filenane :: file:filenane())

| loaded_ret_atons()
| oaded ret _atonms() = cover_conpiled | prel oaded
Doesthesame as| oad_fi | e(Modul e), but Fi | enane is either an absolute file name, or a relative file name.

The code path is not searched. It returns a value in the same way as load file/1. Note that Fi | enane should not
contain the extension (for example™ . bean'); | oad_abs/ 1 adds the correct extension itself.

ensur e_| oaded(Modul €) -> {nodul e, Mdule} | {error, Wat}
Types.

Modul e = nodul e()

What = enbedded | badfile | native_code | nofile | on_load

Tries to to load a module in the same way as load_file/1, unless the module is aready loaded. In embedded mode,
however, it does not load a module which is not already loaded, but returns{ error, enbedded} instead.

| oad_bi nary(Mdul e, Filenane, Binary) ->
{nodul e, Module} | {error, Wat}

Types:
Modul e = nodul e()
Fil ename = | oaded fil enane()
Bi nary = binary()
What = badarg | load_error_rsn()
| oaded_filename() = (Filenane :: file:filenane())

| loaded_ret_atons()
| oaded_ret _atonms() = cover_conpiled | prel oaded

This function can be used to load object code on remote Erlang nodes. The argument Bi nar y must contain object
code for Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for
Mbodul e comes. Accordingly, Fi | enane is not opened and read by the code server.

Returns{ nodul e, Modul e} if successful, or{error, sticky_directory} if theobject coderesidesina
sticky directory, or { error, badar g} if any argumentisinvalid. Alsoif theloading fails, an error tupleisreturned.
See erlang:load_module/2 for possible values of What .

del et e(Modul €) -> bool ean()
Types.

Ericsson AB. All Rights Reserved.: Kernel | 23

code

Modul e = nodul e()

Removes the current code for Modul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but that no external function calls can be made to it.

Returnst r ue if successful, or f al se if there is old code for Modul e which must be purged first, or if Modul e
is not a (loaded) module.

pur ge(Modul €) -> bool ean()
Types:
Modul e = nodul e()

Purges the code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Returnst r ue if successful and any process needed to be killed, otherwisef al se.

soft _purge(Mdul e) -> bool ean()
Types:
Modul e = nodul e()
Purges the code for Modul e, that is, removes code marked as old, but only if no processes linger init.

Returnsf al se if the module could not be purged due to processes lingering in old code, otherwiset r ue.

i s_| oaded(Module) -> {file, Loaded} | false

Types:
Modul e = nodul e()
Loaded = | oaded_fil enane()
| oaded_filename() = (Filenane :: file:filenane())

| 1 oaded_ret_atons()
Fi | enane isan absolute filename
| oaded_ret_atons() = cover_conpiled | prel oaded
Checksif Modul e isloaded. If itis, {fil e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute file name Fil enane from which the code was obtained. If the
module is preloaded (see script(4)), Loaded==pr el oaded. If the module is Cover compiled (see cover(3)),
Loaded==cover _conpi | ed.

all _| oaded() -> [{Modul e, Loaded}]

Types:
Modul e = nodul e()
Loaded = | oaded_fil ename()
| oaded filename() = (Filenane :: file:filenane())

| loaded ret_atons()
Fi | ename isan absolute filename
| oaded ret _atons() = cover_conpiled | prel oaded

Returns alist of tuples { Modul e, Loaded} for al loaded modules. Loaded is normally the absolute file name,
as described for is_|loaded/1.

24 | Ericsson AB. All Rights Reserved.: Kernel

code

whi ch(Modul e) -> Wi ch

Types:
Modul e = nodul e()
Which = file:filenane() | |loaded_ret_atons() | non_existing

| oaded_ret_atons() = cover_conpiled | prel oaded

If the module is not loaded, this function searches the code path for the first file which contains object code for
Modul e and returns the absolute file name. If the module is loaded, it returns the name of the file which contained
the loaded object code. If the module is pre-loaded, pr el oaded is returned. If the module is Cover compiled,
cover _conpi | ed isreturned. non_exi st i ng isreturned if the module cannot be found.

get _obj ect _code(Mdule) -> {Mdule, Binary, Filenane} | error
Types:

Modul e = nodul e()

Bi nary = binary()

Filename = file:fil enane()

Searches the code path for the object code of the module Modul e. It returns{ Modul e, Bi nary, Fil enane}

if successful, and er r or if not. Bi nary isabinary data object which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in a distributed system. For example, loading module Modul e
on anode Node is done asfollows:

{_Mddul e, Binary, Filename} = code: get_obj ect _code(Mdul e),
rpc: cal |l (Node, code, |oad_binary, [Mdule, Filenane, Binary]),

root_dir() -> file:filenanme()

Returns the root directory of Erlang/OTP, which isthe directory whereit isinstalled.

> code:root_dir().
"/usr/local /ot p"

lib dir() -> file:filenane()

Returnsthe library directory, $OTPROCT/ | i b, where $OTPROOCT istheroot directory of Erlang/OTP.

> code: lib_dir()
“/usr/local/otp/lib"

lib_dir(Name) -> file:filename() | {error, bad_nane}
Types.
Name = atom()

Thisfunctionismainly intended for finding out the path for the "library directory”, thetop directory, for an application
Nane located under $OTPROOT/ | i b or on adirectory referred to viathe ERL_LI BS environment variable.

Ericsson AB. All Rights Reserved.: Kernel | 25

code

If there is a regular directory called Name or Nane- Vsn in the code path with an ebi n subdirectory,
the path to this directory is returned (not the ebi n directory). If the directory refers to a directory in an
archive, the archive name is stripped away before the path is returned. For example, if the directory / usr/
| ocal /otp/libl/mesia-4.2.2. ez/ mesia-4.2.2/ebin isin the path, /usr/local/otp/lib/
mesi a- 4. 2. 2/ ebi n will be returned. This means that the library directory for an application is the same,
regardless of whether the application resides in an archive or not.

> code: lib_dir(mesia).
“/usr/local/otp/lib/mesia-4.2.2"

Returns{ error, bad_nane} if Nane isnot the name of an application under SOTPROOT/ | i b or on adirectory
referred to viathe ERL LI BS environment variable. Fails with an exception if Nane has the wrong type.

Warning:
For backward compatibility, Nane is also allowed to be a string. That will probably change in afuture release.

lib_dir(Nane, SubDir) -> file:filenane() | {error, bad_nane}
Types.
Name = SubDir = aton()

Returnsthe path to asubdirectory directly under the top directory of an application. Normally the subdirectoriesresides
under the top directory for the application, but when applications at least partly resides in an archive the situation is
different. Some of the subdirectories may reside as regular directories while other resides in an archive file. It is not
checked if this directory really exists.

> code: | i b_dir(negaco, priv).
"fusr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nare or SubDi r has the wrong type.

conpiler _dir() -> file:filenane()
Returns the compiler library directory. Equivalenttocode: | i b_di r (conpi |l er).

priv_dir(Nane) -> file:filenanme() | {error, bad_nane}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalentto code: | i b_di r (Nane, priv)..

Warning:
For backward compatibility, Narme is also allowed to be a string. That will probably change in afuture release.

26 | Ericsson AB. All Rights Reserved.: Kernel

code

objfile_extension() -> nonenpty_string()

Returns the object code file extension that corresponds to the Erlang machine used, namely " . beant'.

stick_dir(Dir) -> ok | error
Types.

Dir =file:filename()
Thisfunction marksDi r as sticky.
Returns ok if successful or er r or if not.

unstick_dir(Dir) -> ok | error
Types.
Dir =file:filename()
This function unsticks a directory which has been marked as sticky.
Returns ok if successful or er r or if not.

i s_sticky(Mdule) -> bool ean()
Types.
Modul e = nodul e()

This function returnst r ue if Modul e is the name of a module that has been loaded from a sticky directory (or in
other words: an attempt to reload the module will fail), or f al se if Mbdul e isnot aloaded module or is not sticky.

rehash() -> ok
This function creates or rehashes the code path cache.

where_is _file(Filenane) -> non_existing | Absnane
Types:
Fil ename = Absnane = file:filenane()

Searchesthe code path for Fi | enane, afile of arbitrary type. If found, the full nameisreturned. non_exi sti ngis
returned if the file cannot be found. The function can be useful, for example, to locate application resourcefiles. If the
code path cache is used, the code server will efficiently read the full name from the cache, provided that Fi | enane
isan object codefileor an . app file.

clash() -> ok

Searches the entire code space for module names with identical names and writes areport to st dout .

i s_nodul e_native(Mdul e) -> boolean() | undefined
Types.
Modul e = nodul e()

Thisfunctionreturnst r ue if Modul e isname of aloaded modulethat has native codeloaded, and f al se if Mbdul e
isloaded but does not have native. If Mbdul e is not loaded, this function returnsundef i ned.

Ericsson AB. All Rights Reserved.: Kernel | 27

disk_log

disk_log

Erlang module

di sk_| og isadisk based term logger which makes it possible to efficiently log items on files. Two types of logs
are supported, halt logs and wrap logs. A halt log appends itemsto a single file, the size of which may or may not be
limited by the disk log module, whereas awrap log utilizes a sequence of wrap log files of limited size. Asawrap log
file has been filled up, further items are logged onto to the next file in the sequence, starting all over with thefirst file
when the last file has been filled up. For the sake of efficiency, items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format. The internal format supports
automatic repair of log files that have not been properly closed, and makes it possible to efficiently read logged items
in chunks using a set of functions defined in this module. In fact, this is the only way to read internally formatted
logs. The external format leavesit up to the user to read the logged deep byte lists. The disk log module cannot repair
externally formatted logs. An item logged to an internally formatted log must not occupy more than 4 GB of disk
space (the size must fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log; the disk log processiis created
when open/ 1 is called, provided there exists no process handling the disk log. A process that opens a disk log can
either be an owner or an anonymous user of the disk log. Each owner is linked to the disk log process, and the disk
log is closed by the owner should the owner terminate. Owners can subscribe to notifications, messages of the form
{disk_l og, Node, Log, |nfo} that are sentfrom the disk log process when certain events occur, see the
commands below and in particular the open/ 1 option notify. There can be several owners of alog, but a process
cannot own a log more than once. One and the same process may, however, open the log as a user more than once.
For adisk log process to properly closeits file and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously; the users are counted, and there must not be any users
left when the disk log process terminates.

Items can be logged synchronously by using the functions| og/ 2, bl og/ 2,1 og_t er ns/ 2 andbl og_t er ns/ 2.
For each of these functions, the caller is put on hold until the items have been logged (but not necessarily written,
usesync/ 1 to ensurethat). By adding an a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actualy write the items to the file,
but return the control to the caller more or lessimmediately.

When using the internal format for logs, the functions | og/ 2, | og_termns/ 2, al og/ 2, and al og_t ermns/ 2
should be used. Thesefunctionslog one or more Erlang terms. By prefixing each of thefunctionswith ab (for "binary™)
we get the corresponding bl og functions for the external format. These functions log one or more deep lists of bytes
or, aternatively, binaries of deep lists of bytes. For example, to log the string " hel | 0" in ASCII format, we can
usedi sk_I og: bl og(Log, "hello"),ordi sk_I og: bl og(Log, list_to_binary("hello")).The
two aternatives are equally efficient. The bl og functions can be used for internally formatted logs aswell, but in this
case they must be called with binaries constructed with callstot er m t o_bi nary/ 1. Thereis no check to ensure
this, it is entirely the responsibility of the caller. If these functions are called with binaries that do not correspond to
Erlang terms, the chunk/ 2, 3 and automatic repair functions will fail. The corresponding terms (not the binaries)
will be returned when chunk/ 2, 3 iscalled.

A collection of open disk logs with the same name running on different nodes is said to be a a distributed disk log
if requests made to any one of the logs are automatically made to the other logs as well. The members of such a
collection will be called individual distributed disk logs, or just distributed disk logs if there is no risk of confusion.
There is no order between the members of such a collection. For instance, logged terms are not necessarily written
onto the node where the regquest was made before written onto the other nodes. One could note here that there are a
few functions that do not make requests to all members of distributed disk logs, namely i nf o, chunk, bchunk,
chunk_step andl cl ose. An open disk log that is not a distributed disk log is said to be alocal disk log. A local
disk log is accessible only from the node where the disk log process runs, whereas a distributed disk log is accessible
from al nodesin the Erlang system, with exception for those nodes where alocal disk log with the same name as the

28| Ericsson AB. All Rights Reserved.: Kernel

disk_log

distributed disk log exists. All processes on nodes that have access to a local or distributed disk log can log items or
otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items; there is no attempt made to
synchronize the contents of the files. However, aslong as at least one of the involved nodes is alive at each time, all
items will be logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs areignored. If al nodes are down, the disk log functions reply with anonode error.

Note:

In some applications it may not be acceptable that replies from individual logs are ignored. An alternative in
such situationsisto use several local disk logsinstead of one distributed disk log, and implement the distribution
without use of the disk log module.

Errors are reported differently for asynchronous log attempts and other uses of the disk log module. When used
synchronously the disk log module replies with an error message, but when called asynchronously, the disk log
module does not know where to send the error message. Instead owners subscribing to notifications will receive an
error_st at us message.

The disk log module itself does not report errors to the error _| ogger module; it is up to the caler to decide
whether the error logger should be employed or not. Thefunctionf or mat _er r or / 1 can be used to produce readable
messages from error replies. Information events are however sent to the error logger in two situations, namely when
alog isrepaired, or when afile is missing while reading chunks.

The error messageno_such_| og meansthat the given disk log is not currently open. Nothing is said about whether
the disk log files exist or not.

Note:

If an attempt to reopen or truncate a log fails (seer eopen and t r uncat e) the disk log process immediately
terminates. Before the process terminates links to to owners and blocking processes (see bl ock) are removed.
The effect is that the links work in one direction only; any process using a disk log has to check for the error
message no_such_| og if some other process might truncate or reopen the log simultaneously.

Data Types
log() = term)
dlog_size() =infinity
| integer() >=1
| {MaxNoBytes :: integer() >= 1,
MaxNoFiles :: integer() >= 1}
dlog_format() = external | internal

dl og_head _opt() = none | term() | binary() | [dlog_byte()]
dl og_byte() [dl og_byte()] | byte()

dl og_node() read_only | read wite

dlog_type() = halt | wap

conti nuation()

Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.

Ericsson AB. All Rights Reserved.: Kernel | 29

disk_log

bytes() = binary() | [byte()]
i nvalid_header() = term)
file_error() =term)

Exports

accessi ble_logs() -> {[Local Log], [DistributedLog]}
Types:
Local Log = DistributedLog = | o0g()

Theaccessi bl e_I| ogs/ 0 function returns the names of the disk logs accessible on the current node. Thefirst list
contains local disk logs, and the second list contains distributed disk logs.

al og(Log, Term) -> notify ret()
bal og(Log, Bytes) -> notify ret()
Types:
Log = log()
Term= term)
Bytes = bytes()
notify ret() = ok | {error, no_such_I og}
The al og/ 2 and bal og/ 2 functions asynchronously append an item to a disk log. The function al og/ 2 is used

for internally formatted logs, and the function bal og/ 2 for externally formatted logs. bal og/ 2 can be used for
internally formatted logs as well provided the binary was constructed with acall tot erm t o_bi nary/ 1.

The owners that subscribe to natifications will receive the message read _only, bl ocked | og or
f or mat _ext er nal in case the item cannot be written on the log, and possibly one of the messageswr ap, f ul |
and er r or _st at us if an item was written on the log. The message er r or _st at us issent if there is something
wrong with the header function or afile error occurred.

alog_terns(Log, TernlList) -> notify ret()
bal og_ternms(Log, BytelList) -> notify ret()
Types:
Log = I og()
TermList = [term()]
BytelLi st = [bytes()]
notify ret() = ok | {error, no_such_I og}
Theal og_terns/ 2 and bal og _t erns/ 2 functions asynchronously append a list of items to a disk log. The
function al og_t er s/ 2 is used for internally formatted logs, and the function bal og_t er ns/ 2 for externally

formatted logs. bal og_t er ms/ 2 can be used for internally formatted logs as well provided the binaries were
constructed with callstot erm t o_bi nary/ 1.

The owners that subscribe to notifications will receive the message read_only, bl ocked | og or
format _ext ernal in case the items cannot be written on the log, and possibly one or more of the messages
wrap, ful |l anderror_status if items were written on the log. The message er r or _st at us is sent if there
is something wrong with the header function or afile error occurred.

30 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

bl ock(Log) -> ok | {error, block_ error_rsn()}
bl ock(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
Types.
Log = log()
QueuelLogRecords = bool ean()
bl ock_error_rsn() = no_such_log | nonode | {blocked |og, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link is used to ensure that the disk log is
unblocked should the blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can also use
thefunctionschunk/ 2, 3,bchunk/ 2, 3,chunk_st ep/ 3,and unbl ock/ 1 without being affected by the block.
Any other attempt than those hitherto mentioned to update or read a blocked log suspends the calling process until
the log is unblocked or returns an error message { bl ocked_| og, Log}, depending on whether the value of
QueuelLogRecords istrue or f al se. The default value of QueueLogRecor ds ist rue, which is used by
bl ock/ 1.

change_header (Log, Header) -> ok | {error, Reason}

Types:
Log = 1 og()
Header = {head, dlog head opt()} | {head func, nfa()}
Reason no_such_I og

| nonode

| {read_only_node, Log}
| {bl ocked_I og, Log}

| {badarg, head}

Thechange_header / 2 function changes the value of the head or head_f unc option of adisk log.

change_noti fy(Log, Omer, Notify) -> ok | {error, Reason}

Types:
Log = 1 og()
Owner = pid()
Notify = bool ean()
Reason no_such_I og
nonode

{badarg, notify}

|
| {bl ocked | og, Log}
|
| {not_owner, Owner}

Thechange_not i f y/ 3 function changes the value of the not i f y option for an owner of adisk log.

change_si ze(Log, Size) -> ok | {error, Reason}
Types.

Log = I og()

Size = dl og_si ze()

Reason no_such_I og

| nonode
| {read_only node, Log}

Ericsson AB. All Rights Reserved.: Kernel | 31

disk_log

| {bl ocked_I og, Log}

| {new size too_small, CurrentSize :: integer() >= 1}
| {badarg, size}

I

{file_error, file:filenane(), file_error()}

Thechange_si ze/ 2 function changes the size of an open log. For a halt log it is always possible to increase the
size, but it is not possible to decrease the size to something less than the current size of thefile.

For awrap log it is always possible to increase both the size and number of files, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change will not be valid until the current file is
full and the log wraps to the next file. The redundant files will be removed next time the log wraps around, i.e. starts
tolog to file number 1.

Asan example, assume that the old maximum number of filesis 10 and that the new maximum number of filesis 6. If
the current file number is not greater than the new maximum number of files, the files 7 to 10 will be removed when
file number 6 isfull and the log starts to write to file number 1 again. Otherwise the files greater than the current file
will be removed when the current file is full (e.g. if the current file is 8, the files 9 and 10); the files between new
maximum number of files and the current file (i.e. files 7 and 8) will be removed next time file number 6 isfull.

If the size of thefilesis decreased the change will immediately affect the current log. It will not of course change the
size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the functioni nc_wrap_fil e/ 1 can be used to force the
log to wrap.

chunk(Log, Continuation)
chunk(Log, Continuation,
bchunk(Log, Continuation)

-> chunk_ret ()
N) -> chunk_ret()
-> bchunk_ret ()

{not _i nternal _wrap,

l'og()}

bchunk(Log, Continuation, N) -> bchunk_ret()
Types:
Log = I og()
Continuation = start | continuation()
N = integer() >= 1] infinity
chunk_ret() = {Continuation2 :: continuation(),
Terns :: [term()]}
| {Continuation2 :: continuation(),
Terns :: [term()],
Badbytes :: integer() >= 0}
| eof
| {error, Reason :: chunk_error_rsn()}
bchunk _ret() = {Continuation2 :: continuation(),
Binaries :: [binary()]}
| {Continuation2 :: continuation(),
Binaries :: [binary()],
Badbytes :: integer() >= 0}
| eof
| {error, Reason :: chunk_error_rsn()}
chunk_error_rsn() = no_such_Il og
| {format _external, log()}
| {blocked_log, log()}
| {badarg, continuation}
|
|

{corrupt _log file,

32| Ericsson AB. All Rights Reserved.: Kernel

disk_log

FileName :: file:fil enanme()}
| {file_error, file:filenane(), file_error()}

The chunk/ 2, 3 and bchunk/ 2, 3 functions make it possible to efficiently read the terms which have been
appended to an internally formatted log. It minimizes disk 1/O by reading 64 kilobyte chunks from the file. The
bchunk/ 2, 3 functions return the binaries read from the file; they do not call bi nary_t o_t er m Otherwise the
work just likechunk/ 2, 3.

Thefirst time chunk (or bchunk) is called, aninitial continuation, the atom st ar t , must be provided. If thereis
adisk log process running on the current node, terms are read from that log, otherwise an individual distributed log
on some other node is chosen, if such alog exists.

When chunk/ 3 iscalled, N controls the maximum number of termsthat are read from thelog in each chunk. Default
isi nfinity, which meansthat all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the file has been reached.

The chunk function returns atuple { Cont i nuati on2, Ter s}, where Ter ns isalist of terms found in the
log. Cont i nuat i on2 isyet another continuation which must be passed on to any subsequent callsto chunk. With
aseries of callsto chunk it ispossible to extract all termsfrom alog.

Thechunk function returnsatuple{ Cont i nuat i on2, Terns, Badbyt es} if thelogisopened in read-only
mode and the read chunk is corrupt. Badbyt es isthe number of bytesin the file which were found not to be Erlang
termsin the chunk. Note also that the log is not repaired. When trying to read chunks from alog opened in read-write
mode, thetuple{ corrupt _|og file, FileName} isreturnedif theread chunk is corrupt.

chunk returns eof when the end of thelog isreached, or { err or, Reason} if an error occurs. Should a wrap
log file be missing, a message is output on the error log.

When chunk/ 2, 3 is used with wrap logs, the returned continuation may or may not be valid in the next call to
chunk. Thisis because the log may wrap and delete the file into which the continuation points. To make sure this
does not happen, the log can be blocked during the search.

chunk_i nfo(Continuation) -> InfoList | {error, Reason}

Types.
Continuation = continuation()
I nfoList = [{node, Node :: node()}, ...]

Reason = {no_continuation, Continuation}

Thechunk_i nf o/ 1 function returnsthefollowing pair describing the chunk continuation returned by chunk/ 2, 3,
bchunk/ 2, 3, or chunk_st ep/ 3:

* {node, Node}.Termsareread from the disk log running on Node.

chunk_st ep(Log, Continuation, Step) ->
{ok, any()} | {error, Reason}
Types:
Log = 1 og()
Continuation = start | continuation()
Step = integer()
Reason no_such_I og
end_of | og
{format _external, Log}
{bl ocked_I og, Log}
{badarg, continuation}

Ericsson AB. All Rights Reserved.: Kernel | 33

disk_log

| {file_error, file:filenane(), file_error()}

The function chunk_st ep can be used in conjunction with chunk/ 2, 3 and bchunk/ 2, 3 to search through an
internally formatted wrap log. It takes as argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3, and steps forward (or backward) St ep files in the wrap log. The continuation returned points to
thefirst log item in the new current file.

If theatom st art isgiven as continuation, adisk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individual distributed log on some other node.

If the wrap log is not full because all files have not been used yet, { error, end_of _I og} isreturned if trying
to step outside the log.

cl ose(Log) -> ok | {error, close error_rsn()}
Types:
Log = log()

close_error_rsn() no_such_I og

| nonode
| {file_error, file:filename(), file_error()}

The function cl ose/ 1 closes alocal or distributed disk log properly. An internally formatted log must be closed
before the Erlang system is stopped, otherwise thelog is regarded as unclosed and the automatic repair procedure will
be activated next time the log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It should be stressed that each
and every owner must close the log, possibly by terminating, and that any other process - not only the processes that
have opened the log anonymously - can decrement the user s counter by closing the log. Attemptsto close alog by
aprocess that is not an owner are simply ignored if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

format _error(Error) -> io_lib:chars()
Types:
Error = term)

Given the error returned by any function in this module, the function f or mat _er r or returns adescriptive string of
the error in English. For file errors, the functionf or mat _error/ 1 inthefi | e moduleis called.

inc_wap_file(Log) -> ok | {error, inc_wap_error_rsn()}

Types:
Log = 1 og()
inc_wap_error_rsn() = no_such_Ilog

nonode

{read_only node, 1o0g()}

{bl ocked I og, log()}

{halt _log, log()}

{invalid_header, invalid_header()}
{file_error,

file:filenane(),

file_ error()}

i nval i d_header () = term)

Thei nc_wr ap_fil e/ 1 functionforcestheinternally formatted disk |og to start logging to the next log file. It can be
used, for instance, in conjunction withchange_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

34 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

The ownersthat subscribe to notificationswill normally receive awr ap message, but in case of an error with areason
tagofi nval i d_header orfil e_error anerror_stat us messagewill be sent.

info(Log) -> InfoList | {error, no_such_l og}

Types:

Log = log()

InfoList = [dlog_info()]

dlog_info() = {nane, Log :: log()}
{file, File :: file:filenanme()}
{type, Type :: dlog_type()}
{format, Format :: dlog format()}
{size, Size :: dlog_size()}

|

|

I

| {node, Mode :: dl og_node()}

| {owners, [{pid(), Notify :: boolean()}]}
|

|

{users, Users :: integer() >= 0}
{stat us,
Status :: ok

| {bl ocked,

QueuelLogRecords :: bool ean()}}

{node, Node :: node()}
{distributed, Dist :: local | [node()]}
{head, Head :: none | {head, tern()} | nfa()}
{no_witten_itenmns,

NoWittenltens :: integer() >= 0}
{full, Full :: bool ean}
{no_current _bytes, integer() >= 0}
{no_current _itens, integer() >= 0}
{no_items, integer() >= 0}
{current_file, integer() >= 1}
{no_overfl ows,

{Si nceLog\WasOpened :: integer() >= 0,

Si nceLastInfo :: integer() >= 0}}

Thei nf o/ 1 functionreturnsalist of { Tag, Val ue} pairsdescribingthelog. If thereisadisk log process running
on the current node, that log is used as source of information, otherwise an individual distributed log on some other
node is chosen, if such alog exists.

The following pairs are returned for all logs:

« {nane, Log},wherelLog isthename of thelog as given by the open/ 1 option nane.

« {file, File}.ForhatlogsFil e isthefilename, and for wrap logsFi | e isthe base name.

« {type, Type},whereType isthetype of thelog as given by theopen/ 1 optiont ype.

« {format, Format},whereFormat istheformat of thelog asgiven by theopen/ 1 option f or mat .

« {size, Size},whereSi ze isthe size of the log as given by the open/ 1 option si ze, or the size set by
change_si ze/ 2. Thevalue set by change_si ze/ 2 isreflected immediately.

- {node, Mode}, where Mode isthe mode of thelog as given by theopen/ 1 option node.

e {owners, [{pid(), Notify}]} whereNoti fy isthevalueset by theopen/ 1 optionnoti fy orthe
function change_noti f y/ 3 for the owners of the log.

« {users, Users} whereUser s isthe number of anonymous users of thelog, seethe open/ 1 option linkto.

e {status, Status},whereStatusisok or{bl ocked, QueuelLogRecords} asset by thefunctions
bl ock/ 1, 2 and unbl ock/ 1.

Ericsson AB. All Rights Reserved.: Kernel | 35

disk_log

« {node, Node}.Theinformation returned by the current invocation of thei nf o/ 1 function has been gathered
from the disk log process running on Node.

e {distributed, D st}.Ifthelogisloca onthe current node, then Di st hasthevaluel ocal , otherwise
all nodes where the log is distributed are returned as alist.
Thefollowing pairs are returned for all logs opened inr ead_wr i t € mode:

e {head, Head}. Depending of the value of the open/ 1 options head and head_func or set by the
functionchange_header/ 2, thevalue of Head isnone (default), { head, H} (head option) or{ M F, A}
(head_f unc option).

* {no_witten_itens, NoWittenltens},whereNoW i ttenltens isthenumber of itemswrittento
the log since the disk log process was created.

The following pair isreturned for halt logs opened inr ead_wr i t e mode:

e {full, Full},whereFull istrue orfal se depending on whether the halt log isfull or not.

The following pairs are returned for wrap logs openedinr ead_wr i t e mode;

e {no_current_bytes, integer() >= 0} isthe number of byteswritten to the current wrap log file.

* {no_current_itemnms, integer() >= 0} isthenumber of items written to the current wrap log file,
header inclusive.

* {no_itens, integer() >= 0} isthetotal number of itemsin all wrap log files.

e {current _file, integer()} istheordinal for thecurrent wrap log fileintherange 1. . MaxNoFi | es,
where MaxNoFi | es isgiven by theopen/ 1 optionsi ze or set by change_si ze/ 2.

* {no_overflows, {SinceLogWasOpened, SincelLastlnfo}}, where Si nceLogWasCpened
(Si nceLast | nf 0) is the number of times a wrap log file has been filled up and a new one opened or
i nc_w ap_filel1hasbeencaledsincethedisk logwaslast opened (i nf o/ 1 waslast called). Thefirst time
i nf o/ 2 iscaled after alog was (re)opened or truncated, the two values are equal.

Note that the chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 functions do not affect any value returned by
i nfo/ 1.

| cl ose(Log) -> ok | {error, lclose_error_rsn()}
| cl ose(Log, Node) -> ok | {error, lclose_error_rsn()}
Types:

Log = log()

Node = node()

I close_error_rsn() = no_such_log
| {file_error,
file:filenane(),
file_error()}

The function | cl ose/ 1 closes a local log or an individual distributed log on the current node. The function
I cl ose/ 2 closesanindividual distributed |og on the specified nodeif the nodeisnot thecurrentone.| cl ose(Log)
isequivalenttol cl ose(Log, node()) . Seedso close/l.

If thereis no log with the given name on the specified node, no_such_| og isreturned.

| og(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
bl og(Log, Bytes) -> ok | {error, Reason :: log error_rsn()}
Types.

36 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

Log = 1 og()

Term= term)

Bytes = bytes()

log error_rsn() = no_such_Ilog

{invalid_header, invalid_header()}
{file_error, file:filename(), file_error()}

| nonode

| {read_only node, 1o0g()}
| {format _external, log()}
| {blocked Iog, log()}

| {full, log()}

|

|

The | og/ 2 and bl og/ 2 functions synchronously append a term to a disk log. They return ok or {error,
Reason} when the term has been written to disk. If the log is distributed, ok is always returned, unless all nodes
are down. Terms are written by means of the ordinary wr i t e() function of the operating system. Hence, thereisno
guarantee that the term has actually been written to the disk, it might linger in the operating system kernel for awhile.
To make sure the item is actually written to disk, the sync/ 1 function must be called.

Thel og/ 2 functionisused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 canbe
used for internally formatted logs as well provided the binary was constructed with acall tot erm t o_bi nary/ 1.

The owners that subscribe to notifications will be notified of an error with aner r or _st at us messageif the error
reasontagisi nval i d_header orfile_error.

| og_terns(Log, TerniList) ->

ok | {error, Resaon :: log_error_rsn()}
bl og terns(Log, BytesList) ->
ok | {error, Reason :: log_error_rsn()}
Types:
Log = log()

TernlList = [term()]
Byt esLi st = [bytes()]
log error_rsn() = no_such_Ilog

{invalid_header, invalid_header()}
{file_error, file:filenane(), file_error()}

| nonode

| {read_only_node, |og()}
| {format_external, log()}
| {blocked_l og, log()}

| {full, log()}

|

|

Thel og_terms/ 2 andbl og_t er nms/ 2 functions synchronously append alist of itemsto the log. The benefit of
using these functions rather than the | og/ 2 and bl og/ 2 functionsisthat of efficiency: the given list is split into as
large sublists as possible (limited by the size of wrap log files), and each sublist is logged as one single item, which
reduces the overhead.

Thel og_t er ms/ 2 function is used for internally formatted logs, and bl og_t er ns/ 2 for externally formatted
logs. bl og_t er ms/ 2 can be used for internally formatted logs as well provided the binaries were constructed with
calstoterm to_binary/ 1.

The owners that subscribe to notifications will be notified of an error with an er r or _st at us message if the error
reasontagisi nval i d_header orfil e_error.

Ericsson AB. All Rights Reserved.: Kernel | 37

disk_log

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dl og_options()

dl og_options() = [dlog_option()]

dl og_option() = {nane, Log :: log()}
{file, FileNarme :: file:filenane()}
{l'inkto, LinkTo :: none | pid()}
{repair, Repair :: true | false | truncate}
{type, Type :: dlog_type}
{format, Format :: dlog fornmat()}

{distributed, Nodes :: [node()]}
{notify, boolean()}

{head, Head :: dl og_head opt()}
{head_func, nfa()}

{node, Mode :: dl og_node()}

open_ret() =ret() | {error, open_error_rsn()}

|
|
|
|
|
| {size, Size :: dlog_size()}
|
|
|
|
|

ret() = {ok, Log :: log()}
| {repaired,
Log :: log(),
{recovered, Rec :: integer() >= 0},
{badbytes, Bad :: integer() >= 0}}

di st_open_ret() =
{[{node(), ret()}], [{node(), {error, dist_error_rsn()}}]}
dist_error_rsn() = nodedown | open_error_rsn()

open_error_rsn() = no_such_| og

| {badarg, term()}

| {size_m smatch,
CurrentSize :: dlog_size(),
NewSi ze :: dlog_size()}

| {arg_m smatch,
OptionNane :: dlog optattr(),
CurrentValue :: term),
Value :: term()}

| {nane_al ready_open, Log :: log()}
| {open_read_write, Log :: log()}
| {open_read_only, Log :: log()}
| {need_repair, Log :: log()}
| {not_a_log_ file,
FileName :: file:filenane()}
| {invalid_index_file,
FileName :: file:filenane()}

| {invalid_header, invalid_header()}
| {file_error, file:filename(), file_error()}
| {node_al ready_open, Log :: log()}
dl og_optattr() = nane
| file
| linkto
| repair
|

type

38| Ericsson AB. All Rights Reserved.: Kernel

disk_log

| format

| size

| distributed

| notify

| head

| head_func

| node

=infinity

| integer() >=1

| {MaxNoBytes :: integer() >=1
MaxNoFil es :: integer() >= 1}

dl og_si ze()

The Ar gL parameter isalist of options which have the following meanings:

{nanme, Log} specifiesthe name of the log. This is the name which must be passed on as a parameter in all
subsequent logging operations. A name must always be supplied.

{file, FileName} specifiesthe name of thefile which will be used for logged terms. If thisvalue is omitted
and the name of the log is either an atom or a string, the file name will default to | i st s: concat ([Log,
". LOG']) forhaltlogs. For wraplogs, thiswill bethe base name of thefiles. Eachfileinawraplogwill becalled
<base_nane>. N, where N is an integer. Each wrap log will also have two files called <base_nane>. i dx
and<base_nane>. si z.

{l'inkto, LinkTo}.IfLinkTo isapid, that pid becomes an owner of thelog. If Li nkTo isnone thelog
recordsthat it is used anonymously by some process by incrementing theuser s counter. By default, the process
which callsopen/ 1 ownsthe log.

{repair, Repair}.If Repair istrue,thecurrentlog filewill berepaired, if needed. Astherestorationis
initiated, a message is output on the error log. If f al se isgiven, no automatic repair will be attempted. Instead,
thetuple{error, {need_repair, Log}} isreturnedif an attempt is made to open a corrupt log file. If
t runcat e isgiven, thelog file will be truncated, creating an empty log. Default ist r ue, which has no effect
on logs opened in read-only mode.

{type, Type} isthetypeof thelog. Defaultishal t .
{format, Fornmat} specifiestheformat of the disk log. Defaultisi nt er nal .

{size, Size} specifiesthe size of thelog. When a halt log has reached its maximum size, all attemptsto log
moreitems arerejected. The default sizeisi nf i ni t y, which for halt impliesthat there is no maximum size. For
wrap logs, the Si ze parameter may be either a pair { MaxNoByt es, MaxNoFi | es} orinfinity.Inthe
latter case, if the files of an already existing wrap log with the same name can be found, the sizeis read from the
existing wrap log, otherwise an error is returned. Wrap logs write at most MaxNoByt es bytes on each file and
use MaxNoFi | es filesbefore starting all over with the first wrap log file. Regardless of MaxNoByt es, at least
the header (if there is one) and one item is written on each wrap log file before wrapping to the next file. When
opening an existing wrap log, it is not necessary to supply a vaue for the option Si ze, but any supplied value
must equal the current size of the log, otherwisethetuple{error, {size_m smatch, CurrentSize,
NewSi ze} } isreturned.

{di stributed, Nodes}.Thisoption can be used for adding membersto adistributed disk log. The default
valueis|[], which meansthat the log islocal on the current node.

{notify, bool ()}.Iftrue,theownersof thelog are notified when certain events occur in the log. Default
isf al se. The owners are sent one of the following messages when an event occurs:

e {disk_|og, Node, Log, {wap, NoLostltens}} issentwhenawrap log hasfilled up one of
its files and a new file is opened. NoLost | t ens is the number of previously logged items that have been
lost when truncating existing files.

e {disk _|og, Node, Log, {truncated, NoLostltens}} issentwhenalog hasbeentruncated
or reopened. For halt logsNoLost | t ens isthe number of itemswritten on thelog since the disk log process
was created. For wrap logs NoLost | t ens is the number of items on all wrap log files.

Ericsson AB. All Rights Reserved.: Kernel | 39

disk_log

e {disk log, Node, Log, {read_only, Itens}} issentwhen an asynchronous log attemptis
made to alog file opened in read-only mode. | t ens isthe items from the log attempt.

e {disk_log, Node, Log, {blocked_|log, Itens}} issentwhen an asynchronouslog attempt
is made to a blocked log that does not queue log attempts. | t enrs is the items from the log attempt.

« {disk_|og, Node, Log, {fornmat_external, Itens}} is sent when al og/ 2 or
al og_t erns/ 2 isused for internally formatted logs. | t ens isthe items from the log attempt.

e {disk_|og, Node, Log, full} issentwhenan attempttologitemstoawraplogwouldwrite more
bytes than the limit set by the si ze option.

e {disk log, Node, Log, {error_status, Status}} issentwhen the error status changes.
The error status is defined by the outcome of the last attempt to log itemsto athe log or to truncate the log or
thelast useof sync/ 1,inc_wap_file/1lorchange_size/2.Statusisoneof ok and{error,
Er r or}, theformer being theinitial value.

« {head, Head} specifiesaheader to be written first on thelog file. If thelog is awrap log, the item Head is
written first in each new file. Head should be aterm if the format isi nt er nal , and a deep list of bytes (or a
binary) otherwise. Default isnone, which means that no header iswritten first on the file.

« {head_func, {MF, A}} specifiesafunctionto becalled eachtimeanew logfileisopened. Thecall M F(A)
is assumed to return { ok, Head}. Theitem Head is written first in each file. Head should be a term if the
formatisi nt er nal , and adeep list of bytes (or abinary) otherwise.

« {node, Mode} specifiesif thelogistobeopenedinread-only or read-write mode. It defaultstor ead_wri t e.

Theopen/ 1 functionreturns{ ok, Log} if thelogfilewassuccessfully opened. If thefilewas successfully repaired,
thetuple{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe
number of whole Erlang terms found in the file and Bad is the number of bytes in the file which were non-Erlang
terms. If thedi st ri but ed parameter was given, open/ 1 returnsalist of successful replies and alist of erroneous
replies. Each reply istagged with the node name.

When adisk log is opened in read-write mode, any existing log file is checked for. If there is none a new empty log
is created, otherwise the existing file is opened at the position after the last logged item, and the logging of items will
commence from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted
log, atuple{error, {not_a log file, FileNane}} isreturned.

The open/ 1 function cannot be used for changing the values of options of an already open log; when there are
prior owners or users of alog, al option values except nane, | i nkt o and noti fy arejust checked against the
values that have been supplied before as option valuesto open/ 1, change_header/ 2, change_noti fy/ 3 or
change_si ze/ 2. As a conseguence, none of the options except namne is mandatory. If some given value differs
fromthe current value, atuple{error, {arg_m smatch, OptionNanme, CurrentVal ue, Val ue}} is
returned. Caution: an owner's attempt to open alog as owner once again is acknowledged with the return value { ok,
Log}, but the state of the disk log is not affected in any way.

If alog with agiven nameislocal on some node, and one tries to open the log distributed on the same node, then the
tuple{error, {node_al ready_open, Log}} isreturned. Thesametupleisreturnedif thelog is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The option values supplied are used on all nodes
mentioned by the di st ri but ed option. Individual distributed logs know nothing about each other's option values,
so each node can be given unique option values by creating a distributed log with several callsto open/ 1.

Itis possibleto open alog file more than once by giving different values to the option nane or by using the samefile
when distributing alog on different nodes. It is up to the user of the di sk_| og module to ensure that no more than
one disk log process has write access to any file, or the the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_| og, open, 1}]}. The function returns { error, Reason} for al other
errors.

40 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

pi d2nanme(Pi d) -> {ok, Log} | undefined

Types:
Pid = pid()
Log = log()

The pi d2nane/ 1 function returns the name of the log given the pid of a disk log process on the current node, or
undef i ned if the given pidis not adisk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = 1 og()

File = file:filenanme()

Head = term))

BHead = bytes()

reopen_error_rsn() = no_such_log
nonode
{read_only node, 1og()}
{bl ocked I og, log()}
{sane_file _nane, |og()}
{invalid_ index file, file:filenane()}
{invalid_header, invalid_header()}
{file_error,
file:filenane(),
file_ error()}

Ther eopen functionsfirst renamethelog fileto Fi | e and then re-create anew log file. In case of awraplog, Fi | e
is used as the base name of the renamed files. By default the header given to open/ 1 is written first in the newly
opened log file, but if the Head or the BHead argument is given, this item is used instead. The header argument is
used once only; next time awrap log file is opened, the header given to open/ 1 isused.

Ther eopen/ 2, 3 functions are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
The owners that subscribe to notifications will receiveat r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai |l ed, Error},
[{disk_|og, Fun, Arity}]},andother processesthat have requests queued receive the message{ di sk_| og,
Node, {error, disk |og stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}

Types.
Log = log()
sync_error_rsn() = no_such_| og

| nonode

| {read_only_node, 1og()}

| {blocked_log, log()}

| {file_error, file:filenane(), file_error()}

The sync/ 1 function ensures that the contents of the log are actually written to the disk. This is usualy a rather
expensive operation.

Ericsson AB. All Rights Reserved.: Kernel | 41

disk_log

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}

Types:
Log = I og()
Head = term))

BHead = bytes()

trunc_error_rsn() = no_such_log

| nonode

| {read_only_node, 1og()}

| {blocked_log, log()}

| {invalid_header, invalid_header()}

| {file_error, file:filenane(), file_error()}

Thet r uncat e functionsremove all itemsfrom adisk log. If the Head or the BHead argument isgiven, thisitemis
written first in the newly truncated log, otherwise the header given to open/ 1 is used. The header argument is only

used once; next time awrap log file is opened, the header givento open/ 1 is used.

Thet runcat e/ 1, 2 functions are used for internally formatted logs, and bt r uncat e/ 2 for externally formatted
logs.

The owners that subscribe to notifications will receiveat r uncat e message.

If the attempt to truncate thelog fails, the disk log processterminateswith the EXIT message{ { f ai | ed, Reason},
[{disk_| og, Fun, Arity}]},andother processesthat have requests queued receive the message{ di sk_I og,
Node, {error, disk_|og stopped}}.

unbl ock(Log) -> ok | {error, unblock_error_rsn()}
Types:
Log = I og()

unbl ock_error_rsn() no_such_I og

| nonode
| {not_bl ocked, log()}
| {not_blocked by pid, log()}

Theunbl ock/ 1 function unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3), pg2(3), wrap_log_reader(3)

42 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from another machine.

Thisserver isused to fetch all code, including the start script, if an Erlang runtime system is started with the - | oader
i net command line flag. All hosts specified with the - host s Host command line flag must have one instance
of this server running.

This server can be started with the ker nel configuration parameter st art _boot _server.
Theer| _boot _server canbothread regular filesaswell asfilesin archives. See code(3) and erl_prim loader (3).

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it beforeiit is
ready isto obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.

Exports

start(Slaves) -> {ok, Pid} | {error, Wat}
Types.
Sl aves = [Host]
Host = atom()
Pid = pid()
VWhat = any()
Starts the boot server. Sl aves isalist of |P addresses for hosts which are allowed to use this server as a boot server.

start _link(Slaves) -> {ok, Pid} | {error, Wat}
Types:
Sl aves = [Host]
Host = atom()
Pid = pid()
What = any()
Startsthe boot server and linkstothecaller. Thisfunctionisused to start the server if itisincluded in asupervision tree.

add_sl ave(Sl ave) -> ok | {error, Wat}

Types.
Sl ave = Host
Host = atom()
What = any()

AddsaSl| ave nodeto thelist of allowed slave hosts.

Ericsson AB. All Rights Reserved.: Kernel | 43

erl_boot_server

del ete_sl ave(Slave) -> ok | {error, Wat}

Types:
Sl ave = Host
Host = atom()
VWhat = any()

Deletesa Sl ave node from the list of allowed Slave hosts.

whi ch_sl aves() -> Sl aves
Types:

Sl aves = [Host]

Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO
init(3), erl_prim loader(3)

44 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

erl_ddll

Erlang module

Theer| _ddl | module provides an interface for loading and unloading erlang linked in driversin runtime.

Note:

Thisis alarge reference document. For casual use of the module, aswell as for most real world applications, the
descriptions of the functions load/2 and unload/1 are enough to get going.

The driver should be provided as a dynamically linked library in a object code format specific for the platform in
use, i. e. . so files on most Unix systems and . dd! files on windows. An erlang linked in driver has to provide
specific interfaces to the emulator, so this module is not designed for loading arbitrary dynamic libraries. For further
information about erlang drivers, refer to the ERTS reference manual section erl_driver.

When describing a set of functions, (i.e. a module, a part of a module or an application) executing in a process and
wanting to use addll-driver, we use theterm user. There can be several usersin one process (different modules needing
the samedriver) and several processesrunning the same code, making up several usersof adriver. Inthebasic scenario,
each user loads the driver before starting to use it and unloads the driver when done. The reference counting keeps
track of processes aswell asthe number of 1oads by each process, so that the driver will only be unloaded when no one
wantsit (it has no user). The driver also keepstrack of portsthat are opened towardsit, so that one can delay unloading
until all ports are closed or kill all ports using the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can a so have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are:

Load and unload on a "when needed basis"

This (most common) scenario simply supports that each user of the driver loadsit when it is heeded and unloads
it when the user no longer have any use for it. The driver is always reference counted and as long as a process
keeping the driver loaded is till alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not really concerned with if the driver is already loaded from the filesystem or if the object code hasto be loaded
from filesystem.

Two pairs of functions support this scenario:
load/2 and unload/1

When using the | oad/ unl oad interfaces, the driver will not actually get unloaded until the last port using
the driver isclosed. The function unl oad/ 1 can return immediately, as the users are not really concerned with
when the actual unloading occurs. The driver will actually get unloaded when no one needs it any longer.

If aprocess having the driver loaded dies, it will have the same effect as if unloading was done.

When loading, the function | oad/ 2 returns ok as soon asthereis any instance of the driver present, so that if a
driver iswaiting to get unloaded (due to open ports), it will ssimply change state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces is intended to be used when it is considered an error that ports are open towards a driver that
no user has loaded. The ports still open when the last user callsunl oad_dri ver/ 1 or when the last process
having the driver loaded dies, will get killed with reason dr i ver _unl oaded.

The function names| oad_dr i ver andunl oad_dri ver arekept for backward compatibility.

Ericsson AB. All Rights Reserved.: Kernel | 45

erl_ddll

Loading and reloading for code replacement

This scenario occurs when the driver code might need replacement during operation of the Erlang emulator.
Implementing driver code replacement is somewhat more tedious than beam code replacement, as one driver
cannot be loaded as both "old" and "new" code. All users of adriver must have it closed (no open ports) before
the old code can be unloaded and the new code can be |oaded.

The actual unloading/loading is done as one atomic operation, blocking all processes in the system from using
the driver concerned while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process start, the driver is loaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is already in progress is aways an error. Using the high level functions, it is
also an error to demand rel oading when more than one user hasthe driver loaded. To simplify driver replacement,
avoid designing your system so that more than than one user has the driver loaded.

The two functions for reloading drivers should be used together with corresponding load functions, to support
the two different behaviors concerning open ports:

load/2 and reload/2
This pair of functionsis used when rel oading should be done after the last open port towards the driver is closed.

Asr el oad/ 2 actually waits for the reloading to occur, a misbehaving process keeping open ports towards the
driver (or keeping the driver loaded) might cause infinite waiting for reload. Timeouts hasto be provided outside
of the process demanding the reload or by using the low-level interface try load/3 in combination with driver
monitors (see below).

load_driver/2 and reload_driver/2

This pair of functions are used when open ports towards the driver should be killed with reason
dri ver _unl oaded to alow for new driver code to get loaded.

If, however, another process has the driver loaded, calling rel oad_driver returns the error code
pendi ng_process. As stated earlier, the recommended design is to not allow other users than the "driver
reloader” to actually demand loading of the concerned driver.

Data Types

driver() = string() | atom()
path() = string() | aton()

Exports

denoni t or (Moni torRef) -> ok
Types:
Moni t or Ref = reference()

Removes a driver monitor in much the same way as erlang: demonitor/1 does with process monitors. See monitor/2,
try load/3 and try_unload/2 for details about how to create driver monitors.

The function throws abadar g exception if the parameter is not a reference().

info() -> AlllnfolList
Types:

46 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Al'l I nfoList = [Driverlnfo]
Driverlnfo = {DriverName, |nfolList}
DriverNane = string()

InfoList = [Infolten]

Infoltem= {Tag :: atom(), Value :: term)}

Returns a list of tuples { Dri ver Nanme, | nfoLi st}, where | nf oLi st is the result of calling info/1 for that
Dri ver Nane. Only dynamically linked in drivers are included in the list.

i nfo(Nane) -> Infoli st

Types:
Name = driver()
InfoList = [Infoltem ...]

Infoltem= {Tag :: aton(), Value :: tern()}

Returnsalist of tuples{ Tag, Val ue}, whereTag istheinformationitem and Val ue istheresult of calling info/2
with this driver name and this tag. The result being atuplelist containing all information available about a driver.

The different tags that will appear in the list are:

e processes

e driver_options

e port_count

e linked in_driver

e permanent

e awaiting_load

e awaiting_unload

For a detailed description of each value, please read the description of info/2 below.
The function throws abadar g exception if the driver is not present in the system.

i nfo(Nane, Tag) -> Val ue

Types:
Name = string() | atom()
Tag = processes | driver_options | port_count | |inked_in_driver |

permanent | awaiting_load | awaiting_unl oad
Value = term)

This function returns specific information about one aspect of a driver. The Tag parameter specifies which aspect to
get information about. The Val ue return differs between different tags:

processes

Return all processes containing users of the specific drivers as a list of tuples { pi d(), i nt ()}, where the
i nt () denotesthe number of usersinthe processpi d() .

driver_options

Return a list of the driver options provided when loading, as well as any options set by the driver itself during
initialization. The currently only valid option being ki | | _ports.

port_count
Return the number of ports (ani nt ()) using the driver.

Ericsson AB. All Rights Reserved.: Kernel | 47

erl_ddll

linked in_driver
Returnabool (), beingt r ue if the driver isastatically linked in one and f al se otherwise.
permanent

Return abool (), being t r ue if the driver has made itself permanent (and is not a statically linked in driver).
f al se otherwise.

awaiting_load

Return alist of all processes having monitorsfor | oadi ng active, each processreturnedas{ pi d(),int ()},
wherethei nt () isthe number of monitors held by the processpi d() .

awaiting_unload

Return a list of al processes having monitors for unl oadi ng active, each process returned as
{pid(),int()},wherethei nt () isthe number of monitors held by the processpi d() .

If the options |inked_i n_driver or permanent return true, al other options will return the value
I i nked_i n_dri ver or per manent respectively.

The function throws abadar g exception if the driver is not present in the system or the tag is not supported.

| oad(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver()

ErrorDesc = term)

Loads and links the dynamic driver Namre. Pat h isafile path to the directory containing the driver. Name must be a
sharable object/dynamic library. Two driverswith different Pat h parameters cannot be loaded under the same name.
The Narre isastring or atom containing at least one character.

The Nane given should correspond to the filename of the actual dynamically loadable object file residing in the
directory given as Pat h, but without the extension (i.e. . so). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as erlang module names correspond to the names
of the. beamfiles.

If the driver has been previously unloaded, but is still present due to open ports against it, acall to| oad/ 2 will stop
the unloading and keep the driver (aslong asthe Pat h isthe same) and ok isreturned. If one actually wants the object
code to be reloaded, one uses reload/2 or the low-level interface try_load/3 instead. Please refer to the description of
different scenarios for loading/unloading in the introduction.

If more than one processtriesto load an already loaded driver withe the same Pat h, or if the same processtriestoload
it several times, the function will return ok. The emulator will keep track of thel oad/ 2 calls, so that acorresponding
number of unl oad/ 2 callswill have to be done from the same process before the driver will actually get unloaded.
It istherefore safe for an application to load adriver that is shared between processes or applications when needed. It
can safely be unloaded without causing trouble for other parts of the system.

It isnot allowed to load several drivers with the same name but with different Pat h parameters.

Note:

Note especialy that the Pat h isinterpreted literally, so that all loaders of the same driver needs to give the same
literalPat h string, even though different paths might point out the same directory in the filesystem (due to use
of relative paths and links).

48 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

On success, the function returns ok . On failure, the return valueis{ error, Err or Desc}, where Er r or Desc is
an opague term to be translated into human readable form by the format_error/1 function.

For more control over the error handling, again use thetry_load/3 interface instead.
The function throws abadar g exception if the parameters are not given as described above.

| oad_driver(Path, Nane) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = term))

Works essentially as| oad/ 2, but will load the driver with other options. All ports that are using the driver will get
killed with thereason dr i ver _unl oaded when the driver is to be unloaded.

The number of loads and unloads by different users influence the actual loading and unloading of a driver file. The
port killing will therefore only happen when the last user unloads the driver, or the last process having loaded the
driver exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Using try load/3 with
{driver_options,[kill_ports]} intheoptionlistwill givethe same effect regarding the port killing.

The function throws abadar g exception if the parameters are not given as described above.

nmoni tor(Tag, lItem -> MbnitorRef
Types.
Tag = driver
Item = {Nane, Wen}
Name = atom() | string()
Wien = | oaded | unloaded | unl oaded_only
Moni t or Ref = reference()

This function creates a driver monitor and works in many ways as the function erlang: monitor/2, does for processes.
When a driver changes state, the monitor results in a monitor-message being sent to the calling process. The
Moni t or Ref returned by this function isincluded in the message sent.

As with process monitors, each driver monitor set will only generate one single message. The monitor is "destroyed”
after the message is sent and there is then no need to call demonitor/1.

The Moni t or Ref can also be used in subsequent calls to demonitor/1 to remove a monitor.
The function accepts the following parameters:
Tag

The monitor tag is aways dr i ver as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be given for consistence.

Item

Thel t emparameter specifies which driver one wants to monitor (the name of the driver) aswell aswhich state
change one wants to monitor. The parameter is a tuple of arity two whose first element is the driver name and
second element is either of:

|loaded

Notify me when the driver isreloaded (or loaded if loading is underway). It only makes sense to monitor drivers
that are in the process of being loaded or reloaded. One cannot monitor a future-to-be driver name for loading,

Ericsson AB. All Rights Reserved.: Kernel | 49

erl_ddll

that will only result in a' DOAN' message being immediately sent. Monitoring for loading is therefore most
useful when triggered by the try_load/3 function, where the monitor is created because the driver isin such a
pending state.

Setting adriver monitor for | oadi ng will eventually lead to one of the following messages being sent:
{'UP, reference(), driver, Name, loaded}

This message is sent, either immediately if the driver is already loaded and no reloading is pending, or when
reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded prior to creating a monitor for loading.
{'"UP", reference(), driver, Name, permanent}

Thismessage will be sent if rel oading was expected, but the (old) driver made itself permanent prior to reloading.
It will also be sent if the driver was permanent or statically linked in when trying to create the monitor.

{'DOWN, reference(), driver, Name, load_cancelled}

This message will arrive if reloading was underway, but the user having requested reload cancelled it by either
dying or caling try_unload/2 (or unl oad/ 1/unl oad_dri ver/ 1) again before it was rel oaded.

{'DOWN', reference(), driver, Name, {load failure, Failure}}

This message will arrive if reloading was underway but the loading for some reason failed. The Fai | ur e term
is one of the errors that can be returned from try load/3. The error term can be passed to format_error/1 for
tranglation into human readable form. Note that the trand ation has to be done in the same running erlang virtual
machine as the error was detected in.

unloaded

Monitor when a driver gets unloaded. If one monitors a driver that is not present in the system, one will
immediately get notified that the driver got unloaded. There is no guarantee that the driver was actually ever
loaded.

A driver monitor for unload will eventually result in one of the following messages being sent:
{'DOWN, reference(), driver, Name, unloaded}

The driver instance monitored is now unloaded. Asthe unload might have been dueto ar el oad/ 2 request, the
driver might once again have been loaded when this message arrives.

{"UP', reference(), driver, Name, unload_cancelled}

This message will be sent if unloading was expected, but while the driver was waiting for al portsto get closed,
anew user of the driver appeared and the unloading was cancelled.

This message appearswhen an{ ok, pendi ng_dri ver}) wasreturned from try_unload/2) for the last user
of thedriver andthena{ ok, al ready_ | oaded} isreturned fromacall totry load/3.

If one wants to really monitor when the driver gets unloaded, this message will distort the picture, no unloading
was really done. The unl oaded_onl y option creates a monitor similar to an unl oaded monitor, but does
never result in this message.

{'UP, reference(), driver, Name, permanent}

This message will be sent if unloading was expected, but the driver made itself permanent prior to unloading. It
will also be sent if trying to monitor a permanent or statically linked in driver.

unloaded_only

A monitor created asunl oaded_onl y behaves exactly as one created as unl oaded with the exception that
the{' UP", reference(), driver, Nanme, unload_cancel | ed} messagewill never be sent, but
the monitor instead persists until the driver really gets unloaded.

50 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

The function throws abadar g exception if the parameters are not given as described above.

rel oad(Path, Nane) -> ok | {error, ErrorDesc}
Types.
Pat h pat h()
Name = driver()
ErrorDesc = pendi ng_process | QpaqueError
QpaqueError = tern()

Reloads the driver named Name from a possibly different Pat h than was previously used. This function is used in
the code change scenario described in the introduction.

If there are other users of this driver, the function will return { er r or, pendi ng_pr ocess}, but if there are no
more users, the function call will hang until all open ports are closed.

Note:

Avoid mixing several userswith driver reload requests.

If one wants to avoid hanging on open ports, one should use the try load/3 function instead.

The Namre and Pat h parameters have exactly the same meaning as when calling the plain load/2 function.

Note:

Avoid mixing several userswith driver reload regquests.

On success, the function returns ok. On failure, the function returns an opaque error, with the exception of the
pendi ng_pr ocess error described above. The opague errors are to be translated into human readable form by the
format_error/1 function.

For more control over the error handling, again use thetry load/3 interface instead.

The function throws abadar g exception if the parameters are not given as described above.

rel oad_driver(Path, Nane) -> ok | {error, ErrorDesc}
Types:
Pat h pat h()
Name = driver ()
ErrorDesc = pendi ng_process | OQpaqueError
OpaqueError = tern()

Works exactly asreload/2, but for drivers loaded with the load_driver/2 interface.

Asthisinterface implies that ports are being killed when the last user disappears, the function wont hang waiting for
portsto get closed.

For further details, see the scenarios in the module description and refer to the reload/2 function description.
The function throws abadar g exception if the parameters are not given as described above.

Ericsson AB. All Rights Reserved.: Kernel | 51

erl_ddll

try_ | oad(Path, Name, OptionList) -> {ok,Status} | {ok, PendingStatus, Ref} |
{error, ErrorDesc}

Types:
Path = Name = string() | atom()
OptionList = [Option]
Option = {driver_options, DriverOptionList} | {nonitor, MonitorOption} |
{rel oad, Rel oadOpti on}

DriverOptionList = [DriverQption]

DriverQption = kill _ports

Moni t or Opti on = pendi ng_driver | pending

Rel oadOpti on = pendi ng_driver | pending

Status = |l oaded | already_| oaded | Pendi ngStat us

Pendi ngSt at us = pendi ng_driver | pending_process

Ref = reference()

ErrorDesc = ErrorAtom | OpaqueError

ErrorAtom = linked_in_driver | inconsistent | pernanent |

not _| oaded_by_this_process | not_| oaded | pending_reload | pending_process

This function provides more control than the | oad/ 2/r el oad/ 2 and | oad_dri ver/ 2/rel oad_driver/2
interfaces. It will never wait for completion of other operations related to the driver, but immediately return the status
of the driver as either:

{ok, loaded}
The driver was actually loaded and isimmediately usable.
{ok, already loaded}

The driver was already loaded by another process and/or isin use by aliving port. The load by you is registered
and acorresponding t ry_unl oad is expected sometime in the future.

{ok, pending_driver}or {ok, pending_driver, reference()}

Theload request isregistered, but the loading is delayed due to the fact that an earlier instance of the driver isstill
waiting to get unloaded (there are open portsusing it). Still, unload is expected when you are done with the driver.
This return value will mostly happen when the { r el oad, pendi ng_dri ver} or {rel oad, pendi ng}
options are used, but can happen when another user isunloading adriver in parallel andtheki | | _port s driver
option is set. In other words, this return value will always need to be handled!

{ok, pending_process}or {ok, pending_process, reference()}

The load request is registered, but the loading is delayed due to the fact that an earlier instance of the driver
is still waiting to get unloaded by another user (not only by a port, in which case { ok, pendi ng_dri ver}
would have been returned). Still, unload is expected when you are done with the driver. This return value will
only happen when the{ r el oad, pendi ng} optionisused.

When the function returns { ok, pending_driver} or {ok, pending process}, one might want
to get information about when the driver is actually loaded. This can be achieved by using the { moni t or,
Pendi ngOpt i on} option.

When monitoring is requested, and a corresponding { ok, pendi ng_driver} or{ok, pendi ng_process}
would be returned, the function will instead return atuple { ok, Pendi ngSt at us, reference()} andthe
process will, at a later time when the driver actually gets loaded, get a monitor message. The monitor message one
can expect is described in the monitor/2 function description.

52 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

N

ote:

Note that in case of loading, monitoring can not only get triggered by using the{r el oad, Rel oadOpti on}
option, but also in specia cases where the load-error is transient, why { moni t or, pendi ng_dri ver}
should be used under basically all real world circumstances!

The function accepts the following parameters:

Path

Thefilesystem path to the directory where the driver object fileis situated. The filename of the object file (minus
extension) must correspond to the driver name (used in the name parameter) and the driver must identify itself
with the very same name. The Pat h might be provided as an io_list, meaning it can be alist of other io_lists,
characters (eight bit integers) or binaries, al to be flattened into a sequence of characters.

The (possibly flattened) Pat h parameter must be consistent throughout the system, adriver should, by all users,
beloaded using the sameliteralPat h. The exceptioniswhen reloading isrequested, in which casethe Pat h may
be specified differently. Note that all userstrying to load the driver at alater time will need to use the newPat h
if the Pat h is changed using ar el oad option. Thisis yet another reason to have only one loader of adriver
one wants to upgrade in arunning system!

Name

The name parameter is the name of the driver to be used in subsequent calls to open_port. The name can be
specified either asani o_li st () orasanat om() . The name given when loading is used to find the actual
object file (with the help of the Pat h and the system implied extension suffix, i.e. . so). The name by which
the driver identifiesitself must also be consistent with this Name parameter, much as a beam-file's module name
much correspond to its filename.

OptionList

A number of options can be specified to control the loading operation. The options are given as a list of two-
tuples, the tuples having the following values and meanings:

{driver_options, DriverOptionsList}

This option is to provide options that will change its general behavior and will "stick" to the driver throughout
its lifespan.

Thedriver optionsfor agiven driver name need alwaysto be consistent, even whenthedriver isreloaded, meaning
that they are as much a part of the driver as the actual name.

Currently the only allowed driver optioniski | | _port s, which meansthat al ports opened towards the driver
are killed with the exit-reason dr i ver _unl oaded when no process any longer has the driver loaded. This
situation arises either when the last user callstry_unload/2, or the last process having loaded the driver exits.

{monitor, MonitorOption}

A NMonitorOptiontelstry | oad/ 3totrigger adriver monitor under certain conditions. When the monitor
is triggered, the function will return a three-tuple { ok, Pendi ngSt at us, reference()}, where the
r ef erence() isthe monitor ref for the driver monitor.

Only one Moni t or Opt i on can be specified and it is either the atom pendi ng, which means that a monitor
should be created whenever aload operation is delayed, and the atom pendi ng_dr i ver, in which amonitor
is created whenever the operation is delayed due to open ports towards an otherwise unused driver. The
pendi ng_dri ver optionisof little use, but is present for completeness, it is very well defined which reload-
options might give rise to which delays. It might, however, be a good idea to use the same Moni t or Opti on
astheRel oadOpt i on if present.

Ericsson AB. All Rights Reserved.: Kernel | 53

erl_ddll

If reloading is not requested, it might till be useful to specify the noni t or option, as forced unloads
(ki I'l _ports driver option or theki | | _port s option to try unload/2) will trigger a transient state where
driver loading cannot be performed until al closing ports are actually closed. So, astry_unl oad can, in
amost al situations, return { ok, pendi ng_dri ver}, one should always specify at least { noni t or,

pendi ng_dri ver} in production code (see the monitor discussion above).

{reload,RealoadOption}

This option is used when one wants to reload a driver from disk, most often in a code upgrade scenario. Having
ar el oad option also implies that the Pat h parameter need not be consistent with earlier loads of the driver.

To reload a driver, the process needs to have previously loaded the driver, i.e there has to be an active user of
the driver in the process.

Ther el oad option can be either the atom pendi ng, in which reloading is requested for any driver and will
be effectuated when all ports opened against the driver are closed. The replacement of the driver will in this case
take place regardless of if there are still pending users having the driver loaded! The option also triggers port-
killing (if the ki I | _port s driver option is used) even though there are pending users, making it usable for
forced driver replacement, but laying a lot of responsibility on the driver users. The pending option is seldom
used as one does not want other users to have loaded the driver when code change is underway.

The more useful option is pendi ng_dri ver, which means that reloading will be queued if the driver is not
loaded by any other users, but the driver has opened ports, in which case { ok, pendi ng_dri ver} will be
returned (anoni t or option is of course recommended).

If the driver isunloaded (not present in the system), the error code not _| oaded will bereturned. Ther el oad
option isintended for when the user has aready loaded the driver in advance.

Thefunction might return numerous errors, of which some only can be returned given a certain combination of options.

A number of errors are opague and can only be interpreted by passing them to the format_error/1 function, but some
can beinterpreted directly:

{error,linked_in_driver}

The driver with the specified name is an erlang statically linked in driver, which cannot be manipulated with
thisAPI.

{error,inconsistent}
The driver has already been loaded with either other Dr i ver Opt i ons or adifferent literalPat h argument.
This can happen even if ar el oad optionisgiven, if theDr i ver Opt i ons differ from the current.

{error, permanent}

The driver has requested itself to be permanent, making it behave like an erlang linked in driver and it can no
longer be manipulated with this API.

{error, pending_process}

Thedriver isloaded by other userswhenthe{r el oad, pendi ng_dri ver} optionwasgiven.
{error, pending_reload}

Driver reload is already requested by another user whenthe{r el oad, Rel oadOpti on} option was given.
{error, not_loaded by this process}

Appears when the r el oad option is given. The driver Nae is present in the system, but there is no user of
it in this process.

54 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{error, not_loaded}

Appears when the r el oad option is given. The driver Nane is not in the system. Only drivers loaded by this
process can be rel oaded.

All other error codes are to be trandated by the format_error/1 function. Note that callsto f or mat _er r or should
be performed from the same running instance of the erlang virtual machine as the error was detected in, due to system
dependent behavior concerning error values.

If the arguments or options are malformed, the function will throw abadar g exception.

try_unl oad(Name, OptionList) -> {ok, Status} | {ok, PendingStatus, Ref} |
{error, ErrorAton}
Types:

Name = string() | aton()

OptionList = [Option]

Option = {nonitor, MnitorOption} | kill_ports

Moni tor Opti on = pending_driver | pending

Status = unl oaded | Pendi ngSt at us

Pendi ngSt at us = pendi ng_driver | pending_process

Ref = reference()

ErrorAtom = linked_in_driver | not_|loaded | not_I| oaded_by_this_process |
per manent

Thisisthelow level function to unload (or decrement reference counts of) adriver. It can be used to force port killing,
in much the same way as the driver option ki | | _por t s implicitly does, and it can trigger a monitor either due to
other users still having the driver loaded or that there are open ports using the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (i.e. thisuser) no longer needs the driver. That can, if there are no other users, trigger actual unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed. If the driver hastheki | | _port s option set, orif ki I | _port s was specified as an
option to this function, all pending ports using this driver will get killed when unloading is done by the last user. If
no port-killing isinvolved and there are open ports, the actual unloading is delayed until there are no more open ports
using the driver. If, in this case, another user (or even this user) loads the driver again before the driver is actually
unloaded, the unloading will never take place.

To alow the user that requests unloading to wait for actual unloading to take place, noni t or triggers can be
specified in much the same way aswhen loading. As users of thisfunction however seldom are interested in more than
decrementing the reference counts, monitoring is more seldom needed. If theki | | _port s optionis used however,
monitor trigging is crucial, as the ports are not guaranteed to have been killed until the driver is unloaded, why a
monitor should be triggered for at least the pendi ng_dri ver case.

The possible monitor messagesthat can be expected arethe same aswhen usingtheunl oaded optionto themonitor/2
function.

The function will return one of the following statuses upon success:
{0k, unloaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and there are no more users requiring
it to be loaded.

Ericsson AB. All Rights Reserved.: Kernel | 55

erl_ddll

{ok, pending_driver}or {ok, pending_driver, reference()}

Thisreturn value indicates that this call removed the last user from the driver, but there are still open ports using
it. When all ports are closed and no new users have arrived, the driver will actually be reloaded and the name
and memory reclaimed.

This return value is valid even when the option ki | | _port s was used, as killing ports may not be a process
that completes immediately. The condition is, in that case, however transient. Monitors are as always useful to
detect when the driver is really unloaded.

{ok, pending_process}or {ok, pending_process, reference()}

The unload request is registered, but there are still other users holding the driver. Note that the term
pendi ng_pr ocess might refer to the running process, there might be more than one user in the same process.

Thisisanormal, healthy return value if the call was just placed to inform the emulator that you have no further
use of the driver. It is actually the most common return value in the most common scenario described in the
introduction.

The function accepts the following parameters:
Name

The name parameter isthe name of the driver to be unloaded. The name can be specified either asani o_| i st ()
orasanaton().

OptionList

TheOpt i onLi st argument can beused to specify certain behavior regarding portsaswell astriggering monitors
under certain conditions:

kill_ports

Force killing of all ports opened using this driver, with the exit reason dri ver _unl oaded, if you are the
lastuser of the driver.

If there are other users having the driver loaded, this option will have no effect.

If one wants the consistent behavior of killing ports when the last user unloads, one should use the driver option
kil | _port s when loading the driver instead.

{monitor, Monitor Option}

This option creates a driver monitor if the condition givenin Moni t or Opt i ons istrue. The valid options are:
pending_driver

Create adriver monitor if the return valueistobe{ ok, pendi ng_driver}.

pending

Createamonitor if thereturn valuewill beeither { ok, pendi ng_dri ver} or{ ok, pendi ng_process}.

The pendi ng_dri ver Monitor Opti on isby far the most useful and it has to be used to ensure that the
driver has really been unloaded and the ports closed whenever the ki | | _por t s option is used or the driver
may have been loaded with theki | | _port s driver option.

By using the monitor-triggers in the call to t ry_unl oad one can be sure that the monitor is actually added
before the unloading is executed, meaning that the monitor will always get properly triggered, which would not
bethecaseif onecalleder| _ddl | : moni t or/ 2 separately.

The function may return several error conditions, of which all are well specified (no opague values):
{error, linked_in driver}

Y ou were trying to unload an erlang statically linked in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

56 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{error, not_loaded}
The driver Nane is not present in the system.
{error, not_loaded by this process}
The driver Nare is present in the system, but there isno user of it in this process.

Asaspecial case, drivers can be unloaded from processes that has done no corresponding call tot ry_| oad/ 3
if, and only if, there are no users of the driver at all, which may happen if the process containing the last user dies.

{error, permanent}

The driver has made itself permanent, in which case it can no longer be manipulated by thisinterface (much like
adstatically linked in driver).

The function throws abadar g exception if the parameters are not given as described above.

unl oad(Nane) -> ok | {error, ErrorDesc}
Types.
Name = driver ()
ErrorDesc = term)
Unloads, or at least dereferences the driver named Name. If the caler isthe last user of the driver, and there are no

more open ports using the driver, the driver will actually get unloaded. In al other cases, actual unloading will be
delayed until all ports are closed and there are no remaining users.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For usage scenarios, see the description in the beginning of this document.

TheEr r or Desc returned is an opaque value to be passed further on to the format_error/1 function. For more control
over the operation, use the try_unload/2 interface.

The function throws abadar g exception if the parameters are not given as described above.

unl oad_driver(Name) -> ok | {error, ErrorDesc}
Types.

Name = driver ()

ErrorDesc = term)

Unloads, or at least dereferences the driver named Nane. If the caller isthe last user of the driver, all remaining open
portsusing the driver will get killed with thereasondr i ver _unl oaded and thedriver will eventually get unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For usage scenarios, see the description in the beginning of this document.

TheEr r or Desc returned isan opague value to be passed further on to the format_error/1 function. For more control
over the operation, use the try_unload/2 interface.

The function throws abadar g exception if the parameters are not given as described above.

| oaded_drivers() -> {ok, Drivers}
Types:
Drivers = [Driver]
Driver = string()
Returns alist of all the available drivers, both (statically) linked-in and dynamically loaded ones.

The driver names are returned as alist of strings rather than alist of atoms for historical reasons.

Ericsson AB. All Rights Reserved.: Kernel | 57

erl_ddll

More information about drivers can be obtained using one of the info functions.

format _error(ErrorDesc) -> string()
Types:
ErrorDesc = term))

Takes an Er r or Desc returned by load, unload or reload functions and returns a string which describes the error or
warning.

Note:

Dueto peculiaritiesin the dynamic loading interfaces on different platform, the returned string is only guaranteed
to describe the correct error if format_error/1 is called in the same instance of the erlang virtual machine as the
error appeared in (meaning the same operating system process)!

SEE ALSO
erl_driver(4), driver_entry(4)

58 | Ericsson AB. All Rights Reserved.: Kernel

erl_prim_loader

erl_prim_loader

Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim loader(3) in the erts
reference manual instead.

Ericsson AB. All Rights Reserved.: Kernel | 59

erlang

erlang

Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the erts reference manual
instead.

60 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

error_handler

Erlang module

The error handler module defines what happens when certain types of errors occur.

Exports

undefined_function(Mdul e, Function, Args) -> any()

Types:
Modul e = Function = atom()
Args = list()
A (possibly empty) list of arguments Ar g1, . ., ArgN
Thisfunctionisevaluatedif acall ismadetoModul e: Functi on(Argl, .., ArgN) andModul e: Functi on/

Nisundefined. Note that undef i ned_f unct i on/ 3 isevaluated inside the process making the original call.

If Mbdul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Functi on(Argl, . .,
Ar gN) call isreturned.

Otherwise, it returns, if possible, the value of appl y(Modul e, Function, Args) after an attempt has been
made to autoload Modul e. If thisis not possible, the call to Modul e: Functi on(Argl, .., ArgN) falswith
exit reason undef .

undef i ned_I anbda(Modul e, Fun, Args) -> term)
Types.

Modul e = atom()

Fun = function()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN
This function is evaluated if acal ismadeto Fun(Argl, .., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.
If Modul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Fun(Arg1, .., ArgN)
call isreturned.

Otherwise, it returns, if possible, the value of appl y(Fun, Args) after an attempt has been made to autoload
Modul e. If thisis not possible, the call fails with exit reason undef .

Notes

The code in error _handl er is complex and should not be changed without fully understanding the interaction
between the error handler, thei ni t process of the code server, and the I/O mechanism of the code.

Changes in the code which may seem small can cause a deadlock as unforeseen consegquences may occur. The use of
i nput isdangerousin thistype of code.

Ericsson AB. All Rights Reserved.: Kernel | 61

error_logger

error_logger

Erlang module

The Erlang error logger is an event manager (see OTP Design Principles and gen event(3)), registered as
error _| ogger . Error, warning and info events are sent to the error logger from the Erlang runtime system and the
different Erlang/OTP applications. The events are, by default, logged to tty. Note that an event from a process P is
logged at the node of the group leader of P. This means that log output is directed to the node from which a process
was created, which not necessarily is the same node as where it is executing.

Initialy,error _| ogger only hasaprimitive event handler, which buffersand printsthe raw event messages. During
system startup, the application Kernel replaces this with a standard event handler, by default one which writes nicely
formatted output to tty. Kernel can also be configured so that events are logged to file instead, or not logged at al,
see kernel (6).

Also the SASL application, if started, adds its own event handler, which by default writes supervisor-, crash- and
progress reportsto tty. See sadl(6).

It is recommended that user defined applications should report errors through the error logger, in order
to get uniform reports. User defined event handlers can be added to handle application specific events.
(add_report _handl er/ 1, 2). Also, thereis a useful event handler in STDLIB for multi-file logging of events,
seel og_nf _h(3).

Warning events was introduced in Erlang/OTP ROC. To retain backwards compatibility, these are by default tagged
aserrors, thus showing up as error reportsin the logs. By using the command lineflag +W <w | i >, they caninstead
be tagged as warnings or info. Tagging them as warnings may require rewriting existing user defined event handlers.

Data Types

report() = [{Tag :: term(), Data :: tern()} | term()]
| string()
| ternm()

Exports

error_nsg(Format) -> ok
error_nsg(Format, Data) -> ok
format (Format, Data) -> ok

Types:
Format = string()
Data = list()

Sends a standard error event to the error logger. The For mat and Dat a arguments are the same as the arguments of
i 0: fornat/ 2. Theevent is handled by the standard event handler.

1> error_|l ogger:error_nsg("An error occurred in ~p~n", [a_nodule]).
=ERROR REPORT==== 11- Aug- 2005: : 14: 03: 19 ===

An error occurred in a_nodul e

ok

62 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, useer r or _r eport/ 1 instead.

error_report(Report) -> ok
Types:
Report = report()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.

2> error_|l ogger:error_report([{tagl, datal},a term{tag2,data}]).

=ERROR REPORT==== 11- Aug- 2005: : 13: 45: 41 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:error_report("Serious error in ny nodule").
=ERROR REPORT==== 11- Aug- 2005: : 13: 45: 49 ===
Serious error in ny nodul e
ok

error_report(Type, Report) -> ok
Types:
Type = term)
Report = report()
Sends a user defined error report event to the error logger. An event handler to handle the event is supposed to have
been added. The event isignored by the standard event handler.

It isrecommended that Repor t followsthe same structureasforerror _report/ 1.

war ni ng_nmap() -> Tag
Types:
Tag = error | warning | info
Returns the current mapping for warning events. Events sent using warning nsg/1,2 or

war ni ng_report/ 1, 2 aretagged as errors (default), warnings or info, depending on the value of the command
lineflag +W

o0s$ erl
Erl ang (BEAM enul ator version 5.4.8 [hipe] [threads: 0] [kernel-poll]

Eshell V5.4.8 (abort with "G

1> error_| ogger: warni ng_map() .

error

2> error_| ogger: warni ng_nsg("Warni ngs tagged as: ~p~n", [error]).

=ERROR REPORT==== 11- Aug- 2005: : 15: 31: 23 ===
War ni ngs tagged as: error

Ericsson AB. All Rights Reserved.: Kernel | 63

error_logger

ok

3>

User switch conmmand

-—> q

os$ erl +Ww

Erl ang (BEAM) emul ator version 5.4.8 [hipe] [threads: 0] [kernel-poll]

Eshell V5.4.8 (abort with "G
1> error_| ogger: warni ng_nmap() .

war ni ng

2> error_| ogger: warni ng_msg("Warni ngs tagged as: ~p~n", [warning]).
=WARNI NG REPORT==== 11- Aug- 2005: : 15: 31: 55 ===

War ni ngs tagged as: warning

ok

war ni ng_nsg(Format) -> ok
war ni ng_nsg(Format, Data) -> ok

Types:
Format = string()
Data = list()

Sends a standard warning event to the error logger. The For mat and Dat a arguments are the same as the arguments
of i o: format/ 2. The event is handled by the standard event handler. It is tagged either as an error, warning or
info, see warning_map/0.

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use war ni ng_r eport/ 1 instead.

war ni ng_report(Report) -> ok
Types.
Report = report()

Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is
tagged either as an error, warning or info, see warning_map/0.

war ni ng_report (Type, Report) -> ok
Types:
Type = any()
Report = report()
Sends a user defined warning report event to the error logger. An event handler to handle the event is supposed to

have been added. The event is ignored by the standard event handler. It is tagged either as an error, warning or info,
depending on the value of warning_map/0.

i nfo_msg(Format) -> ok

i nfo_nsg(Format, Data) -> ok
Types:

64 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Format = string()
Data = list()

Sends a standard information event to the error logger. The For mat and Dat a arguments are the same as the
argumentsof i o: f or mat / 2. The event is handled by the standard event handler.

1> error_| ogger:info_nsg("Sonet hi ng happened in ~p~n", [a_nodul e]).

=I NFO REPORT==== 11- Aug- 2005: : 14: 06: 15 ===
Sonet hi ng happened i n a_nodul e
ok

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usei nf o_r eport/ 1 instead.

i nfo_report(Report) -> ok
Types:
Report = report()
Sends a standard information report event to the error logger. The event is handled by the standard event handler.

2> error_|l ogger:info_ report([{tagl, datal},a term{tag2,data}]).

=] NFO REPORT==== 11- Aug- 2005: : 13: 55: 09 ===
tagl: datal
a_term
tag2: data
ok
3> error_l ogger:info_report("Sonething strange happened").
=] NFO REPORT==== 11- Aug- 2005: : 13: 55: 36 ===
Sonet hi ng strange happened
ok

i nfo_report(Type, Report) -> ok
Types.

Type = any()

Report = report()

Sends a user defined information report event to the error logger. An event handler to handle the event is supposed to
have been added. The event isignored by the standard event handler.

It is recommended that Repor t follows the same structure asfor i nf o_report/ 1.

add_report _handl er (Handl er) -> any()
add_report _handl er (Handl er, Args) -> Result
Types.

Ericsson AB. All Rights Reserved.: Kernel | 65

error_logger

Handl er = nodul e()
Args = gen_event: handl er _args()
Result = gen_event:add_handl er_ret()

Adds a new event handler to the error logger. The event handler must be implemented as agen_event callback
module, see gen_event(3).

Handl er istypically the name of the callback module and Ar gs is an optional term (defaults to []) passed to the
initialization callback function Handl er : i ni t / 1. The function returns ok if successful.

The event handler must be able to handle the events described bel ow.

del ete_report_handl er (Handl er) -> Result
Types:

Handl er = nodul e()

Result = gen_event:del _handler_ret()

Deletes an event handler from the error logger by caling gen_event : del et e_handl er (error _| ogger,
Handl er, []),seegen event(3).

tty(Flag) -> ok
Types:
Fl ag = bool ean()
Enables (FI ag == true) ordisables(Fl ag == f al se) printout of standard eventsto the tty.

Thisis done by adding or deleting the standard event handler for output to tty, thus calling this function overrides the
value of the Kernel err or _| ogger configuration parameter.

| ogfil e(Request :: {open, Filenane}) -> ok | {error, OpenReason}

| ogfil e(Request :: close) -> ok | {error, O oseReason}

| ogfile(Request :: filenanme) -> Filenane | {error, FilenameReason}
Types:

Filename = fil e: name()

OpenReason = allready_have logfile | open_error()

Cl oseReason = nodul e_not _found

Fi | enameReason = no_log file

open_error() = file:posix() | badarg | systemlimt
Enables or disables printout of standard eventsto afile.

Thisis done by adding or deleting the standard event handler for output to file, thus calling this function overrides the
value of the Kernel er r or _| ogger configuration parameter.

Enabling file logging can be used in combination with callingt t y(f al se) , in order to have asilent system, where
all standard events are logged to afile only. There can only be one active log file at atime.

Request isoneof:
{open, Fil enane}

Opens the log file Fi | ename. Returns ok if successful, or {error, allready_have_l ogfil e} if
logging to file is already enabled, or an error tuple if another error occurred. For example, if Fi | enane could
not be opened.

66 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

cl ose
Closes the current log file. Returns ok, or { error, nodul e_not _found}.
fil enane

Returnsthe name of thelog fileFi | ename, or{error, no_l og fil e} if loggingtofileisnot enabled.

Events

All event handlers added to the error logger must handle the following events. A eader is the group leader pid of
the process which sent the event, and Pi d is the process which sent the event.

{error, deader, {Pid, Format, Data}}

Generated whenerror _mnsg/ 1, 2 or f or mat iscaled.
{error _report, deader, {Pid, std error, Report}}

Generated whenerror _report/ 1iscaled.
{error_report, deader, {Pid, Type, Report}}

Generated whenerror _report/ 2iscaled.
{warni ng_nsg, d eader, {Pid, Fornmat, Data}}

Generated when war ni ng_nsg/ 1, 2 iscalled, provided that warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, std warning, Report}}

Generated when war ni ng_r eport/ 1 iscalled, provided that warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, Type, Report}}

Generated whenwar ni ng_r eport/ 2 iscalled, provided that warnings are set to be tagged as warnings.
{info_nsg, d eader, {Pid, Format, Data}}

Generated wheni nfo_nsg/ 1, 2 iscalled.
{info_report, deader, {Pid, std_info, Report}}

Generated wheni nf o_report/ 1iscalled.
{info_report, deader, {Pid, Type, Report}}

Generated wheni nf o_report/ 2 iscalled.

Note that also a number of system internal events may be received, a catch-all clause last in the definition
of the event handler callback function Modul e: handl e_event/ 2 is necessary. This also holds true for
Modul e: handl e_i nf o/ 2, as there are a number of system internal messages the event handler must take care
of aswell.

SEE ALSO
gen_event(3), log_mf_h(3), kernel(6), sasl (6)

Ericsson AB. All Rights Reserved.: Kernel | 67

file

file

Erlang module

Themodulef i | e provides an interface to the file system.

On operating systems with thread support, it is possible to let file operations be performed in threads of their own,
allowing other Erlang processes to continue executing in parallel with the file operations. See the command line flag
+Ainerl(l).

The Erlang VM supports file names in Unicode to a limited extent. Depending on how the VM is started (with the
parameter +f nu or +f nl), file names given can contain characters > 255 and the VM system will convert file names
back and forth to the native file name encoding.

The default behavior for Unicode character translation depends on to what extent the underlying OS/filesystem
enforces consistent naming. On OSes where al file names are ensured to be in one or another encoding, Unicode is
the default (currently this holds for Windows and MacOSX). On OSes with compl etely transparent file naming (i.e. all
Unixesexcept MacOSX), 1SO-latin-1 file naming isthe default. Thereason for the | SO-latin-1 default isthat file names
are not guaranteed to be possible to interpret according to the Unicode encoding expected (i.e. UTF-8), and file names
that cannot be decoded will only be accessible by using "raw file names', in other word file names given as binaries.

As file names are traditionally not binaries in Erlang, applications that need to handle raw file names need to be
converted, why the Unicode mode for file namesis not default on systems having completely transparent file naming.

Note:

As of R14B01, the most basic file handling modules (fi l e,prim file,filelibandfil enane) accept
raw file names, but the rest of OTPis not guaranteed to handle them, why Unicode file naming on systems where
it isnot default is still considered experimental.

Raw file namesisanew featurein OTP R14B01, which allows the user to supply completely uninterpreted file names
to the underlying OS/filesystem. They are supplied as binaries, where it is up to the user to supply acorrect encoding
for the environment. The functionfi | e: nati ve_nane_encodi ng() can be used to check what encoding the
VM isworking in. If the function returns| at i n1 file names are not in any way converted to Unicode, if itisut f 8,
raw file names should be encoded as UTF-8 if they are to follow the convention of the VM (and usually the convention
of the OS aswell). Using raw file namesis useful if you have a filesystem with inconsistent file naming, where some
files are named in UTF-8 encoding while others are not. A file:list_dir on such mixed file name systems when the
VM isin Unicode file name mode might return file names as raw binaries as they cannot be interpreted as Unicode
file names. Raw file names can aso be used to give UTF-8 encoded file names even though the VM is not started in
Unicode file name trandlation mode.

Notethat on Windows, fi | e: nat i ve_nane_encodi ng() returnsut f 8 per default, whichisthe format for raw
file names even on Windows, although the underlying OS specific code works in a limited version of little endian
UTF16. Asfar asthe Erlang programmer is concerned, Windows native Unicode format is UTF-8...

Data Types
deep_list() = [char() | atom() | deep_list()]
fd() =

#file_descriptor{nodul e = undefined | nodul e(),

68 | Ericsson AB. All Rights Reserved.: Kernel

file

data = undefined | term()}
filename() = string() | binary()
io_device() = pid() | fd()
Asreturned by file:open/2, a process handling | O protocols.

nane() string()

| aton()
| deep_list()
| (RawFilename :: binary())

If VM isin Unicodefilename mode, st ri ng() andchar () areallowedto be> 255. RawFi | enane isafilename
not subject to Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding
expected from the filesystem (i.e. non-UTF-8 characters although the VM is started in Unicode filename mode).

posi x() = eacces
| eagain
| ebadf

| ebusy

| edquot

| eexi st

| efault

| efbig

| eintr

| einval

| eio

| eisdir

| el oop

| enfile
| emink
| enamet ool ong
| enfile
| enodev
| enoent

| enonem
| enospc
| enotbl k
| enotdir
| enotsup
| enxio

| eperm

| epipe

| erofs

| espipe
| esrch

| estale
| exdev

An atom which is named from the POSI X error codes used in Unix, and in the runtime libraries of most C compilers.
date_time() = cal endar:datetine()
Must denote a valid date and time.

file_info() =
#file_info{size = undefined | integer() >= 0,

Ericsson AB. All Rights Reserved.: Kernel | 69

file

type = undefi ned

| device
| directory
| other
| regul ar
| symink,
access = undefi ned
| read
| wite
| read wite
| none,
atime = undefined | file:date_time(),
nime = undefined | file:date_tinme(),
ctime = undefined | file:date_time(),
node = undefined | integer(),
links = undefined | integer() >= 0,
maj or _device = undefined | integer(),
m nor _device = undefined | integer(),
i node = undefined | integer(),
uid = undefined | integer(),
gid = undefined | integer()}
| ocation() = integer()
| {bof, Ofset :: integer()}
| {cur, Ofset :: integer()}
| {eof, Ofset :: integer()}
| bof
| cur
| eof
node() = read
| wite
| append
| exclusive
| raw
| binary
| {delayed write
Size :: integer() >= 0,
Delay :: integer() >= 0}
del ayed wite
{read_ahead, Size :: integer() >= 1}

conpr essed

|

|

| read_ahead

|

| {encoding, unicode: encoding()}

Exports

advi se(loDevice, O fset, Length, Advise) -> ok

Types:

70 | Ericsson AB. All Rights Reserved.: Kernel

Reason}

file

| oDevi ce = io_device()
Ofset = Length = integer()
Advi se = posix_file_advise()
Reason = posix() | badarg
posi x_file_advise() = norma
| sequenti al
| random
| no_reuse
| will_need
| dont _need

advi se/ 4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

change_group(Filename, Gd) -> ok | {error, Reason}
Types.

Fi |l ename = nane()

Gd = integer()

Reason = posix() | badarg
Changes group of afile. Seewrite file info/2.

change _node(Fil enanme, Mde) -> ok | {error, Reason}
Types.

Fi |l ename = nane()

Mode = integer()

Reason = posix() | badarg
Changes permissions of afile. Seewrite file info/2.

change_owner (Fil enane, Ud) -> ok | {error, Reason}
Types.

Fi |l ename = nane()

Ud = integer()

Reason = posix() | badarg
Changes owner of afile. See write file info/2.

change _owner (Filenane, Ud, Gd) -> ok | {error, Reason}
Types:

Fi |l ename = nane()

Ud=Gd = integer()

Reason = posix() | badarg
Changes owner and group of afile. Seewrite file info/2.

change_tine(Filename, Mine) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 71

file

Fi | ename = nane()
Minme = date tinme()
Reason = posix() | badarg
Changes the modification and access times of afile. See write file_info/2.

change_tine(Filename, Atine, Minme) -> ok | {error, Reason}
Types:

Fi | ename = nane()

Atine = Mine = date_tine()

Reason = posix() | badarg
Changes the modification and last access times of afile. Seewrite file_info/2.

cl ose(loDevice) -> ok | {error, Reason}
Types:
| oDevi ce = io_device()
Reason = posix() | badarg | term nated
Closesthefilereferenced by | oDevi ce. It mostly returns ok, expect for some severe errors such as out of memory.

Notethat if the option del ayed_wri t e was used when opening thefile, cl ose/ 1 might return an old write error
and not even try to close the file. See open/2.

consul t(Fil enane) -> {ok, Terns} | {error, Reason}
Types:

Fi |l ename = nane()

Terns = [term()]

Reason = posi x()
| badarg
| term nated
| systemlimt
| {Line :: integer(), Md :: nodule(), Term:: term()}
Reads Erlang terms, separated by "', from Fi | enane. Returns one of the following:
{ok, Terns}

The file was successfully read.
{error, atom)}

An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang termsin the file. Usef or mat _err or/ 1 to convert the three-
element tuple to an English description of the error.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").

72 | Ericsson AB. All Rights Reserved.: Kernel

file

{ok, [{person, "kal | e", 25}, { per son, "pel | e", 30}] }

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}

copy(Source, Destination, ByteCount) ->
{ok, BytesCopied} | {error, Reason}

Types:
Source = Destination = io_device() | Filenane | {Filenane, Mdes}
Fi | ename = nane()

Modes = [node()]

ByteCount = integer() >= 0| infinity
Byt esCopied = integer() >= 0

Reason = posix() | badarg | term nated

CopiesByt eCount bytesfrom Sour ce toDest i nati on. Sour ce and Dest i nat i on refer to either filenames
or |O devicesfrom e.g. open/ 2. Byt eCount defaultstoi nfi ni ty, denoting an infinite number of bytes.

The argument Mbdes isalist of possible modes, see open/2, and defaultsto [].

If both Sour ce and Dest i nat i on refer tofilenames, thefilesare opened with[r ead, bi nary] and[write,
bi nary] prepended to their mode lists, respectively, to optimize the copy.

If Sour ce refersto afilename, it is opened with r ead mode prepended to the mode list before the copy, and closed
when done.

If Desti nati on refersto afilename, it is opened with wr i t € mode prepended to the mode list before the copy,
and closed when done.

Returns{ ok, Byt esCopi ed} whereByt esCopi ed isthe number of bytes that actually was copied, which may
be less than Byt eCount if end of file was encountered on the source. If the operation fails, { error, Reason}
is returned.

Typical error reasons; Asfor open/ 2 if afile had to be opened, and asforread/ 2 andwr i t e/ 2.

del _dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane()
Reason = posix() | badarg
Triesto delete the directory Di r . The directory must be empty before it can be deleted. Returns ok if successful.
Typical error reasons are;
eacces
Missing search or write permissions for the parent directories of Di r .
eexi st
The directory is not empty.
enoent
The directory does not exist.
enotdir

A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

Ericsson AB. All Rights Reserved.: Kernel | 73

file

ei nval

Attempt to delete the current directory. On some platforms, eacces isreturned instead.

del ete(Fil enane) -> ok | {error, Reason}
Types:

Fi |l ename = nane()

Reason = posix() | badarg

Triesto deletethefile Fi | enane. Returns ok if successful.
Typical error reasons are:
enoent

Thefile does not exist.
eacces

Missing permission for the file or one of its parents.
eperm

Thefileisadirectory and the user is not super-user.
enotdir

A component of the file nameis not adirectory. On some platforms, enoent isreturned instead.
ei nval

Fi | ename had an improper type, such astuple.

Warning:

In afuture release, a bad type for the Fi | enane argument will probably generate an exception.

eval (Filenane) -> ok | {error, Reason}

Types:
Fi l ename = nane()
Reason posi x()
badar g

systemlimt
{Line :: integer(), Md :: nodule(), Term:: term)}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressionsis aso an expression), from
Fi | ename. The actual result of the evaluation is not returned; any expression sequence in the file must be there for
its side effect. Returns one of the following:

ok
The file was read and evaluated.
{error, atom)}
An error occurred when opening thefile or reading it. See open/ 2 for alist of typical error codes.

I
| term nated
I
I

74 | Ericsson AB. All Rights Reserved.: Kernel

file

{error, {Line, Md, Ternt}

An error occurred when interpreting the Erlang expressions in the file. Use f or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

eval (Fil ename, Bindings) -> ok | {error, Reason}
Types:

Fi | ename nane()

Bi ndi ngs = erl _eval : binding_struct()

Reason posi x()

| badarg

| term nated
I

I

systemlimt
{Line :: integer(), Md :: nodule(), Term:: term)}

Thesameaseval / 1 but thevariable bindings Bi ndi ngs are used in the evaluation. See erl_eval(3) about variable
bindings.

file_info(Filenane) -> {ok, Filelnfo} | {error, Reason}
Thisfunction is obsolete. User ead_fi | e_i nf o/ 1 instead.

format _error (Reason) -> Chars

Types.
Reason = posi x()

| badarg

| term nated

| systemlinit

| {Line :: integer(), Mdd :: nodule(), Term:: term()}

Chars = string()

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get_cwd() -> {ok, Dir} | {error, Reason}
Types:
Dir = filenane()
Reason = posi x()
Returns{ ok, Dir},whereDi r isthe current working directory of the file server.

Note:

In rare circumstances, this function can fail on Unix. It may happen if read permission does not exist for the
parent directories of the current directory.

Typical error reasons are:
eacces

Missing read permission for one of the parents of the current directory.

Ericsson AB. All Rights Reserved.: Kernel | 75

file

get _cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:

Drive = string()

Dir = filenane()

Reason = posix() | badarg

Dri ve should be of theform"Let t er : ", for example"c:". Returns{ ok, Dir} or{error, Reason},where
Di r isthe current working directory of the drive specified.

Thisfunctionreturns{ er r or, enot sup} onplatformswhich have no concept of current drive (Unix, for example).
Typical error reasons are:
enot sup
The operating system has no concept of drives.
eacces
The drive does not exist.
ei nval
Theformat of Dri ve isinvalid.

list_dir(Dr) -> {ok, Filenanes} | {error, Reason}
Types.

Dir = nane()

Filenames = [fil enanme()]

Reason = posix() | badarg

Lists al the files in a directory. Returns { ok, Fi | enanmes} if successful. Otherwise, it returns {err or,
Reason}. Fi | enanes isalist of the names of al thefilesin the directory. The names are not sorted.

Typical error reasons are;
eacces

Missing search or write permissions for Di r or one of its parent directories.
enoent

The directory does not exist.

make dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane()
Reason = posix() | badarg
Triesto create the directory Di r . Missing parent directories are not created. Returns ok if successful.
Typical error reasons are;
eacces
Missing search or write permissions for the parent directoriesof Di r .
eexi st

Thereisaready afile or directory named Di r .

76 | Ericsson AB. All Rights Reserved.: Kernel

file

enoent

A component of Di r does not exist.
enospc

Thereisano space |eft on the device.
enotdir

A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

make_| i nk(Exi sting, New) -> ok | {error, Reason}
Types:

Exi sting = New = nane()

Reason = posix() | badarg

Makes a hard link from Exi st i ng to New, on platforms that support links (Unix). This function returns ok if the
link was successfully created, or { er r or, Reason} . On platformsthat do not support links, { er r or , enot sup}
isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Hard links are not supported on this platform.

make_sym i nk(Nanel, Nanme2) -> ok | {error, Reason}
Types:

Namel = Nane2 = nane()

Reason = posix() | badarg

This function creates asymbolic link Nanme2 to thefile or directory Nane1, on platforms that support symbolic links
(most Unix systems). Nae 1 need not exist. Thisfunctionreturnsok if thelink was successfully created, or { er r or ,
Reason} . On platformsthat do not support symbolic links, { er r or, enot sup} isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Nanmel or Nane2.
eexi st
Nane2 already exists.
enot sup
Symboalic links are not supported on this platform.

native_nanme_encoding() -> latinl | utf8

This function returns the configured default file name encoding to use for raw file names. Generally an application
supplying file names raw (as binaries), should obey the character encoding returned by this function.

Ericsson AB. All Rights Reserved.: Kernel | 77

file

By default, the VM uses | SO-latin-1 file name encoding on filesystems and/or OSes that use completely transparent
file naming. This includes all Unix versions except MacOSX, where the vfs layer enforces UTF-8 file naming. By
giving the experimental option +f nu when starting Erlang, UTF-8 translation of file names can be turned on even for
those systems. If Unicode file name trandation isin effect, the system behaves as usual aslong asfile names conform
to the encoding, but will return file names that are not properly encoded in UTF-8 as raw file names (i.e. binaries).

On Windows, thisfunction also returns ut f 8 by default. The OS uses a pure Unicode naming scheme and file names
arealwayspossibletointerpret asvalid Unicode. Thefact that the underlying Windows OS actually encodesfile names
using little endian UTF-16 can be ignored by the Erlang programmer. Windows and MacOSX are the only operating
systems where the VM operates in Unicode file name mode by default.

open(Fi |l enamre, Modes) -> {ok, loDevice} | {error, Reason}
Types:
Fi |l ename = nane()
Modes = [node()]
| oDevi ce = io_device()
Reason = posix() | badarg | systemlinit
OpensthefileFi | enane inthe mode determined by Mbdes, which may contain one or more of the following items:
read
Thefile, which must exist, is opened for reading.
wite
The file is opened for writing. It is created if it does not exist. If the file exists, and if wri t e is not combined
withr ead, the file will be truncated.
append

Thefilewill be opened for writing, and it will be created if it does not exist. Every write operation to afile opened
with append will take place at the end of thefile.

excl usi ve

The file, when opened for writing, is created if it does not exist. If the file exists, open will return { er r or,
eexi st}.

Warning:

This option does not guarantee exclusiveness on file systems that do not support O_EXCL properly, such
as NFS. Do not depend on this option unless you know that the file system supportsit (in general, local file
systems should be safe).

raw

Ther aw option allows faster access to afile, because no Erlang process is needed to handle the file. However,
afile opened in this way has the following limitations:

« Thefunctionsinthei o module cannot be used, because they can only talk to an Erlang process. Instead,
usetheread/ 2,read_|ine/1landwite/ 2 functions.

* Especidlyifread_l i ne/ 1istobeused onar awfile, it is recommended to combine this option with
the{read_ahead, Si ze} optionaslineoriented I/O isinefficient without buffering.

e Only the Erlang process which opened the file can use it.

78 | Ericsson AB. All Rights Reserved.: Kernel

file

< A remote Erlang file server cannot be used; the computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

bi nary
When this option has been given, read operations on the file will return binaries rather than lists.
{del ayed write, Size, Del ay}

If thisoptionisused, thedatain subsequentwr i t e/ 2 callsisbuffered until thereareat least Si ze bytesbuffered,
or until the oldest buffered datais Del ay milliseconds old. Then all buffered data is written in one operating
system call. The buffered datais also flushed before some other file operation thanwr i t e/ 2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls, so the
write/ 2 cals should be for sizes significantly less than Si ze, and not interspersed by to many other file
operations, for this to happen.

When this option is used, the result of wr i t e/ 2 calls may prematurely be reported as successful, and if awrite
error should actually occur the error is reported as the result of the next file operation, which is not executed.

For example, when del ayed_wri t e is used, after a number of write/ 2 cals, cl ose/ 1 might return
{error, enospc} becausetherewasnot enough space onthedisc for previously written data, and cl ose/ 1
should probably be called again since thefile is still open.

del ayed_wite
The sameas{del ayed wite, Size, Delay} withreasonable default values for Si ze and Del ay.
(Roughly some 64 KBytes, 2 seconds)

{read_ahead, Size}

This option activates read data buffering. If r ead/ 2 calls are for significantly less than Si ze bytes, read
operations towards the operating system are till performed for blocks of Si ze bytes. The extra data is buffered
and returned in subsequent r ead/ 2 calls, giving a performance gain since the number of operating system calls
is reduced.

Ther ead_ahead buffer isalso highly utilized by ther ead_| i ne/ 1 functioninr awmode, why this option
is recommended (for performance reasons) when accessing raw files using that function.

If read/ 2 callsarefor sizes not significantly less than, or even greater than Si ze bytes, no performance gain
can be expected.

read_ahead
Thesameas{r ead_ahead, Si ze} with areasonable default valuefor Si ze. (Roughly some 64 KBytes)
conpr essed

Makesit possibleto read or write gzip compressed files. The conpr essed option must be combined with either
read orwr it e, but not both. Note that the file size obtained withr ead_f i | e_i nf o/ 1 will most probably
not match the number of bytes that can be read from a compressed file.

{encodi ng, Encodi ng}

Makes the file perform automatic trandation of characters to and from a specific (Unicode) encoding. Note that
the data supplied to file:write or returned by filerread till is byte oriented, this option only denotes how data is
actually stored in the disk file.

Depending on the encoding, different methods of reading and writing data is preferred. The default encoding
of I ati nl implies using this (the file) module for reading and writing data, as the interfaces provided here
work with byte-oriented data, while using other (Unicode) encodings makes the io(3) modules get _char s,
get _|i ne and put _char s functions more suitable, asthey can work with the full Unicode range.

Ericsson AB. All Rights Reserved.: Kernel | 79

file

If dataissenttoani o_devi ce() inaformat that cannot be converted to the specified encoding, or if data
isread by afunction that returns datain aformat that cannot cope with the character range of the data, an error
occurs and the file will be closed.

The alowed valuesfor Encodi ng are;
latinl

The default encoding. Bytes supplied to i.e. filewrite are written as is on the file, likewise bytes read from the
filearereturned toi.e. filerread asis. If theio(3) moduleis used for writing, the file can only cope with Unicode
characters up to codepoint 255 (the I SO-latin-1 range).

uni code orut f 8

Characters are trandated to and from the UTF-8 encoding before being written to or read from the file. A file
opened in thisway might be readable using the file:read function, aslong as no data stored on the file lies beyond
the I SO-latin-1 range (0..255), but failure will occur if the data contains Unicode codepoints beyond that range.
Thefileis best read with the functions in the Unicode aware io(3) module.

Bytes written to the file by any means are translated to UTF-8 encoding before actually being stored on the disk
file.

utfl6or{utf 16, bi g}

Workslike uni code, but trandation is done to and from big endian UTF-16 instead of UTF-8.
{utfl6,little}

Workslike uni code, but tranglation is done to and from little endian UTF-16 instead of UTF-8.
utf32or{utf32, bi g}

Workslike uni code, but trandlation is done to and from big endian UTF-32 instead of UTF-8.
{utf32,1ittle}

Workslike uni code, but tranglation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for afile"on the fly" by using the io: setopts/2 function, why afile can be analyzed
in latinl encoding for i.e. a BOM, positioned beyond the BOM and then be set for the right encoding before
further reading. See the unicode(3) module for functions identifying BOM's.

Thisoption is not allowed on r awfiles.

Returns:
{ok, | oDevice}

The file has been opened in the requested mode. | oDevi ce isareferenceto thefile.

{error, Reason}

The file could not be opened.

| oDevi ce isreally the pid of the process which handlesthefile. This processislinked to the processwhich originally
openedthefile. If any processto whichthel oDevi ce islinked terminates, thefilewill be closed and the processitself
will beterminated. An | oDevi ce returned from this call can be used as an argument to the IO functions (seeio(3)).

Note:

In previous versions of f i | e, modes were given as one of the atomsr ead, wite,orread_wit e instead
of alist. Thisis still allowed for reasons of backwards compatibility, but should not be used for new code. Also
notethat r ead_wri t e isnot allowed in amode list.

80 | Ericsson AB. All Rights Reserved.: Kernel

file

Typical error reasons:
enoent

Thefile does not exist.
eacces

Missing permission for reading the file or searching one of the parent directories.
eisdir

The named fileis not aregular file. It may be a directory, afifo, or adevice.
enotdir

A component of the file nameis not adirectory. On some platforms, enoent isreturned instead.
enospc

Thereisano space left on the device (if wr i t e access was specified).

pat h_consul t (Pat h, Filenane) ->
{ok, Terns, FullNane} | {error, Reason}

Types:
Path = [Dir]
Dir = Filename = name()
Terns = [term()]
Ful | Name = fil enanme()

Reason = posi x()

| badarg

| term nated

| systemlimt

| {Line :: integer(), Md :: nodule(), Term:: term)}

Searches the path Pat h (alist of directory names) until the file Fi | enan®e isfound. If Fi | ename is an absolute
filename, Pat h isignored. Then reads Erlang terms, separated by '.", from the file. Returns one of the following:

{ok, Terms, Full Nane}
The file was successfully read. Ful | Nare isthe full name of thefile.
{error, enoent}
Thefile could not be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang termsin the file. Usef or mat _er r or / 1 to convert the three-
element tuple to an English description of the error.

pat h_eval (Path, Filenanme) -> {ok, FullNane} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 81

file

Path = [Dir :: name()]
Fi | ename nane()
Ful Name = fil ename()

Reason = posi x()
| badarg
|
|

ter m nat ed
systemlinit
| {Line :: integer(), Mdd :: nodule(), Term:: term()}

Searchesthe path Pat h (alist of directory names) until thefile Fi | ename isfound. If Fi | enamne isan absolutefile
name, Pat h isignored. Then reads and eval uates Erlang expressions, separated by '.' (or *,', a sequence of expressions
isalso an expression), from the file. The actual result of evaluation is not returned; any expression sequence in thefile
must be there for its side effect. Returns one of the following:

{ok, Full Nane}
Thefile was read and evaluated. Ful | Nare isthe full name of thefile.
{error, enoent}
Thefile could not be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Use f or mat _error/ 1 to convert the
three-element tuple to an English description of the error.

pat h_open(Pat h, Filenane, Mdes) ->
{ok, loDevice, FullName} | {error, Reason}

Types:

Path = [Dir :: name()]

Fi |l ename = nane()

Modes = [node()]

| oDevi ce = io_device()

Ful | Name = fil enane()

Reason = posix() | badarg | systemlinit

Searchesthe path Pat h (alist of directory names) until thefile Fi | ename isfound. If Fi | ename isan absolutefile
name, Pat h isignored. Then opens the file in the mode determined by Modes. Returns one of the following:

{ok, loDevice, Full Nane}

The file has been opened in the requested mode. | oDevi ce isareferenceto thefileand Ful | Nane isthe full
name of thefile.

{error, enoent}

Thefile could not be found in any of the directoriesin Pat h.
{error, atom)}

Thefile could not be opened.

pat h_script(Path, Filenane) ->

82 | Ericsson AB. All Rights Reserved.: Kernel

file

{ok, Value, FullNanme} | {error, Reason}

Types:

Path = [Dir :: name()]

Fi |l ename = nane()

Value = term))

Ful | Name = fil ename()

Reason = posi x()
| badarg
| term nated
| systemlinit
| {Line :: integer(), Md :: nodule(), Term:: tern()}
Searchesthe path Pat h (alist of directory names) until thefile Fi | ename isfound. If Fi | enamne isan absolutefile
name, Pat h isignored. Then reads and eval uates Erlang expressions, separated by '." (or *,', a sequence of expressions
is aso an expression), from the file. Returns one of the following:

{ok, Val ue, Full Nane}
Thefilewasread and evaluated. Ful | Nane isthefull nameof thefileand Val ue thevalue of thelast expression.
{error, enoent}
Thefile could not be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

pat h_script(Path, Filenane, Bindings) ->
{ok, Value, FullNanme} | {error, Reason}

Types.

Path = [Dir :: nane()]

Fi |l ename = nane()

Bi ndi ngs = erl _eval : bindi ng_struct()

Value = term)

Ful | Name = fil ename()

Reason = posi x()
| badarg
| term nated
| systemlinit
| {Line :: integer(), Md :: nodule(), Term:: term()}
The same as pat h_scri pt/ 2 but the variable bindings Bi ndi ngs are used in the evaluation. See erl_eval(3)
about variable bindings.

pi d2name(Pid) -> {ok, Filenane} | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 83

file

Filename = fil ename()

Pid = pid()
If Pi disan |0 device, that is, apid returned from open/ 2, this function returns the filename, or rather:
{ok, Filenane}

If this node's file server is not a slave, the file was opened by this node's file server, (thisimpliesthat Pi d must
be alocal pid) and the fileis not closed. Fi | enane isthefilenamein flat string format.

undef i ned

In all other cases.

Warning:
This function isintended for debugging only.

position(loDevice, Location) ->
{ok, NewPosition} | {error, Reason}

Types:
| oDevi ce = io_device()
Location = location()

NewPosi tion = integer()
Reason = posix() | badarg | term nated

Sets the position of the file referenced by | oDevi ce to Locat i on. Returns{ ok, NewPosi ti on} (asabsolute
offset) if successful, otherwise{ error, Reason}.Locati on isoneof thefollowing:

O fset

Thesameas{bof, O fset}.
{bof, O fset}

Absolute offset.
{cur, Ofset}

Offset from the current position.
{eof, O fset}

Offset from the end of file.
bof | cur | eof

The same as above with Of f set 0.

Note that offsets are counted in bytes, not in characters. If the file is opened using some other encodi ng than
I at i n1, onebyte does not correspond to one character. Positioning in such afile can only be doneto known character
boundaries, i.e. to aposition earlier retrieved by getting a current position, to the beginning/end of the file or to some
other position known to be on a correct character boundary by some other means (typically beyond a byte order mark
in the file, which has a known byte-size).

Typical error reasons are;

84 | Ericsson AB. All Rights Reserved.: Kernel

file

ei nval

Either Locat i on wasillegal, or it evaluated to a negative offset in the file. Note that if the resulting positionis
anegative value, theresult is an error, and after the call the file position is undefined.

pread(l oDevi ce, LocNums) -> {ok, DatalL} | eof | {error, Reason}
Types.

| oDevi ce = io_device()
LocNuns =
[{Location :: location(), Nunmber :: integer() >= 0}]

Dat aL = [Dat a]
Data = string() | binary() | eof
Reason = posix() | badarg | term nated
Performs a sequence of pr ead/ 3 in one operation, which is more efficient than calling them one at atime. Returns

{ok, [Data, ...]} or{error, Reason}, whereeach Dat a, the result of the corresponding pr ead, is
either alist or abinary depending on the mode of thefile, or eof if the requested position was beyond end of file.

Asthe position is given as a byte-offset, special caution has to be taken when working with files where encodi ng
is set to something elsethan | at i n1, as not every byte position will be avalid character boundary on such afile.

pread(l oDevi ce, Location, Nunber) ->
{ok, Data} | eof | {error, Reason}

Types:
| oDevi ce = io_device()
Location = | ocation()

Nunmber = integer() >= 0
Data = string() | binary()
Reason = posix() | badarg | term nated
Combines posi ti on/ 2 andr ead/ 2 in one operation, which is more efficient than calling them one at atime. If

| oDevi ce has been opened in raw mode, some restrictions apply: Locat i on isonly allowed to be an integer; and
the current position of the file is undefined after the operation.

As the position is given as a byte-offset, special caution has to be taken when working with files where encodi ng
is set to something elsethan | at i nl, as not every byte position will be avalid character boundary on such afile.

pwite(loDevice, LocBytes) -> ok | {error, {N, Reason}}

Types:
| oDevi ce = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]

N =integer() >=0
Reason = posix() | badarg | term nated

Performs a sequence of pwr i t e/ 3 in one operation, which is more efficient than calling them one at atime. Returns
okor{error, {N, Reason}},whereNisthenumber of successful writesthat was done before the failure.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary, see position/2 for details.

Ericsson AB. All Rights Reserved.: Kernel | 85

file

pwite(loDevice, Location, Bytes) -> ok | {error, Reason}

Types:
| oDevi ce = io_device()
Location = | ocation()
Bytes = iodata()

Reason = posix() | badarg | termnated

Combinesposi ti on/ 2 andwr it e/ 2 in one operation, which is more efficient than calling them one at atime. If
| oDevi ce has been opened in raw mode, some restrictions apply: Locat i on isonly allowed to be an integer; and
the current position of the file is undefined after the operation.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary, see position/2 for details.

read(l oDevice, Nunber) -> {ok, Data} | eof | {error, Reason}
Types:

| oDevice = io_device() | atom)

Number = integer() >= 0

Data = string() | binary()

Reason = posix() | badarg | term nated

Reads Nunber bytes/characters from the file referenced by | oDevi ce. The functions r ead/ 2, pr ead/ 3 and
read_| i ne/ 1 aretheonly ways to read from a file opened in raw mode (although they work for normally opened
files, t00).

For fileswhere encodi ng is set to something elsethan | at i n1, one character might be represented by more than
one byte on the file. The parameter Nunber aways denotes the number of characters read from the file, why the
position in the file might be moved alot more than this number when reading a Unicodefile.

Also if encodi ng is set to something elsethan | at i nl, ther ead/ 3 call will fail if the data contains characters
larger than 255, why the io(3) module isto be preferred when reading such afile.

The function returns:
{ok, Dat a}

If thefile was opened in binary mode, the read bytes are returned in abinary, otherwisein alist. Thelist or binary
will be shorter than the number of bytes requested if end of file was reached.

eof
Returned if Nurrber >0 and end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typica error reasons:
ebadf
Thefileis not opened for reading.
{no_transl ation, unicode, |atinl}

The file was opened with another encodi ng than| at i n1 and the datain the file can not be translated to the
byte-oriented data that this function returns.

86 | Ericsson AB. All Rights Reserved.: Kernel

file

read_file(Filename) -> {ok, Binary} | {error, Reason}
Types:

Fi | ename = nane()

Bi nary = binary()

Reason = posix() | badarg | termnated | systemlimt

Returns { ok, Bi nary}, where Bi nary is a binary data object that contains the contents of Fi | ename, or
{error, Reason} if anerror occurs.

Typical error reasons:
enoent

Thefile does not exist.
eacces

Missing permission for reading the file, or for searching one of the parent directories.
eisdir

The named fileis adirectory.
enotdir

A component of the file nameis not adirectory. On some platforms, enoent isreturned instead.
enomem

There is not enough memory for the contents of the file.

read_file_info(Filename) -> {ok, Filelnfo} | {error, Reason}

Types:
Fi | ename = nane()
Filelnfo = file_info()

Reason = posix() | badarg

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwise {error, Reason}.
Fil el nfoisarecordfil e_i nf o, defined in the Kernel includefilefi | e. hrl . Include the following directive
in the module from which the function is called:

-include_li b("kernel/include/file.hrl").

Therecordf i | e_i nf o contains the following fields.

size = integer()
Size of filein bytes.

type = device | directory | regular | other
Thetype of thefile.

access = read | wite | read_wite | none
The current system access to thefile.

atime = date_tine()
Thelast (loca) time the file was read.

Ericsson AB. All Rights Reserved.: Kernel | 87

file

ntinme = date_tine()
The last (local) time the file was written.
ctime = date_tine()

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
inode was changed. In Windows, it is the create time.

node = integer()
The file permissions as the sum of the following bit values:

8#00400

read permission; owner
8#00200

write permission: owner
8#00100

execute permission: owner
8#00040

read permission: group
8#00020

write permission: group
8#00010

execute permission: group
8#00004

read permission: other
8#00002

write permission: other
8#00001

execute permission: other
16#800

set user id on execution
16#400

set group id on execution

On Unix platforms, other bits than those listed above may be set.
links = integer()

Number of linksto the file (thiswill always be 1 for file systems which have no concept of links).
maj or _device = integer()

Identifies the file system where the file is located. In Windows, the number indicates adrive as follows: 0 means
A:, 1 meansB:, and so on.

m nor _device = integer()
Only valid for character devices on Unix. In al other cases, thisfield is zero.
i node = integer()
Givesthei node number. On non-Unix file systems, thisfield will be zero.
uid = integer()
Indicates the owner of the file. Will be zero for non-Unix file systems.
gid = integer()
Gives the group that the owner of the file belongs to. Will be zero for non-Unix file systems.
Typical error reasons:

88 | Ericsson AB. All Rights Reserved.: Kernel

file

eacces
Missing search permission for one of the parent directories of thefile.

enoent
The file does not exist.

enotdir
A component of the file name is not a directory. On some platforms, enoent isreturned instead.

read_l i ne(loDevice) -> {ok, Data} | eof | {error, Reason}
Types.

| oDevice = io_device() | atom)

Data = string() | binary()

Reason = posix() | badarg | term nated

Reads a line of bytes/characters from the file referenced by | oDevi ce. Lines are defined to be delimited by the
linefeed (LF, \ n) character, but any carriage return (CR, \ r) followed by a newline is aso treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by aLF. Thisbehaviour is consistent with the behaviour of io:get_line/2. If end of fileisreached
without any LF ending the last line, aline with no trailing LF is returned.

The function can be used on files opened in r awmaode. It is however inefficient to useit onr awfilesif thefileis not
opened withtheoption { r ead_ahead, Si ze} specified, why combiningr awand { r ead_ahead, Si ze} is
highly recommended when opening atext file for raw line oriented reading.

If encodi ng isset to something elsethan| at i n1,ther ead_| i ne/ 1 cal will fail if the data contains characters
larger than 255, why the io(3) module is to be preferred when reading such afile.

The function returns:
{ok, Data}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by asingle LF
(see above).

If the file was opened in binary mode, the read bytes are returned in a binary, otherwisein alist.
eof
Returned if end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.
{no_transl ation, unicode, |atinl}

The file is was opened with another encodi ng than| at i n1 and the data on the file can not be translated to
the byte-oriented data that this function returns.

read_I| i nk(Nane) -> {ok, Filenane} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 89

file

Name = namne()
Filename = fil enanme()
Reason = posix() | badarg

Thisfunction returns{ ok, Fi | enane} if Nane refersto asymboliclink or { error, Reason} otherwise. On
platforms that do not support symbolic links, the return value will be{ er r or , enot sup}.

Typica error reasons:
ei nval
Nane does not refer to a symbolic link.
enoent
Thefile does not exist.
enot sup

Symbolic links are not supported on this platform.

read_I| i nk_i nfo(Name) -> {ok, Filelnfo} | {error, Reason}
Types:

Name = name()

Filelnfo = file_info()

Reason = posix() | badarg

This function works liker ead_fil e_i nf o/ 1, except that if Name isasymbolic link, information about the link
will bereturned inthef i | e_i nf o record and thet ype field of the record will besettosymi i nk.

If Namre is not asymbolic link, this function returns exactly the sameresult asr ead_fi |l e_i nf o/ 1. On platforms
that do not support symbolic links, this function isawaysequivalenttor ead_fil e_i nfo/ 1.

rename(Source, Destination) -> ok | {error, Reason}

Types:
Source = Destination = nane()
Reason = posix() | badarg

Triestorenamethefile Sour ce toDest i nat i on. It can be used to movefiles (and directories) between directories,
but it is not sufficient to specify the destination only. The destination file name must also be specified. For example,

if bar isanormal file and f oo and baz are directories, r enane("f oo/ bar", "baz") returns an error, but
renanme("foo/ bar", "baz/bar") succeeds. Returnsok if it issuccessful.
Note:

Renaming of open filesis not allowed on most platforms (see eacces below).

Typical error reasons.
eacces

Missing read or write permissions for the parent directories of Sour ce or Dest i nat i on. On some platforms,
thiserror isgiven if either Sour ce or Dest i nat i on isopen.

90 | Ericsson AB. All Rights Reserved.: Kernel

file

eexi st

Dest i nati on isnot an empty directory. On some platforms, also given when Sour ce and Dest i nati on
are not of the sametype.

ei nval
Sour ce isaroot directory, or Dest i nat i on isasub-directory of Sour ce.
eisdir
Desti nati on isadirectory, but Sour ce isnot.
enoent
Sour ce does not exist.
enotdir
Sour ce isadirectory, but Dest i nat i on isnot.
exdev

Sour ce and Dest i nat i on areon different file systems.

script(Filenane) -> {ok, Value} | {error, Reason}
Types:

Fi |l ename = nane()

Value = term))

Reason = posi x()

| badarg

| term nated
| systemlinit
| {Line :: integer(), Mdd :: nodule(), Term:: term()}
Reads and evaluates Erlang expressions, separated by *." (or *,', a sequence of expressionsis also an expression), from
the file. Returns one of the following:
{ok, Val ue}

Thefilewasread and evaluated. Val ue isthe value of the last expression.
{error, atom)}

An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.
{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _er r or/ 1 to convert the
three-element tuple to an English description of the error.

script(Filename, Bindings) -> {ok, Value} | {error, Reason}
Types.

Fi | ename nane()

Bi ndi ngs erl _eval : bi ndi ng_struct ()

Value = term)

Reason = posi x()
| badarg
|
|

term nat ed
systemlimt

Ericsson AB. All Rights Reserved.: Kernel | 91

file

| {Line :: integer(), Mdd :: nodule(), Term:: term()}

The same as scri pt/ 1 but the variable bindings Bi ndi ngs are used in the evaluation. See erl_eval(3) about
variable bindings.

set_cwd(Dir) -> ok | {error, Reason}
Types.
Dir = nane()
Reason = posix() | badarg
Sets the current working directory of the file server to Di r . Returns ok if successful.
Typical error reasons are:
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned.
eacces
Missing permission for the directory or one of its parents.
badar g
Di r had an improper type, such astuple.

Warning:

In afuture release, a bad type for the Di r argument will probably generate an exception.

sync(l oDevice) -> ok | {error, Reason}
Types:

| oDevi ce = io_device()

Reason = posix() | badarg | term nated

Makes sure that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On
some platforms, this function might have no effect.

Typical error reasons are;
enospc
Not enough space |eft to write the file.

dat async(l oDevice) -> ok | {error, Reason}
Types:
| oDevi ce = io_device()
Reason = posix() | badarg | term nated
Makes sure that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In

many ways it's resembles fsync but it not requires to update some of file's metadata such as the access time. On some
platforms, this function might have no effect.

92 | Ericsson AB. All Rights Reserved.: Kernel

file

Applications that access databases or log files often write a tiny data fragment (e.g., onelinein alog file) and then
call fsync() immediately in order to ensure that the written data is physically stored on the harddisk. Unfortunately,
fsync() will always initiate two write operations: one for the newly written data and another one in order to update the
modification time stored in the inode. If the modification time is not a part of the transaction concept fdatasync() can
be used to avoid unnecessary inode disk write operations.

Available only in some POSIX systems. This call results in a call to fsync(), or has no effect, in systems not
implementing the fdatasync syscall.

truncate(l oDevice) -> ok | {error, Reason}
Types:

| oDevi ce = io_device()

Reason = posix() | badarg | term nated

Truncates the file referenced by | oDevi ce at the current position. Returns ok if successful, otherwise { er r or,
Reason}.

write(loDevice, Bytes) -> ok | {error, Reason}
Types:

| oDevice = io_device() | atom()

Bytes = iodata()

Reason = posix() | badarg | term nated

WritesByt es tothefilereferenced by | oDevi ce. Thisfunctionistheonly way to writeto afile opened in raw mode
(although it works for normally opened files, too). Returns ok if successful, and { error, Reason} otherwise.

If the file is opened with encodi ng set to something else than | at i n1, each byte written might result in several
bytes actually being written to thefile, as the byte range 0..255 might represent anything between one and four bytes
depending on value and UTF encoding type.

Typical error reasons are:
ebadf

Thefileis not opened for writing.
enospc

There is ano space left on the device.

wite file(Filenane, Bytes) -> ok | {error, Reason}
Types:

Fi |l ename = nane()

Bytes = iodata()

Reason = posix() | badarg | terminated | systemlinit

Writes the contents of the iodataterm Byt es tothefileFi | enane. Thefileiscreated if it does not exist. If it exists,
the previous contents are overwritten. Returnsok, or { err or, Reason}.

Typical error reasons are:
enoent
A component of the file name does not exist.
enotdir
A component of the file nameis not a directory. On some platforms, enoent isreturned instead.

Ericsson AB. All Rights Reserved.: Kernel | 93

file

enospc

There isano space |eft on the device.
eacces

Missing permission for writing the file or searching one of the parent directories.
eisdir

The named fileisadirectory.

wite_file(Filename, Bytes, Mdes) -> ok | {error, Reason}
Types.

Fi |l ename = nane()

Bytes = iodata()

Modes = [node()]

Reason = posix() | badarg | termnated | systemlimt

Sameaswite fil e/ 2,buttakesathird argument Modes, alist of possible modes, see open/2. The mode flags
bi nary andwri t e areimplicit, so they should not be used.

wite file_ info(Filename, Filelnfo) -> ok | {error, Reason}
Types:

Fi | ename nane()

Filelnfo = file_info()

Reason = posix() | badarg

Change file information. Returns ok if successful, otherwise {error, Reason}. Filelnfo is a record
file_info,definedintheKerne includefilefi | e. hrl .Includethefollowing directiveinthe modulefromwhich
the function is called:

-include_li b("kernel/include/file.hrl").

The following fields are used from the record, if they are given.
atime = date_tine()
Thelast (loca) time the file was read.
nime = date_tine()
The last (local) time the file was written.
ctime = date_tine()

On Unix, any value give for thisfield will be ignored (the "ctime" for the file will be set to the current time). On
Windows, thisfield isthe new creation time to set for thefile.

node = integer()
The file permissions as the sum of the following bit values:

8#00400

read permission: owner
8#00200

write permission: owner

94 | Ericsson AB. All Rights Reserved.: Kernel

file

8#00100

execute permission: owner
8#00040

read permission: group
8#00020

write permission: group
8#00010

execute permission: group
8#00004

read permission: other
8#00002

write permission: other
8#00001

execute permission: other
16#800

set user id on execution
16#400

set group id on execution

On Unix platforms, other bits than those listed above may be set.
uid = integer()

Indicates the owner of thefile. Ignored for non-Unix file systems.
gid = integer()

Gives the group that the owner of the file belongs to. Ignored non-Unix file systems.
Typical error reasons:
eacces

Missing search permission for one of the parent directories of thefile.
enoent

The file does not exist.
enotdir

A component of the file nameis not adirectory. On some platforms, enoent isreturned instead.

POSIX Error Codes

e eacces - permission denied

e eagai n - resource temporarily unavailable
e ebadf - bad file number

e ebusy -filebusy

e edquot - disk quota exceeded

e eexi st -filedready exists

« efault -badaddressin system call argument
« ef bi g-filetoolarge

e eintr -interrupted system call

e einval -invalid argument

e eio-Il0error

e eisdir -illega operation on adirectory

Ericsson AB. All Rights Reserved.: Kernel | 95

file

e el oop - too many levels of symbolic links
« enfil e -toomany openfiles

« enlink -toomany links

e enanet ool ong - filename too long
« enfil e-filetableoverflow

* enodev - no such device

e enoent - no such file or directory

e enonem- not enough memory

* enospc - no space left on device

» enot bl k - block device required

e« enotdir -notadirectory

e enot sup - operation not supported

e enxi o - no such device or address

e eper m- not owner

e epi pe - broken pipe

e erofs -read-only file system

e espi pe -invalid seek

e esrch -nosuch process

* estal e-staeremotefile handle

» exdev - cross-domain link

Performance

Some operating system file operations, for exampleasync/ 1 or cl ose/ 1 on a huge file, may block their calling
thread for seconds. If this befalls the emulator main thread, the responsetimeis no longer in the order of milliseconds,
depending on the definition of "soft" in soft real-time system.

If the device driver thread pool is active, file operations are done through those threads instead, so the emulator can go
on executing Erlang processes. Unfortunately, thetimefor serving afile operation increases dueto the extrascheduling
required from the operating system.

If the device driver thread pool is disabled or of size O, large file reads and writes are segmented into several smaller,
which enables the emulator so server other processes during the file operation. This gives the same effect as when
using the thread pool, but with larger overhead. Other file operations, for example sync/ 1 or cl ose/ 1 on a huge
file, still are a problem.

For increased performance, raw files are recommended. Raw files uses the file system of the node's host machine.
For normal files (non-raw), the file server is used to find the files, and if the node is running its file server as slave
to another node's, and the other node runs on some other host machine, they may have different file systems. Thisis
seldom a problem, but you have now been warned.

A normal fileisreally aprocess so it can be used asan 10 device (seei 0). Therefore when datais written to a normal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binariesis therefore recommended. If the file is opened on ancther node, or if the file server runs as slave
to another node's, also binaries are copied.

Caching data to reduce the number of file operations, or rather the number of calls to the file driver, will generally
increase performance. The following function writes 4 MBytes in 23 seconds when tested:

create_file_slowm Name, N) when integer(N), N>= 0 ->
{ok, FD} = file:open(Nane, [raw, wite, delayed_wite, binary]),

96 | Ericsson AB. All Rights Reserved.: Kernel

file

ok = create_file_slow(FD, 0, N),
ok = ?FI LE_MODULE: cl ose(FD),
ok.

create file_slom(FD, M M
ok;

create file_slowm(FD, M N) ->
ok = file:wite(FD, <<M 32/unsigned>>),
create_file_slowm(FD, Mtl, N).

->

The following, functionally equivalent, function collects 1024 entries into a list of 128 32-byte binaries before each
caltofil e:wite/ 2 andsodoesthe samework in 0.52 seconds, which is 44 times faster.

create_file(Name, N) when integer(N), N>= 0 ->

{ok, FD} = file:open(Nanme, [raw, wite,
ok = create_file(FD, 0, N),

ok = ?FI LE_MODULE: cl ose(FD),

ok.

create file(FDb M M ->

ok;

create file(FD, M N when M+ 1024 =&t; N ->
create file(FD, M M+ 1024, []),
create file(FD, M+ 1024, N);

create file(FDb M N ->
create file(FD, M N, []).

create file(FDb M M R ->
ok = file:wite(FD, R);

create file(FD, M NO, R) when M+ 8 =&l t; NO ->
NI = NO-1, N2 = NO-2, N3 = NO-3, M =
N5 = NO-5, N6 = NO-6, N7 = NO-7, N8 =

create file(FD, M N8,
[<<N8: 32/ unsi gned,
N6: 32/ unsi gned,
N4: 32/ unsi gned,
N2: 32/ unsi gned,
create file(FD, M NO, R ->
N1 = NO-1,

create file(FD, M N1, [<<N1l:32/unsigned>> |

Note:

del ayed_write,

bi nary]),

NO- 4,
NO- 8,

N7: 32/ unsi gned,
N5: 32/ unsi gned,
N3: 32/ unsi gned,
N1: 32/ unsi gned>> |

R);

Rl).

Trust only your own benchmarks. If thelist lengthincreat e fi | e/ 2 aboveisincreased, it will run dightly
faster, but consume more memory and cause more memory fragmentation. How much this affectsyour application

is something that this simple benchmark can not predict.

If the size of each binary is increased to 64 bytes, it will aso run slightly faster, but the code will be twice as
clumsy. In the current implementation are binarieslarger than 64 bytes stored in memory common to all processes
and not copied when sent between processes, while these smaller binaries are stored on the process heap and

copied when sent like any other term.

So, with abinary size of 68 bytescr eat e _fi | e/ 2 runs 30 percent slower then with 64 bytes, and will cause
much more memory fragmentation. Note that if the binaries were to be sent between processes (for example a
non-raw file) the results would probably be completely different.

Ericsson AB. All Rights Reserved.: Kernel | 97

file

A raw file isrealy a port. When writing data to a port, it is efficient to write a list of binaries. There is no need to
flatten a deep list before writing. On Unix hosts, scatter output, which writes a set of buffersin one operation, is used
when possible. Inthisway fil e:wite(FD, [Binl, Bin2 | Bin3]) will writethe contents of the binaries
without copying the data at all except for perhaps deep down in the operating system kernel.

For raw files, pwr i t e/ 2 and pr ead/ 2 areefficiently implemented. Thefiledriver iscaled only oncefor the whole
operation, and the list iteration is done in the file driver.

Theoptionsdel ayed_write andread_aheadtofil e: open/ 2 makesthefile driver cache datato reduce the
number of operating system calls. The function cr eat e_f i | e/ 2 in the example above takes 60 seconds seconds
without the del ayed_wr i t e option, which is 2.6 times slower.

And, as aredly bad example, creat e_fil e_sl ow 2 above without ther aw, bi nary and del ayed_wite
options, that isit callsfi | e: open(Nane, [wite]), needs1 min 20 seconds for the job, which is 3.5 times
slower than the first example, and 150 times slower than the optimized creat e_fi |l e/ 2.

Warnings

If an error occurs when accessing an open file with the i o module, the process which handles the file will exit. The
dead file process might hang if a process tries to accessit later. Thiswill be fixed in afuture release.

SEE ALSO
filename(3)

98 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

gen_tcp

Erlang module

Thegen_t cp module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment provides a simple example of a client connecting to a server at port 5678, transferring
abinary and closing the connection:

client() ->
SonmeHost I nNet = "l ocal host", %to nmake it runnabl e on one machi ne
{ok, Sock} = gen_tcp:connect (SonmeHost|nNet, 5678,
[bi nary, {packet, 0}]),
gen_t cp: send(Sock, "Sone Data"),
gen_t cp: cl ose(Sock) .

ok
ok

At the other end a server islistening on port 5678, accepts the connection and receives the binary:

server() ->
{ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
{active, false}]),
{ok, Sock} = gen_tcp: accept (LSock),
{ok, Bin} = do_recv(Sock, []),
ok = gen_tcp: cl ose(Sock),
Bi n.

do_recv(Sock, Bs) ->
case gen_tcp: recv(Sock, 0) of
{ok, B} ->
do_recv(Sock, [Bs, B]);
{error, closed} ->
{ok, list_to_binary(Bs)}
end.

For more exampl es, see the examples section.

Data Types

option() = {active, true | false | once}
{bit8, clear | set | on | off}
{buffer, integer() >= 0}

{del ay_send, bool ean()}
{deliver, port | terng
{dontroute, boolean()}
{exit_on_cl ose, bool ean()}
{header, integer() >= 0}

{hi gh_watermark, integer() >= 0}
{keepal i ve, bool ean()}

{l'inger, {boolean(), integer() >= 0}}
{l ow wat ermark, integer() >= 0}
{node, list | binary}

list

I
I
I
I
I
I
I
I
I
I
I
I
I
| binary

Ericsson AB. All Rights Reserved.: Kernel | 99

gen_tcp

| {nodel ay, bool ean()}
| {packet,

0 |
1]
2 |
4|
raw |

sunrm |

asnl |

cdr

fcgi |

line

t pkt |

http

httph |

http_bin |

ht t ph_bi n}
| {packet_size, integer() >= 0}
| {priority, integer() >= 0}

| {raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

Val ueBin :: binary()}
{recbuf, integer() >= 0}
{reuseaddr, bool ean()}
{send_tinmeout, integer() >= 0 | infinity}
{send_tineout _cl ose, bool ean()}
{sndbuf, integer() >= 0}
{tos, integer() >= 0}
option_nane() = active
| bit8
| buffer
| delay_send
| deliver
| dontroute
| exit_on_close
| header
| high_wat ernark
| keepalive
|
I
I
I
I
I
I

i nger

| ow_wat er mar k

node

nodel ay

packet

packet si ze

priority

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,
Val ueSpec :: (ValueSize :: integer() >= 0)

| (ValueBin :: binary())}
| recbuf

100 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

| reuseaddr

| send_timeout

| send_tinmeout_cl ose

| sndbuf

| tos
connect _option() = {ip, inet:ip_address()}
| {fd, Fd :: integer() >= 0}
| {ifaddr, inet:ip_address()}
| inet:address famly()
| {port, inet:port_nunber()}
| {tcp_nodul e, nodule()}
|

option()
listen_option() = {ip, inet:ip_address()}
{fd, Fd :: integer() >= 0}

|
| {ifaddr, inet:ip_address()}
| inet:address_famly()

| {port, inet:port_nunber()}
|

|

|

{backlog, B :: integer() >= 0}
{tcp_nodul e, nodul e()}
option()

socket ()
Asreturned by accept/1,2 and connect/3,4.

Exports

connect (Address, Port, Options) -> {ok, Socket} | {error,

connect (Address, Port, Options, Timeout) ->
{ok, Socket} | {error, Reason}

Types:
Address = inet:ip_address() | inet:hostnane()
Port = inet:port_nunber()

Options = [connect _option()]
Ti meout = timeout ()

Socket = socket ()

Reason = i net: posi x()

Reason}

Connectsto aserver on TCP port Por t on the host with IP address Addr ess. The Addr ess argument can be either

ahostname, or an |P address.
The available options are:
list
Recelved Packet isdelivered asalist.
bi nary
Received Packet isdelivered asabinary.
{ip, ip_address()}

If the host has several network interfaces, this option specifies which oneto use.

Ericsson AB. All Rights Reserved.: Kernel | 101

gen_tcp

{port, Port}
Specify which local port number to use.
{fd, integer() >= 0}
If asocket has somehow been connected without using gen_t cp, usethis option to passthefile descriptor for it.
i net6
Set up the socket for 1Pv6.
i net
Set up the socket for |1Pv4.
Opt
See inet: setopts/2.

Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

If the socket is closed, the following message is delivered:

{tcp_cl osed, Socket}

If an error occurs on the socket, the following message is delivered:

{tcp_error, Socket, Reason}

unless{active, fal se} isspecifiedintheoptionlistfor the socket, in which case packetsareretrieved by calling
recv/ 2.

Theoptional Ti meout parameter specifies atimeout in milliseconds. The default valueisi nfi nity.

Note:

The default values for options given to connect can be affected by the Kernel configuration parameter
i net _default_connect_opti ons. Seeinet(3) for details.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = inet:port_nunber()

Options = [listen_option()]

Li st enSocket = socket ()

Reason = i net: posi x()
Sets up a socket to listen on the port Por t on the local host.

If Port == 0, theunderlying OS assigns an available port number, usei net : port/ 1 toretrieveit.

102 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

The available options are;
list
Received Packet isdelivered asalist.
bi nary
Received Packet isdelivered as abinary.
{backl og, B}

B is an integer >= 0. The backlog value defaults to 5. The backlog value defines the maximum length that the
gueue of pending connections may grow to.

{ip, ip_address()}
If the host has several network interfaces, this option specifies which oneto listen on.
{port, Port}
Specify which local port number to use.
{fd, Fd}
If asocket has somehow been connected without using gen_t cp, usethisoption to passthe file descriptor for it.
i net6
Set up the socket for |Pv6.
i net
Set up the socket for 1Pv4.
Opt
See inet: setopts/2.
Thereturned socket Li st enSocket canonly beusedincalstoaccept/ 1, 2.

Note:

The default values for options given to | i st en can be affected by the Kernel configuration parameter
i net_default |isten_options. Seeinet(3) for details.

accept (Li stenSocket) -> {ok, Socket} | {error, Reason}
accept (Li stenSocket, Tinmeout) -> {ok, Socket} | {error, Reason}
Types.

Li st enSocket = socket ()

Returned by | i st en/ 2.

Ti meout = timeout ()

Socket socket ()

Reason = closed | tinmeout | inet:posix()

Accepts an incoming connection request on a listen socket. Socket must be a socket returned from | i st en/ 2.
Ti meout specifiesatimeout valuein ms, defaultstoi nfinity.

Returns{ ok, Socket} if aconnectionis established, or {error, cl osed} if Li stenSocket isclosed, or
{error, timeout} if noconnectionisestablished within the specified time. May also return aPOSI X error value
if something else goes wrong, see inet(3) for possible error values.

Ericsson AB. All Rights Reserved.: Kernel | 103

gen_tcp

Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

unless{acti ve, fal se} wasspecifiedinthe option list for the listen socket, in which case packets are retrieved
by callingr ecv/ 2.

Note:

It isworth noting that the accept call does not have to be issued from the socket owner process. Using version
5.5.3 and higher of the emulator, multiple simultaneous accept calls can beissued from different processes, which
allows for apool of acceptor processes handling incoming connections.

send(Socket, Packet) -> ok | {error, Reason}

Types.
Socket = socket ()
Packet = iodata()
Reason = inet: posix()
Sends a packet on a socket.

Thereisno send call with timeout option, you usethe send_t i meout socket option if timeouts are desired. See
the examples section.

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Tineout) -> {ok, Packet} | {error, Reason}

Types:
Socket = socket ()
Length = integer() >= 0

Ti meout = timeout ()

Packet string() | binary() | HttpPacket
Reason = cl osed | inet: posix()

Ht t pPacket = tern()

See the description of Ht t pPacket in erlang:decode packet/3.

Thisfunction receives apacket from asocket in passive mode. A closed socket isindicated by areturnvalue{ er r or ,
cl osed}.

TheLengt h argument isonly meaningful when the socket isin r awmode and denotes the number of bytesto read. If
Lengt h =0, al available bytesarereturned. If Lengt h >0, exactly Lengt h bytesarereturned, or an error; possibly
discarding lessthan Lengt h bytes of datawhen the socket gets closed from the other side.

The optional Ti meout parameter specifies atimeout in milliseconds. The default valueisi nfinity.

control ling_process(Socket, Pid) -> ok | {error, Reason}
Types:

104 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

Socket = socket ()
Pid = pid()
Reason = closed | not_owner | inet:posix()

Assigns a hew controlling process Pi d to Socket . The controlling process is the process which receives messages
from the socket. If called by any other process than the current controlling process, { er r or, eper n} isreturned.

cl ose(Socket) -> ok

Types:
Socket = socket ()
Closes a TCP socket.

shut down(Socket, How) -> ok | {error, Reason}
Types.
Socket = socket ()
How = read | wite | read_wite
Reason = inet: posix()
Immediately close a socket in one or two directions.
How == wri t e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, the{ exi t _on_cl ose, fal se} option
is useful.

Examples

The following exampleillustrates usage of the { active,once} option and multiple accepts by implementing a server as
anumber of worker processes doing accept on one single listen socket. The start/2 function takes the number of worker
processes as well as a port number to listen for incoming connections on. If LPor t is specified as 0, an ephemeral
portnumber is used, why the start function returns the actual portnumber alocated:

start (Num LPort) ->
case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of
{ok, ListenSock} ->
start_servers(Num Li st enSock),
{ok, Port} = inet:port(ListenSock),
Port;
{error, Reason} ->
{error, Reason}
end.

start_servers(0,_) ->
ok;

start_servers(NumLS) ->
spawn(?MODULE, server, [LS]),
start_servers(Num1,LS).

server(LS) ->
case gen_tcp: accept (LS) of

{ok, S} ->
| oop(S),
server (LS);

O her ->
io:format ("accept returned ~w - goodbye!~n",[Ct her]),
ok

Ericsson AB. All Rights Reserved.: Kernel | 105

gen_tcp

end.

| oop(S) ->
i net:setopts(S,[{active,once}]),
recei ve
{tcp, S, Data} ->
Answer = process(Data), % Not inplenmented in this exanple
gen_t cp: send(S, Answer),
I oop(S);
{tcp_cl osed, S} ->
io:format ("Socket ~w closed [~w]~n",[S,self()]),
ok
end.

A simple client could look like this:

client(PortNo, Message) ->
{ok, Sock} = gen_tcp: connect ("l ocal host", Port No, [{acti ve, fal se},
{packet, 2}1),
gen_t cp: send(Sock, Message) ,
A = gen_tcp: recv(Sock, 0),
gen_t cp: cl ose(Sock),
A

Thefact that thesend call does not accept atimeout option, is because timeouts on send is handled through the socket
option send_t i meout . The behavior of a send operation with no receiver isin avery high degree defined by the
underlying TCP stack, aswell asthe network infrastructure. If one wantsto write code that handles a hanging receiver
that might eventually cause the sender to hang on asend call, one writes code like the following.

Consider a process that receives data from a client process that is to be forwarded to a server on the network. The
process has connected to the server via TCP/IP and does not get any acknowledge for each message it sends, but has
to rely on the send timeout option to detect that the other end is unresponsive. We could use the send_t i meout
option when connecting:

{ ok, Sock} = gen_tcp: connect (Host Address, Port,
[{active, fal se},
{send_tineout, 5000},
{packet, 2}1),
| oop(Sock), % See bel ow

In the loop where requests are handled, we can now detect send timeouts:

| oop(Sock) ->
recei ve
{dient, send_data, Binary} ->
case gen_tcp: send(Sock, [Bi nary]) of
{error, tinmeout} ->
io:format ("Send tinmeout, closing!~n",
[,
handl e_send_ti meout (), % Not i nplenmented here
Cient ! {self(),{error_sending, tinmeout}},
%bUsually, it's a good idea to give up in case of a
%b send tinmeout, as you never know how rmuch actual |y
%hb reached the server, maybe only a packet header ?!

106 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

gen_t cp: cl ose(Sock) ;

{error, OtherSendError} ->
io:format ("Sone other error on socket (~p), closing",

[G her SendError]),

Cient ! {self(),{error_sending, OherSendError}},
gen_t cp: cl ose(Sock) ;

ok ->
Cient ! {self(), data_sent},
| oop(Sock)

end
end.

Usually it would suffice to detect timeouts on receive, as most protocols include some sort of acknowledgment from
the server, but if the protocol is strictly oneway, the send_t i meout option comesin handy!

Ericsson AB. All Rights Reserved.: Kernel | 107

gen_udp

gen_udp

Erlang module

Thegen_udp module provides functions for communicating with sockets using the UDP protocol.

Data Types

option() = {active, true | false | once}
| {add_nenbership,
{inet:ip_address(), inet:ip_address()}}
| {broadcast, bool ean()}
| {buffer, integer() >= 0}
| {deliver, port | ternt
| {dontroute, boolean()}
| {drop_nenbership,
{inet:ip_address(), inet:ip_address()}}
| {header, integer() >= 0}
| {node, list | binary}
| Iist
| binary
| {nulticast _if, inet:ip_address()}
| {nulticast_|oop, boolean()}
|
|
|

{rmulticast_ttl, integer() >= 0}
{priority, integer() >= 0}
{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

Val ueBin :: binary()}
| {read_packets, integer() >= 0}
| {recbuf, integer() >= 0}
| {reuseaddr, bool ean()}
| {sndbuf, integer() >= 0}
| {tos, integer() >= 0}
option_nane() = active
| broadcast
| buffer
| deliver
| dontroute
| header
| node
| multicast _if
| multicast_|oop
| multicast _ttl
|
|

priority
{raw,

Protocol :: integer() >= 0,

OptionNum :: integer() >= 0,

Val ueSpec :: (ValueSize :: integer() >= 0)

| (ValueBin :: binary())}
| read_packets

108 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

| recbuf
| reuseaddr
| sndbuf
| tos
socket ()
Asreturned by open/1,2.
Exports

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}

Types:

Port = inet:port_nunber()

Opts = [Option]

Option = {ip, inet:ip_address()}
| {fd, integer() >= 0}
| {ifaddr, inet:ip_address()}
| inet:address_famly()
| {port, inet:port_nunber()}
| option()

Socket = socket ()

Reason = i net: posi x()

Associates a UDP port number (Por t) with the calling process.
The available options are:
list
Received Packet isdelivered asalist.
bi nary
Received Packet isdelivered asabinary.
{ip, ip_address()}
If the host has several network interfaces, this option specifies which one to use.
{fd, integer() >= 0}
If a socket has somehow been opened without using gen_udp, use this option to pass the file descriptor for it.
i net6
Set up the socket for 1Pv6.
i net
Set up the socket for 1Pv4.
Opt
See inet: setopts/2.

The returned socket Socket isused to send packets from this port with send/ 4. When UDP packets arrive at the
opened port, they are delivered as messages:

Ericsson AB. All Rights Reserved.: Kernel | 109

gen_udp

{udp, Socket, IP, InPortNo, Packet}

Note that arriving UDP packets that are longer than the receive buffer option specifies, might be truncated without
warning.

| Pand | nPor t No define the address from which Packet came. Packet isalist of bytesif theoption| i st was
specified. Packet isabinary if the option bi nar y was specified.

Default value for the receive buffer optionis{r ecbuf, 8192}.
If Port == 0, theunderlying OS assigns afree UDP port, usei net : port/ 1 toretrieveit.

send(Socket, Address, Port, Packet) -> ok | {error, Reason}

Types.
Socket = socket ()
Address = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Packet = iodata()
Reason = not_owner | inet: posix()

Sends a packet to the specified address and port. The Addr ess argument can be either ahostname, or an |P address.

recv(Socket, Length) ->
{ok, {Address, Port, Packet}} | {error, Reason}

recv(Socket, Length, Tineout) ->
{ok, {Address, Port, Packet}} | {error, Reason}

Types:
Socket = socket ()
Length = integer() >= 0
Ti meout timeout ()
Address = inet:ip_address()
Port = inet:port_nunber()
Packet = string() | binary()
Reason = not_owner | inet: posix()

This function receives a packet from a socket in passive mode.
The optional Ti meout parameter specifies atimeout in milliseconds. The default valueisi nfinity.

control I ing_process(Socket, Pid) -> ok

Types:
Socket = socket ()
Pid = pid()

Assigns a new controlling process Pi d to Socket . The controlling process is the process which receives messages
from the socket.

cl ose(Socket) -> ok
Types:

110 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

Socket = socket ()
Closes a UDP socket.

Ericsson AB. All Rights Reserved.: Kernel | 111

gen_sctp

gen_sctp

Erlang module

The gen_sctp module provides functions for communicating with sockets using the SCTP protocol. The
implementation assumes that the OS kernel supports SCTP (RFC2960) through the user-level Sockets API
Extensions. During development this implementation was tested on Linux Fedora Core 5.0 (kernel 2.6.15-2054 or
later is needed), and on Solaris 10, 11. During OTP adaptation it was tested on SUSE Linux Enterprise Server 10
(x86_64) kernel 2.6.16.27-0.6-smp, with Iksctp-tools-1.0.6, briefly on Solaris 10, and later on SUSE Linux Enterprise

Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with Iksctp-tools-1.0.7.
Record definitions for thegen_sct p module can be found using:

-include_lib("kernel/include/inet_sctp.hrl").

These record definitions use the "new" spelling ‘adaptation’, not the deprecated ‘adaption’, regardless of which spelling

the underlying C APl uses.

CONTENTS
« DATATYPES

« EXPORTS

» SCTP SOCKET OPTIONS
» SCTP EXAMPLES

« SEEALSO

Data Types

assoc_id()

An opague term returned in for example #sctp_paddr_change{} that identifies an association for an SCTP socket.
The term is opague except for the special value O that has a meaning such as "the whole endpoint” or "all future

associations".
option() =

{active, true | false | once}

{buffer, integer() >= 0}

{dontroute, boolean()}

{l'inger, {boolean(), integer() >= 0}}

{node, list | binary}

list

bi nary

{priority, integer() >= 0}

{recbuf, integer() >= 0}

{reuseaddr, bool ean()}
{sctp_adaptation_|l ayer, #sctp_setadaptation{}}
{sctp_associ nfo, #sctp_assocparans{}}
{sctp_autocl ose, integer() >= 0}
{sctp_default_send _param #sctp_sndrcvinfo{}}
{sctp_del ayed _ack _tinme, #sctp_assoc_val ue{}}
{sctp_disable fragnents, bool ean()}
{sctp_events, #sctp_event subscribe{}}
{sctp_get peer_addr_info, #sctp_paddrinfo{}}

112 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

{sctp_i _want _mapped_v4_addr, bool ean()}
{sctp_initnmsg, #sctp_initmsg{}}
{sctp_naxseg, integer() >= 0}
{sctp_nodel ay, bool ean()}

{sctp_peer_addr_parans, #sctp_paddrparans{}}

{sctp_rtoinfo, #sctp_rtoinfo{}}

{sctp_set_peer_primary_addr, #sctp_setpeerprin{}}

{sctp_status, #sctp_status{}}
{sndbuf, integer() >= 0}
{tos, integer() >= 0}

One of the SCTP Socket Options.

option_nane() = active

buf f er

dontrout e

I i nger

node

priority

r ecbuf

reuseaddr
sctp_adaptation_l ayer
sct p_associ nfo

sct p_aut ocl ose
sctp_defaul t _send_param
sct p_del ayed_ack_tine
sct p_di sabl e_fragnents
sctp_events

sctp_get peer_addr _info
sctp_i _want_napped_v4_addr
sctp_initnsg

sct p_nmaxseg

sct p_nodel ay

sct p_peer _addr_parans
sctp_primary_addr
sctp_rtoinfo
sctp_set peer _prinary_addr
sctp_status

sndbuf

tos

I
I
I
I
I
| {sctp_primary_addr, #sctp_prin{}}
I
I
I
I
I

sct p_socket ()
Socket identifier returned from open/ *.

Exports

abort (Socket, Assoc) -> ok | {error, inet:posix()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 113

gen_sctp

Socket = sctp_socket ()
Assoc = #sctp_assoc_change{}

Abnormally terminates the association given by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are till valid, and it can be used in new associations.

cl ose(Socket) -> ok | {error, inet:posix()}
Types:
Socket = sctp_socket ()
Completely closesthe socket and al associationson it. The unsent dataisflushed asineof / 2. Thecl ose/ 1 cal is

blocking or otherwise depending of the value of the linger socket option. If cl ose does not linger or linger timeout
expires, the call returns and the data is flushed in the background.

connect (Socket, Addr, Port, Opts) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()

Opts = [Opt :: option()]

Assoc = #sctp_assoc_change{}
Sameasconnect (Socket, Addr, Port, Opts, infinity).

connect (Socket, Addr, Port, Opts, Tineout) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()

Opts = [Opt :: option()]
Ti meout = timeout ()
Assoc = #sctp_assoc_change{}

Establishes a new association for the socket Socket , with the peer (SCTP server socket) given by Addr and Por t .
The Ti neout , isexpressed in milliseconds. A socket can be associated with multiple peers.

WARNING:Using a value of Ti meout less than the maximum time taken by the OS to establish an association
(around 4.5 minutesif the default values from RFC 4960 are used) can result in inconsistent or incorrect return val ues.
Thisisespecially relevant for associations sharing the same Socket (i.e. source addressand port) sincethe controlling
process blocks until connect / * returns. connect_init/* provides an alternative not subject to this limitation.

Theresult of connect / * isan#sct p_assoc_change{} eventwhich contains, in particular, the new Association
ID.

#sct p_assoc_change{

state = atom(),
error = atom(),
out bound_streans = integer(),
i nbound_st reans = integer(),
assoc_i d = assoc_id()

114 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

The number of outbound and inbound streams can be set by givingan sct p_i ni t nsg optionto connect asin:

connect (Socket, Ip, Port,
[{sctp_initnsg, #sct p_i ni t nsg{ hum ost r eans=CQut St r eans,
max_i nstreans=Max|l nStreans}}])

All options Opt are set on the socket before the association is attempted. If an option record has got undefined field
values, the options record isfirst read from the socket for those values. In effect, Opt option records only definefield
values to change before connecting.

Thereturned out bound_st r eans and i nbound_st r eans are the actual stream numbers on the socket, which
may be different from the requested values (Qut St r eans and Max| nSt r eans respectively) if the peer requires
lower values.

Thefollowing values of st at e are possible:

e comm_up: association successfully established. Thisindicates a successful completion of connect .

e cant _assoc: association cannot be established (connect / * failure).

All other states do not normaly occur in the output from connect/*. Rather, they may occur in
#sct p_assoc_change{} eventsreceivedinstead of datainrecv/* calls. All of themindicatelosing the association
due to various error conditions, and are listed here for the sake of completeness. Theer r or field may provide more
detailed diagnostics.

e comm.l ost;

e restart;

e shut down_conp.

connect _i nit(Socket, Addr, Port, Opts) ->
ok | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Opts = [option()]

Sameasconnect _i nit(Socket, Addr, Port, Opts, infinity).

connect _init(Socket, Addr, Port, Opts, Tinmeout) ->
ok | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostnane()
Port = inet:port_nunber()
Opts = [option()]

Ti meout = timeout ()
Initiates a new association for the socket Socket , with the peer (SCTP server socket) given by Addr and Por t .

The fundamental difference between this APl and connect / * isthat the return value is that of the underlying OS
connect(2) system call. If ok is returned then the result of the association establishement is received by the calling

Ericsson AB. All Rights Reserved.: Kernel | 115

gen_sctp

process as an #sctp_assoc_change(} event. The calling process must be prepared to receive this, or poll for it using
r ecv/ * depending on the value of the active option.

The parameters are as described in connect/*, with the exception of the Ti meout value.
The timer associated with Ti meout only supervises | P resolution of Addr

control Iing_process(Socket, Pid) -> ok

Types:
Socket = sctp_socket ()
Pid = pid()
Assigns a new controlling process Pid to Socket. Same implementation as

gen_udp: control I i ng_process/ 2.

eof (Socket, Assoc) -> ok | {error, Reason}
Types.

Socket = sctp_socket ()

Assoc = #sctp_assoc_change{}

Reason = term()

Gracefully terminatesthe association given by Assoc, with flushing of all unsent data. The socket itself remains open.
Other associations opened on this socket are till valid, and it can be used in new associations.

listen(Socket, IsServer) -> ok | {error, Reason}
Types.
Socket = sctp_socket ()
| sServer = bool ean()
Reason = term()
Sets up a socket to listen on the IP address and port number it is bound to. | sSer ver must bet rue or f al se.

In the contrast to TCP, in SCTP there is no listening queue length. If | sSer ver ist r ue the socket accepts new
associations, i.e. it will become an SCTP server socket.

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}

Types:
Opts = [Opt]
Opt ip, IP}

net : address_fam | y()

= {
| {ifaddr, IPF}
| i
| {port, Port}

116 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

| option()
IP =inet:ip_address() | any | |oopback
Port = inet:port_nunber()

Socket = sctp_socket ()

Creates an SCTP socket and binds it to the local addresses specified by al {ip, 1P} (or synonymously
{ifaddr, | P}) options (this feature is called SCTP multi-homing). The default | P and Port are any and O,
meaning bind to all local addresses on any one free port.

Other options are:
inet6
Set up the socket for |Pv6.
i net
Set up the socket for IPv4. Thisisthe default.

A default set of socket options is used. In particular, the socket is opened in binary and passive mode, and with
reasonably large kernel and driver buffers.

recv(Socket) ->
{ok, {From P, FronmPort, AncData, Data}} | {error, Reason}
recv(Socket, Tineout) ->
{ok, {From P, FromPort, AncData, Data}} | {error, Reason}
Types:
Socket = sctp_socket ()
Ti meout = timeout ()
From P = inet:ip_address()

FronPort = inet:port_numnber ()
AncData = [#sctp_sndrcvinfo{}]
Dat a bi nary()

string()

#sct p_assoc_change{}
#sct p_paddr _change{}

|

| #sctp_sndrcvinfo{}

|

|

| #sctp_adaptation_event{}

Reason = i net: posix()

| #sctp_send failed{}

| #sctp_paddr_change{}
| #sctp_pdapi _event{}

| #sctp_renote_error{}

| #sctp_shutdown_event {}

Receives the Dat a message from any association of the socket. If the receive times out { error, ti meout is
returned. The default timeout isi nfi ni ty. From Pand Fr onPor t indicate the sender's address.

AncDat a isalist of Ancillary Dataitems which may be received along with the main Dat a. Thislist can be empty,
or contain a single #sctp_sndrevinfo{} record, if receiving of such ancillary data is enabled (see option sctp_events).
It is enabled by default, since such ancillary data provide an easy way of determining the association and stream over
which the message has been received. (An aternative way would be to get the Association ID from the Fr onl P and
Fr onPor t using the sctp_get peer_addr_info socket option, but this would still not produce the Stream number).

Ericsson AB. All Rights Reserved.: Kernel | 117

gen_sctp

The actual Dat a received may beabi nary(),orl i st () of bytes(integersin therange 0 through 255) depending
on the socket mode, or an SCTP Event. The following SCTP Events are possible:

#sctp_sndrcvinfo{}
#sctp_assoc_change(};
#sct p_paddr _change{

addr = {ip_address(),port()},
state = atom(),

error = integer(),

assoc_id = assoc_id()

Indicates change of the status of the peer's|P address given by addr within the association assoc_i d. Possible
values of st at e (mostly self-explanatory) include:

e addr _unreachabl e;

 addr_avail abl g;

e addr_renoved;

e addr_added,;

e addr_nmde_prim

e addr_confirned.

In case of an error (e.g. addr _unr eachabl e), the error field provides additional diagnostics. In such
cases, the #sct p_paddr _change{} Event is automatically converted into an error term returned by

gen_sctp: recv. Theerror field vaue can be converted into astringusingerror _string/ 1.
#sct p_send_f ai | ed{

flags = true | false,
error = integer(),

info = #sctp_sndrcvi nfo{},
assoc_id = assoc_id()

dat a = binary()

The sender may receive this event if asend operation fails. Thef | ags isaBoolean specifying whether the data
have actually been transmitted over the wire; er r or provides extended diagnostics, useerror _stri ng/ 1;
i nf o isthe original #sctp_sndrcvinfo{} record used in the failed send/*, and dat a is the whole origina data
chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, this Event isinternally converted intoaner r or term
returned by r ecv/ *.

#sct p_adapt ati on_event {
adaptation_ind = integer(),
assoc_id assoc_i d()

Delivered when a peer sends an Adaptation Layer Indication parameter (configured through the option
sctp_adaptation_layer). Note that with the current implementation of the Erlang/SCTP binding, this event is
disabled by default.

#sct p_pdapi _event {
indication = sctp_partial _delivery_aborted,
assoc_id = assoc_i d()

A partia delivery failure. In the current implementation of the Erlang/SCTP binding, this Event is internally
converted into an er r or term returned by r ecv/ *.

118 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

send(Socket, SndRcvlinfo, Data) -> ok | {error, Reason}
Types:
Socket = sctp_socket ()
SndRcvil nfo = #sctp_sndrcvi nfo{}
Data = binary | iolist()
Reason = term()
Sendsthe Dat a message with all sending parameters from a#sctp_sndrcvinfo{} record. Thisway, the user can specify
the PPID (passed to the remote end) and Context (passed to the local SCTP layer) which can be used for example

for error identification. However, such afinelevel of user control israrely required. The send/4 function is sufficient
for most applications.

send(Socket, Assoc, Stream Data) -> ok | {error, Reason}
Types.

Socket = sctp_socket ()

Assoc = #sctp_assoc_change{} | assoc_id()

Stream = integer ()

Data = binary | iolist()

Reason = term()
Sends Dat a message over an existing association and given stream.

error_string(ErrorNunber) -> ok | string() | unknown_error
Types:
Error Number = integer()

Trandatesan SCTP error number from for example#sct p_renote_error{} or#sctp_send fail ed{} into
an explanatory string, or one of the atoms ok for no error and undef i ned for an unrecognized error.

SCTP SOCKET OPTIONS

The set of admissible SCTP socket optionsis by construction orthogonal to the sets of TCP, UDP and generic INET
options: only those options which are explicitly listed below are allowed for SCTP sockets. Options can be set on
the socket using gen_sct p: open/ 1, 2 ori net: set opt s/ 2, retrieved using i net : get opt s/ 2, and when
calinggen_sct p: connect/ 4, 5 options can be changed.

{node, list|binary} orjustlist orbinary
Determines the type of datareturned fromgen_sct p: recv/ 1, 2.

{active, true|fal se|once}

* If f al se (passive mode, the default), the caller needsto do an explicit gen_sct p: r ecv call in order to
retrieve the available data from the socket.

e Iftrue (full active mode), the pending data or events are sent to the owning process.
NB: This can cause the message queue to overflow, as there is no way to throttle the sender in this case (no
flow control!).

« If once, only one messageisautomatically placed in the message queue, after that the mode isautomatically
re-set to passive. Thisprovidesflow control aswell asthe possibility for thereceiver to listen for itsincoming
SCTP datainterleaved with other inter-process messages.

Ericsson AB. All Rights Reserved.: Kernel | 119

gen_sctp

{buffer, integer()}

Determines the size of the user-level software buffer used by the SCTP driver. Not to be confused with sndbuf

and r ecbuf optionswhich correspond to the kernel socket buffers. It is recommended to haveval (buf f er)

>= max(val (sndbuf), val (recbuf)). Infact, the val (buf fer) isautomatically set to the above
maximum when sndbuf or r ecbuf valuesare set.

{tos, integer()}

Sets the Type-Of-Service field on the I P datagrams being sent, to the given value, which effectively determines
aprioritization policy for the outbound packets. The acceptable values are system-dependent. TODO: we do not
provide symbolic names for these values yet.

{priority, integer()}
A protocol-independent equivalent of t os above. Setting priority implies setting tos as well.
{dontroute, true|false}

By default f al se. If t rue, the kernel does not send packets via any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

By default f al se. If true, the local binding address{ | P, Por t } of the socket can be re-used immediately: no
waiting in the CLOSE_WAIT state is performed (may be required for high-throughput servers).

{l'inger, {true|false, integer()}

Determines the timeout in seconds for flushing unsent datain the gen_sct p: cl ose/ 1 socket cal. If the 1st
component of thevaluetupleisf al se, the2nd oneisignored, which meansthat gen_sct p: cl ose/ 1 returns
immediately not waiting for datato be flushed. Otherwise, the 2nd component isthe flushing time-out in seconds.

{sndbuf, integer()}

The size, in bytes, of the *kernel* send buffer for this socket. Sending errors would occur for datagrams larger
thanval (sndbuf) . Setting this option a so adjusts the size of the driver buffer (see buf f er above).

{recbuf, integer()}

The size, in bytes, of the *kernel* recv buffer for this socket. Sending errors would occur for datagrams larger
than val (sndbuf) . Setting this option also adjusts the size of the driver buffer (see buf f er above).

{sctp_rtoinfo, #sctp_rtoinfo{}}

#sct p_rtoi nf of

assoc_id = assoc_id(),
initial = integer(),
max = integer(),
m n = integer()

}

Determines re-transmission time-out parameters, in milliseconds, for the association(s) given by assoc_i d. If
assoc_i d = 0 (default) indicates the whole endpoint. See RFC2960 and Sockets API Extensionsfor SCTP
for the exact semantics of the fields values.

{sctp_associ nfo, #sctp_assocparans{}}

#sct p_assocpar ans{

assoc_id = assoc_id(),
asocnmaxr xt = integer(),
nunber _peer _destinati ons = integer(),
peer _rwnd = integer(),

120 | Ericsson AB. All Rights Reserved.: Kernel

href
href

gen_sctp

| ocal _rwnd = integer(),
cookie_life = integer()
}
Determines association parameters for the association(s) given by assoc_i d. assoc_id = 0 (default)

indicatesthe whole endpoint. See Sockets APl Extensionsfor SCTP for thediscussion of their semantics. Rarely
used.

{sctp_initnmsg, #sctp_initnmsg{}}

#sctp_ini t msg{

num ost r eans = integer(),
max_instreans = integer(),
max_attenpts = integer(),
max_init_tinmeo = integer()

Determines the default parameters which this socket attempts to negotiate with its peer while establishing an
association with it. Should be set after open/ * but beforethefirstconnect / *.#sct p_i ni t msg{} canalso
be used as ancillary data with the first call of send/ * to anew peer (when a new association is created).

e num_ostreamns: number of outbound streams;

e max_i nstreans: max number of in-bound streams;

« max_att enpt s: max re-transmissions while establishing an association;

e max_init_tinmeo:timeoutinmillisecondsfor establishing an association.
{sctp_autocl ose, integer() >= 0}

Determines the time (in seconds) after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

{sctp_nodel ay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones (which improves throughput at the
expense of latency).

{sctp_disable fragnments, true|false}

If true, induces an error on an attempt to send a message which is larger than the current PMTU size
(which would require fragmentation/re-assembling). Note that message fragmentation does not affect the logical
atomicity of its delivery; this option is provided for performance reasons only.

{sctp_i _want _mapped_v4_addr, true|false}
Turns on|off automatic mapping of IPv4 addressesinto |Pv6 ones (if the socket address family isAF_INET6).
{sctp_naxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

{sctp_primary_addr, #sctp_prin{}}

#sctp_prin{
assoc_id = assoc_id(),
addr = {IP, Port}

}
I P = ip_address()

Port = port_nunber ()

Ericsson AB. All Rights Reserved.: Kernel | 121

href

gen_sctp

For the association given by assoc_id, {I P, Port} must be one of the peer's addresses. This option
determines that the given addressis treated by the local SCTP stack as the peer's primary address.

{sctp_set peer_prinmary_addr, #sctp_setpeerprin{}}

#sct p_set peerpri n{
assoc_id = assoc_id(),
addr = {IP, Port}

}
I P = ip_address()
Port = port_nunber ()

When set, informs the peer that it shoulduse {1 P, Port} asthe primary address of the local endpoint for the
association given by assoc_i d.

{sctp_adaptation_|l ayer, #sctp_setadaptation{}}

#sct p_set adapt ati on{
adaptation_ind = integer()
}

When set, requests that the local endpoint uses the value given by adapt ati on_i nd as the Adaptation
Indication parameter for establishing new associations. See RFC2960 and Sockets APl Extenstionsfor SCTP
for more details.

{sctp_peer_addr_parans, #sctp_paddrparans{}}

#sct p_paddr par ans{

assoc_id = assoc_id(),
addr ess = {IP, Port},
hbi nterval = integer(),
pat hmaxrxt = integer(),
pat hnt u = integer(),
sackdelay = integer(),
fl ags = list()

}
| P = ip_address()

Port = port_nunber ()

This option determines various per-address parameters for the association given by assoc_i d and the peer
addressaddr ess (the SCTP protocol supports multi-homing, so more than 1 address can correspond to agiven
association).

e hbi nt erval : heartbeat interval, in milliseconds;

e pat hmaxr xt : max number of retransmissions before this address is considered unreachable (and an
aternative address is selected);

e pat hnt u: fixed Path MTU, if automatic discovery isdisabled (seef | ags below);
e sackdel ay: delay in milliseconds for SAC messages (if the delay is enabled, seef | ags below);
« flags:thefollowing flags are available:

« hb_enabl e: enable heartbeat;

¢ hb_di sabl e: disable heartbeat;

« hb_derand: initiate heartbeat immediately;

e pntud_enabl e: enable automatic Path MTU discovery;

e pntud_di sabl e: disable automatic Path MTU discovery;

122 | Ericsson AB. All Rights Reserved.: Kernel

href
href

gen_sctp

« sackdel ay_enabl e: enable SAC delay;
« sackdel ay_di sabl e: disable SAC delay.
{sctp_default_send _param #sctp_sndrcvinfo{}}

#sct p_sndr cvi nf o{

stream = integer(),
ssn = integer(),
flags =list(),

ppi d = integer(),
cont ext = integer(),
timetolive = integer(),
tsn = integer(),
cunt sn = integer(),
assoc_id = assoc_i d()

#sct p_sndrcvi nf o{} isused both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides a default values for subsequent gen_sct p: sendcallson
the association given by assoc_i d. assoc_id = 0 (default) indicates the whole endpoint. The following
fields typically need to be specified by the sender:
* sinfo_stream stream number (0O-base) within the association to send the messages through;
« sinfo_fl ags: thefollowing flags are recognised:

e unor der ed: the message is to be sent unordered;

e addr _over : theaddress specifiedingen_sct p: send overwrites the primary peer address,

e abort: abort the current association without flushing any unsent data;

e eof : gracefully shut down the current association, with flushing of unsent data.

Other fields are rarely used. See RFC2960 and Sockets APl Extensionsfor SCTP for full information.

{sctp_events, #sctp_event subscribe{}}

#sct p_event _subscri be{

data_i o_event = true | false,
associ ati on_event = true | false,
address_event = true | false,
send_fai |l ure_event = true | false,
peer _error_event = true | false,
shut down_event = true | false,
partial _delivery_event = true | false,
adaptation_|l ayer _event = true | false

Thisoption determineswhich SCTP Eventsareto bereceived (viarecv/*) along with the data. The only exception
isdat a_i o_event which enables or disables receiving of #sctp_sndrcvinfo{} ancillary data, not events. By
default, all flags except adapt ati on_| ayer _event are enabled, athough sct p_data_i o_event and
associ ati on_event are used by the driver itself and not exported to the user level.

{sctp_del ayed_ack _tine, #sctp_assoc_val ue{}}
#sct p_assoc_val ue{

assoc_id
assoc_val ue

assoc_i d(),
i nteger()

Ericsson AB. All Rights Reserved.: Kernel | 123

href
href

gen_sctp

Rarely used. Determines the ACK time (given by assoc_val ue in milliseconds) for the given association or
the whole endpoint if assoc_val ue = 0 (default).

{sctp_status, #sctp_status{}}

#sct p_st at us{

assoc_id = assoc_id(),

state = atom(),

rwnd = integer(),
unackdat a = integer(),
penddat a = integer(),
instrms = integer(),
outstrns = integer(),
fragmentati on_point = integer(),
primary = #sct p_paddri nfo{}

Thisoption isread-only. It determinesthe status of the SCTP association givenby assoc_i d. Possiblevalues of
st at e follows. The state designations are mostly self-explanatory. st at e_enpt y isthe default which means
that no other state is active:

e sctp_state_empty

e sctp_state_cl osed

e sctp_state cookie wait

e sctp_state_cookie_echoed

e sctp_state_established

e sctp_state_shutdown_pendi ng

e sctp_state_shutdown_sent

e sctp_state_shutdown_received

e sctp_state_shutdown_ack_sent

The semantics of other fields is the following:

e sstat_rwnd: the association peer's current receiver window size;

e« sstat _unackdat a: number of unacked data chunks;

e« sstat_penddat a: number of data chunks pending receipt;

e sstat _instrns: number of inbound streams;

e sstat_outstrns: number of outbound streams;

e sstat _fragnentation_poi nt: message size at which SCTP fragmentation will occur;

e sstat_primary: information on the current primary peer address (see below for the format of
#sct p_paddri nfo{}).

{sctp_get peer_addr _info, #sctp_paddrinfo{}}

#sct p_paddri nf of

assoc_id = assoc_id(),

addr ess = {IP, Port},

state = inactive | active,
cwnd = integer(),

srtt = integer(),

rto = integer(),

ntu = integer()

}
I P = ip_address()
Port = port_nunber ()

124 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

This option is read-only. It determines the parameters specific to the peer's address given by addr ess within
theassociation givenby assoc_i d. Theaddr ess field must be set by the caller; all other fieldsarefilledinon
return. If assoc_i d = 0 (default), theaddr ess isautomatically translated into the corresponding association
ID. This option is rarely used; see RFC2960 and Sockets API Extensions for SCTP for the semantics of all
fields.

SCTP EXAMPLES
» Example of an Erlang SCTP Server which receives SCTP messages and prints them on the standard outpuit:

- modul e(sct p_server).

-export([server/0, server/1, server/2]).
-include_li b("kernel/include/inet.hrl").
-include_l'i b("kernel/include/inet_sctp.hrl").

server() ->
server (any, 2006).

server ([Host,Port]) when is_list(Host), is_list(Port) ->
{ok, #hostent{h_addr_list = [IP|_]}} = inet:gethostbynanme(Host),
io:format("~w -> ~w~-n", [Host, IP]),
server([IP, list_to_integer(Port)]).

server (I P, Port) when is_tuple(lP) orelse IP == any orel se | P == | oopback,
is_integer(Port) ->
{ok, S} = gen_sctp: open(Port, [{recbuf, 65536}, {ip,|P}]),
io:format("Listening on ~w. ~w. ~w~n", [IP,Port,S]),
ok = gen_sctp:listen(S, true),
server _| oop(S).

server_| oop(S) ->
case gen_sctp:recv(S) of
{error, Error} ->
io:format ("SCTP RECV ERROR ~p~n", [Error]);
Data ->
i o:format ("Recei ved: ~p~n", [Data])
end,
server _| oop(S).

e Example of an Erlang SCTP Client which interacts with the above Server. Note that in this example, the Client
creates an association with the Server with 5 outbound streams. For this reason, sending of "Test 0" over Stream
0 succeeds, but sending of "Test 5" over Stream 5 fails. The client then abor t sthe association, which resultsin
the corresponding Event being received on the Server side.

-modul e(sctp_client).
-export([client/0, client/1, client/2]).
-include_li b("kernel/include/inet.hrl").

-include_lib("kernel/include/inet_sctp.hrl").

client() ->
client([local host]).

client([Host]) ->
client(Host, 2006);

client([Host, Port]) when is list(Host), is_list(Port) ->

client(Host,list to_integer(Port)),
init:stop().

Ericsson AB. All Rights Reserved.: Kernel | 125

href
href

gen_sctp

client(Host, Port) when is_integer(Port) ->
{ ok, S} = gen_sct p: open(),
{ ok, Assoc} = gen_sct p: connect
(S, Host, Port, [{sctp_initnsg, #sctp_initmsg{num ostreanms=5}}]),
i o: format (" Connection Successful, Assoc=~p~n", [Assoc]),

io:wite(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
io:nl(),

timer:sleep(10000),

io:wite(gen_sctp:send(S, Assoc, 5 <<"Test 5">>)),
io:nl(),

timer:sleep(10000),

io:wite(gen_sctp:abort(S, Assoc)),

io:nl(),

timer:sleep(1000),
gen_sct p: cl ose(S).

* A very simple Erlang SCTP Client which uses the connect_init API.

- modul e(ex3) .

-export([client/4]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client(Peerl, Portl, Peer2, Port?2)
when is_tuple(Peerl), is_integer(Portl), is_tuple(Peer2), is_integer(Port2) ->

{ ok, S} = gen_sct p: open(),
Sctplni t MsgOpt = {sctp_initnsg, #sctp_i ni t msg{ num ost reans=5}},
ActiveOpt = {active, true},
Opts = [SctplnitMgOot, ActiveOpt],
ok = gen_sctp:connect(S, Peerl, Portl, Opts),
ok = gen_sctp: connect (S, Peer2, Port2, Opts),
io:format ("Connections initiated~n", []),
client_| oop(S, Peerl, Portl, undefined, Peer2, Port2, undefined).

client_|oop(S, Peerl, Portl, Assocldl, Peer2, Port2, Assocld2) ->

receive
{sctp, S, Peerl, Portl, {_Anc, SAC}
when is_record(SAC, sctp_assoc_change), Assocldl == undefined ->

io:format ("Association 1 connect result: ~p. Assocld: ~p~n",
[SAC#sct p_assoc_change. st at e,
SAC#sct p_assoc_change. assoc_i d]),
client_| oop(S, Peerl, Portl, SAC#Hsctp_assoc_change. assoc_id,
Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, {_Anc, SAC}
when is_record(SAC, sctp_assoc_change), Assocld2 == undefined ->
i o:format ("Associ ation 2 connect result: ~p. Assocld: ~p~n",
[SAC#sct p_assoc_change. stat e, SAC#sct p_assoc_change. assoc_i d]),
client_| oop(S, Peerl, Portl, Assocldl, Peer2, Port2,
SAC#sct p_assoc_change. assoc_i d) ;

{sctp, S, Peerl, Portl, Data} ->
io:format ("Association 1: received ~p~n", [Data]),
client | oop(S, Peerl, Portl, Assocldl,
Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, Data} ->
io:format ("Association 2: received ~p~n", [Data]),
client | oop(S, Peerl, Portl, Assocldl,
Peer2, Port2, Assocld2);

126 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

G her ->
io:format ("CQther ~p~n", [Qther]),
client_l oop(S, Peerl, Portl, Assocldi,
Peer2, Port2, Assocld2)

after 5000 ->

ok
end.

SEE ALSO

inet(3), gen tcp(3), gen_udp(3), RFC2960 (Stream Control Transmission Protocol), Sockets APl Extensions for
SCTP.

Ericsson AB. All Rights Reserved.: Kernel | 127

href
href
href

global

global

Erlang module

This documentation describes the Global module which consists of the following functionalities:

e registration of global names;
e global locks;
* maintenance of the fully connected network.

These services are controlled viathe processgl obal _name_ser ver which exists on every node. The global name
server is started automati cally when anodeis started. With theterm global ismeant over asystem consisting of several
Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this
module, the equivalent of ther egi st er/ 2 and wher ei s/ 1 BIFs (for local name registration) are implemented,
but for a network of Erlang nodes. A registered nameis an alias for a process identifier (pid). The global name server
monitors globally registered pids. If a process terminates, the name will aso be globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus,
the translation of a name to a pid is fast, as it is always done locally. When any action in taken which resultsin a
change to the global name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For instance, the specified resource could be apid.
When aglobal lock is set, access to the locked resourceis denied for all other resources other than the lock requester.

Both the registration and lock functionalities are atomic. All nodes involved in these actions will have the same view
of theinformation.

The global name server also performs the critical task of continuously monitoring changes in node configuration: if
a node which runs a globally registered process goes down, the name will be globally unregistered. To this end the
global name server subscribesto nodeup and nodedown messages sent fromthenet _ker nel module. Relevant
Kernel application variablesin thiscontext arenet _set upti me,net _ti cktine,anddi st _aut o_connect.
See al'so kernel (6).

The name server will also maintain a fully connected network. For example, if node N1 connects to node N2 (which
is aready connected to N3), the global name servers on the nodes N1 and N3 will make sure that also N1 and N3 are
connected. If thisis not desired, the command lineflag - connect _al | f al se can be used (see dso erl(1)). In
this case the name registration facility cannot be used, but the lock mechanism will still work.

If the global name server failsto connect nodes (N1 and N3 in the example above) awarning event is sent to the error
logger. The presence of such an event does not exclude the possibility that the nodes will later connect--one can for
exampletry thecommandr pc: cal | (N1, net _adm ping, [N2]) intheErlang shell--but it indicates some
kind of problem with the network.

Note:

If the fully connected network is not set up properly, the first thing to try is to increase the value of
net setupti ne.

128 | Ericsson AB. All Rights Reserved.: Kernel

global

Data Types
id() = {Resourceld :: term(), LockRequesterld :: tern()}

Exports

del _lock(ld) -> true
del _l ock(1d, Nodes) -> true
Types:

Id =id()

Nodes = [node()]
Deletesthelock | d synchronously.

notify all_name(Nanme, Pidl, Pid2) -> none
Types.
Name = term)
Pidl = Pid2 = pid()
This function can be used as a name resolving function for r egi st er _nane/ 3 andre_r egi st er _nane/ 3.

It unregisters both pids, and sends the message { gl obal _nane_conflict, Nane, O herPid} to both
processes.

random exit _nanme(Nane, Pidl, Pid2) -> none

Types.
Name = term)
Pidl = Pid2 = pid()

This function can be used as a name resolving function for r egi st er _nane/ 3andre_regi ster_nane/ 3. It
randomly chooses one of the pids for registration and kills the other one.

random noti fy_name(Name, Pidl, Pid2) -> none
Types.
Name = term)
Pidl = Pid2 = pid()
This function can be used as a name resolving function for r egi st er _nane/ 3andre_regi ster_nane/ 3. It

randomly chooses one of the pids for registration, and sends the message { gl obal _nane_conflict, Nane}
to the other pid.

regi ster_nanme(Nane, Pid) -> yes | no
regi ster_name(Name, Pid, Resolve) -> yes | no
Types:

Name = term)

Pid = pid()

Resol ve = net hod()

met hod() =
fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->

Ericsson AB. All Rights Reserved.: Kernel | 129

global

pid() | none)
{Mbdul e, Funct i on} isaso alowed

Globally associates the name Nane with a pid, that is, Globally notifies all nodes of a new global name in a network
of Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The
network is also informed of any global names in newly connected nodes. If any name clashes are discovered, the
Resol ve function is caled. Its purpose is to decide which pid is correct. If the function crashes, or returns anything
other than one of the pids, the name is unregistered. This function is called once for each name clash.

There are three pre-defined resolve functions. random exit _nane/ 3, random noti fy nane/ 3, and
notify all _name/ 3.If no Resol ve function is defined, r andom exi t _nane is used. This means that one
of the two registered processes will be selected as correct while the other iskilled.

This function is completely synchronous. This means that when this function returns, the name is either registered
on all nodes or none.

The function returnsyes if successful, no if it fails. For example, no isreturned if an attempt is made to register an
already registered process or to register a process with anamethat is already in use.

Note:

Releases up to and including OTP R10 did not check if the process was already registered. As a consequence
the global name table could become inconsistent. The old (buggy) behavior can be chosen by giving the Kernel
application variablegl obal _nulti _nane_acti on thevaueal | ow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

regi stered_nanmes() -> [Nane]
Types:

Name = term)
Returns alists of all globally registered names.

re register _nane(Nane, Pid) -> tern()
re_regi ster_name(Nane, Pid, Resolve) -> term)

Types:
Name = term)
Pid = pid()
Resol ve = net hod()
nmet hod() =
fun((Name :: term(), Pid:: pid(), Pid2 :: pid()) ->
pid() | none)

{Modul e, Funct i on} isalso allowed
Atomically changes the registered name Nane on all nodes to refer to Pi d.
The Resol ve function has the same behavior asinr egi st er _nane/ 2, 3.

send(Nanme, ©Msg) -> Pid
Types:

130 | Ericsson AB. All Rights Reserved.: Kernel

global

Name = Msg = tern()
Pid = pid()

Sends the message Ms g to the pid globally registered as Nane.

Failure: If Name is not a globally registered name, the calling function will exit with reason { badar g, {Nane,
Msg}}.

set | ock(1d) -> bool ean()
set | ock(ld, Nodes) -> bool ean()
set _lock(ld, Nodes, Retries) -> bool ean()
Types:
Id =id()
Nodes = [node()]
Retries = retries()
id() = {Resourceld :: term(), LockRequesterld :: term()}
retries() = integer() >= 0| infinity
Setsalock on the specified nodes (or on al nodes if none are specified) on Resour cel d for LockRequest er | d.
If alock already existson Resour cel d for another requester than LockRequest er | d,andRet r i es isnot equal
to 0, the process sleeps for awhile and will try to execute the action later. When Ret r i es attempts have been made,

f al se isreturned, otherwisetrue. If Retries isinfinity,true iseventualy returned (unless the lock is
never released).

If novaluefor Ret ri es isgiven, i nfinity isused.
This function is completely synchronous.
If aprocess which holds alock dies, or the node goes down, the locks held by the process are deleted.

The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock,
both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock
one resource at atime. But if some processes try to lock two or more resources, a deadlock may occur. It is up to the
application to detect and rectify a deadlock.

Note:

Some values of Resour cel d should be avoided or Erlang/OTP will not work properly. A list of resources to
avoid: gl obal ,di st_ac,mesi a_tabl e | ock,nmesi a_adjust_|og wites,pg2.

sync() -> ok | {error, Reason :: term()}

Synchronizes the global name server with all nodes known to this node. These are the nodes which are returned from
erl ang: nodes() . When this function returns, the global name server will receive global information from all
nodes. This function can be called when new nodes are added to the network.

The only possible error reason Reason is{ " gl obal _groups definition error”, Error}.

Ericsson AB. All Rights Reserved.: Kernel | 131

global

trans(ld, Fun) -> Res | aborted
trans(ld, Fun, Nodes) -> Res | aborted
trans(ld, Fun, Nodes, Retries) -> Res | aborted
Types:

Id = id()

Fun = trans_fun()

Nodes = [node()]

Retries = retries()

Res = term)

retries() = integer() > 0| infinity

trans_fun() = function() | {nodule(), atom()}

Setsalockonl d (usingset | ock/ 3). If thissucceeds, Fun() isevaluated and the result Res isreturned. Returns
abort ed if the lock attempt failed. If Ret ri es issettoi nf i ni ty, the transaction will not abort.

i nfinity isthedefault setting and will be used if no valueisgivenfor Retri es.

unr egi ster_name(Nanme) -> term)
Types:
Name = term)
Removes the globally registered name Nane from the network of Erlang nodes.

wherei s_nane(Nane) -> pid() | undefined
Types:
Name = term)
Returns the pid with the globally registered name Nane. Returnsundef i ned if the nameis not globally registered.

See Also
global_group(3), net_kernel(3)

132 | Ericsson AB. All Rights Reserved.: Kernel

global_group

global group

Erlang module

The global group function makes it possible to group the nodes in a system into partitions, each partition having its
own global name space, refer to gl obal (3) . These partitions are called global groups.

The main advantage of dividing systemsto global groups is that the background load decreases while the number of
nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter gl obal _gr oups definesthe global groups (see also kernel(6), config(4):

{gl obal _groups, [GoupTuple :: group_tuple()]}

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

e Aninstance of the global group server, gl obal _gr oup, must be running on each node. The processes are
automatically started and synchronized when anode is started.

« All involved nodes must agree on the global group definition, or the behavior of the system is undefined.
e All nodesin the system should belong to exactly one global group.

In the following description, a group node is a node belonging to the same global group as the local node.

Data Types

group_tuple() = {GoupNane :: group_nane(), [node()]}
| {GoupNanme :: group_nane(),
Publ i shType :: publish_type(),
[node()]}

A GroupTupl e without Publ i shType isthesameasaGr oupTupl e with Publ i shType == nornal .
group_nane() = atom()
publish_type() = hidden | nornmnal

A node started with the command line flag - hi dden, see erl(1), is said to be a hidden node. A hidden node will
establish hidden connections to nodes not part of the same global group, but normal (visible) connections to nodes
part of the same global group.

A global group defined with Publ i shType == hi dden, issaid to be ahidden globa group. All nodesin a hidden
global group are hidden nodes, regardless if they are started with the - hi dden command line flag or not.

nane() = atom)
A registered name.
where() = {node, node()} | {group, group_nane()}

Exports

gl obal _groups() -> {G oupNane, G oupNanes} | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 133

global_group

GroupNane = group_nane()
GroupNanes = [G- oupNane]

Returns atuple containing the name of the global group the local node belongsto, and thelist of all other known group
names. Returnsundef i ned if no global groups are defined.

info() ->[info_item)]
Types:
info item) = {state, State :: sync_state()}
| {own_group _nane, G oupNane :: group_nane()}
| {own_group _nodes, Nodes :: [node()]}
| {synched_nodes, Nodes :: [node()]}
| {sync_error, Nodes :: [node()]}
| {no_contact, Nodes :: [node()]}
| {other _groups, Groups :: [group tuple()]}
| {nonitoring, Pids :: [pid()]}
sync_state() = no_conf | synced

Returns a list containing information about the global groups. Each element of the list is a tuple. The order of the
tuplesis not defined.

{state, State}

If the local node is part of aglobal group, St at e == synced. If no global groups are defined, St at e ==
no_conf.

{own_group_nanme, G oupNane}

The name (atom) of the group that the local node belongs to.
{own_group_nodes, Nodes}

A list of node names (atoms), the group nodes.
{synced_nodes, Nodes}

A list of node names, the group nodes currently synchronized with the local node.
{sync_error, Nodes}

A list of node names, the group nodes with which the local node has failed to synchronize.
{no_contact, Nodes}

A list of node names, the group nodes to which there are currently no connections.
{ot her _groups, G oups}

G oups isalist of tuples{ G oupNare, Nodes}, specifying the name and nodes of the other global groups.
{moni toring, Pids}

A list of pids, specifying the processes which have subscribed to nodeup and nodedown messages.

noni t or _nodes(Fl ag) -> ok
Types:
Fl ag = bool ean()

Depending on Fl ag, the calling process starts subscribing (Fl ag == true) or stops subscribing (Fl ag ==
f al se) to node status change messages.

134 | Ericsson AB. All Rights Reserved.: Kernel

global_group

A process which has subscribed will receive the messages{ nodeup, Node} and { nodedown, Node} whena
group node connects or disconnects, respectively.

own_nodes() -> Nodes
Types:
Nodes = [Node :: node()]
Returns the names of all group nodes, regardless of their current status.

regi stered_nanmes(Where) -> Nanes

Types.
Where = where()
Names = [Nane :: nane()]

Returns alist of all names which are globally registered on the specified node or in the specified global group.

send(Nanme, Msg) -> pid() | {badarg, {Nane, Msg}}
send(Were, Nane, Msg) -> pid() | {badarg, {Nane, Msg}}
Types.
Where = where()
Name = name()
Msg = term)
Searches for Name, globally registered on the specified node or in the specified global group, or -- if the Wher e

argument is not provided -- in any global group. The global groups are searched in the order in which they appear in
the value of the gl obal _gr oups configuration parameter.

If Nane isfound, the message Msg is sent to the corresponding pid. The pid is also the return value of the function.
If the nameis not found, the function returns{ badar g, {Nane, Msg}}.

sync() -> ok

Synchronizes the group nodes, that is, the global name servers on the group nodes. Also check the names globally
registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (seeaso er r or _| ogger (3)).

Fallure: {error, {'invalid global _groups definition', Bad}} if the gl obal groups
configuration parameter has an invalid value Bad.

wherei s_nane(Nane) -> pid() | undefined
wher ei s_nane(\Were, Nane) -> pid() | undefined
Types:
Where = where()
Name = name()
Searches for Nane, globally registered on the specified node or in the specified global group, or -- if the Wher e

argument is not provided -- in any global group. The global groups are searched in the order in which they appear in
the value of the gl obal _gr oups configuration parameter.

If Nane isfound, the corresponding pid is returned. If the nameis not found, the function returnsundef i ned.

Ericsson AB. All Rights Reserved.: Kernel | 135

global_group

NOTE

In the situation where anode has|lost its connectionsto other nodesin its global group, but has connectionsto nodesin
other global groups, arequest from another global group may produce an incorrect or misleading result. For example,
the isolated node may not have accurate information about registered namesin its global group.

Note also that the send/ 2, 3 function is not secure.

Distribution of applications is highly dependent of the globa group definitions. It is not recommended that an
application is distributed over several global groups of the obvious reason that the registered names may be moved
to another global group at failover/takeover. There is nothing preventing doing this, but the application code must in
such case handle the situation.

SEE ALSO
erl(1), global (3)

136 | Ericsson AB. All Rights Reserved.: Kernel

heart

heart

Erlang module

This modules contains the interface to the heart process. heart sends periodic heartbeats to an external port
program, whichisalso named hear t . The purpose of the heart port program isto check that the Erlang runtime system
it issupervising isstill running. If the port program has not received any heartbeats within HEART _BEAT _TI MEOUT
seconds (default is 60 seconds), the system can be rebooted. Also, if the system is equipped with a hardware watchdog
timer and is running Solaris, the watchdog can be used to supervise the entire system.

An Erlang runtime system to be monitored by a heart program, should be started with the command lineflag - hear t
(seedsoerl(1). Theheart processisthen started automatically:

%erl -heart ...

If the system should be rebooted because of missing heart-beats, or a terminated Erlang runtime system, the
environment variable HEART_COVMAND hasto be set before the system is started. If thisvariableis not set, awarning
text will be printed but the system will not reboot. However, if the hardware watchdog is used, it will trigger a reboot
HEART_BEAT_BOOT_DELAY seconds later neverthel ess (default is 60).

To reboot on the WINDOWS platform HEART _COVMAND can besettoheart - shut down (included inthe Erlang
delivery) or of course to any other suitable program which can activate a reboot.

The hardware watchdog will not be started under Solarisif the environment variable HW WD _DI SABLE is set.

The HEART_BEAT_TI MECQUT and HEART_BEAT_BOOT_DELAY environment variables can be used to configure
the heart timeouts, they can be set in the operating system shell before Erlang is started or be specified at the command
line:

%erl -heart -env HEART_BEAT_TI MEQUT 30 ...

The value (in seconds) must be in the range 10 < X <= 65535.

It should be noted that if the system clock is adjusted with more than HEART BEAT Tl MEQOUT seconds, hear t will
timeout and try to reboot the system. This can happen, for example, if the system clock is adjusted automatically by
use of NTP (Network Time Protocol).

In the following descriptions, all function fails with reason badar g if heart isnot started.

Exports

set_cnmd(Cnd) -> ok | {error, {bad_cnd, Cnd}}
Types:
Cnd = string()

Sets a temporary reboot command. This command is used if a HEART_COVMAND other than the one specified with
the environment variable should be used in order to reboot the system. The new Erlang runtime system will (if it
misbehaves) use the environment variable HEART_COVMAND to reboot.

Limitations: The length of the Cmd command string must be less than 2047 characters.

Ericsson AB. All Rights Reserved.: Kernel | 137

heart

clear_cnd() -> ok

Clears the temporary boot command. If the system terminates, the normal HEART _COVMAND is used to reboot.

get _cnd() -> {ok, Cnd}
Types.
Crd = string()
Get the temporary reboot command. If the command is cleared, the empty string will be returned.

138 | Ericsson AB. All Rights Reserved.: Kernel

inet

inet

Erlang module

Provides access to TCP/IP protocols.

See also ERTS User's Guide, Inet configuration for more information on how to configure an Erlang runtime system

for |P communication.

Two Kerngl configuration parameters affect the behaviour of all sockets opened on an Erlang node:
i net _default_connect _opti ons cancontainalist of default optionsused for al sockets returned when doing
connect, andinet_default |isten_options can contain alist of default options used when issuing a
I i sten cal. Whenaccept isissued, the values of the listensocket options are inherited, why no such application

variableis needed for accept .

Using the Kernel configuration parameters mentioned above, one can set default optionsfor al TCP sockets on anode.
This should be used with care, but optionslike { del ay_send, t r ue} might be specified in thisway. An example

of starting an Erlang node with all sockets using delayed send could look like this:

$ erl -snanme test -kernel \
i net _default_connect _options '[{delay_send, true}]"' \
inet_default_listen_options '[{delay_send,true}]

Note that the default option{ act i ve, true} currently cannot be changed, for internal reasons.

Addresses as inputs to functions can be either a string or a tuple. For instance, the |P address 150.236.20.73 can be

passed to get host byaddr/ 1 either asthe string "150.236.20.73" or asthetuple{ 150, 236, 20, 73}.

| Pv4 address examples:

Addr ess i p_address()
127.0.0.1 {127,0,0, 1}
192.168.42. 2 {192, 168, 42, 2}

IPv6 address examples:

Addr ess i p_address()
1 {0,0,0,0,0,0,0, 1}
::192.168.42.2 {0,0,0,0,0,0, (192 bsl 8) bor 168, (42 bsl 8) bor 2}

FFFF: : 192. 168. 42. 2

{ 16#FFFF, 0,0, 0,0, 0, (192 bsl 8) bor 168, (42 bsl 8) bor 2}
3f f e: b80: 1f 8d: 2: 204: acff: fel7: bf 38

{16#3f f e, 16#b80, 16#1f 8d, 16#2, 16#204, 16#acf f, 16#f el7, 16#bf 38}
fe80::204: acff:fel7: bf 38

{16#f €80, 0, 0, 0, 0, 16#204, 16#acf f, 16#f e17, 16#bf 38}

A function that may be useful isi net _par se: addr ess/ 1:

1> inet_parse: address("192. 168. 42. 2")
{ok, {192, 168, 42, 2} }

Ericsson AB. All Rights Reserved.: Kernel | 139

inet

2> inet_parse: address(" FFFF: : 192. 168. 42. 2").
{ok, {65535, 0,0, 0, 0, 0, 49320, 10754} }

Data Types
hostent () =
#hostent { h_nane = undefined | inet:hostnane(),
h_aliases = [inet:hostnane()],
h_addrtype = undefined | inet | inet6,

h_length = undefined | integer() >= 0,
h_addr _list = [inet:ip_address()]}

Therecord is defined in the Kernel include file "inet.hrl". Add the following directive to the module;
-include_li b("kernel/include/inet.hrl").

host name() = atom() | string()
i p_address() = ip4_address() | ip6_address()
i p4_address() = {0..255, 0..255, 0..255, 0..255}
i p6_address() =
{0..65535,
. 65535,
. 65535,
. 65535,
. 65535,
. 65535,
. 65535,
.. 65535}

port nunber() = 0..65535
posi x() = exbadport | exbadseq | file: posix()

coooooo0

An atom which is named from the Posix error codes used in Unix, and in the runtime libraries of most C compilers.
See POSIX Error Codes.

socket ()

See gen_tcp(3) and gen_udp(3).

address famly() = inet | inet6
Exports

cl ose(Socket) -> ok
Types:
Socket = socket ()

Closes a socket of any type.

get _rc() -> [{Par :: any(), Val :: any()}]

Returns the state of the Inet configuration database in form of alist of recorded configuration parameters. (See the
ERTS User's Guide, Inet configuration, for more information). Only parameters with other than default values are
returned.

140 | Ericsson AB. All Rights Reserved.: Kernel

inet

format _error (Posix) -> string()
Types:
Posi x = posi x()
Returns a diagnostic error string. See the section below for possible Posi x values and the corresponding strings.

getaddr (Host, Famly) -> {ok, Address} | {error, posix()}
Types:

Host = ip_address() | hostnanme()

Family = address_fam | y()

Address = ip_address()

Returns the |P-address for Host as a tuple of integers. Host can be an IP-address, a single hostname or a fully
qualified hostname.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types:

Host = ip_address() | hostnane()

Family = address_fam | y()

Addresses = [ip_address()]

Returnsalist of all IP-addressesfor Host . Host canbean | P-address, asingle hostname or afully qualified hostname.

get host byaddr (Address) -> {ok, Hostent} | {error, posix()}

Types:
Address = string() | ip_address()
Host ent = hostent ()

Returnsahost ent record given an address.

get host bynane(Host nane) -> {ok, Hostent} | {error, posix()}
Types.

Host name = host nane()

Host ent = hostent ()

Returnsahost ent record given a hosthname.

get host bynanme(Host name, Fanmily) ->
{ok, Hostent} | {error, posix()}

Types.
Host name = host nane()
Family = address_fam |y()
Host ent = hostent ()

Returnsahost ent record given a hostname, restricted to the given address family.

get host nane() -> {ok, Hostnane}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 141

inet

Host name = string()

Returns the local hostname. Will never fail.

getifaddrs() -> {ok, Iflist} | {error
Types.
Iflist = [{Ifname, [Ifopt]}]
| fname = string()
Ifopt = {flag, [Flag]}
| {addr, Addr}
| {netmask, Net mask}
| {broadaddr, Broadaddr}
| {dstaddr, Dstaddr}
| {hwaddr, Hwaddr}
Flag = up
| broadcast
| | oopback
| poi nttopoint
| running
| nulticast
Addr = Netmask = Broadaddr = Dstaddr

Haaddr = [byte()]

Returns a list of 2-tuples containing interface names and the interface's addresses. | f nane is a Unicode string.
Hw