
PRADO v3.1.6 Quickstart

Tutorial 1

Qiang Xue and Wei Zhuo

July 22, 2009

1Copyright 2004-2009. All Rights Reserved.

Contents

Contents i

Preface xvii

License xix

1 Getting Started 1

1.1 Welcome to the PRADO Quickstart Tutorial . 1

1.1.1 How PRADO Works . 1

1.1.2 Examples and Demos . 2

1.1.3 Tutorials and Help . 2

1.2 What is PRADO? . 3

1.2.1 Why PRADO? . 4

1.2.2 What Is PRADO Best For? . 5

1.2.3 How Is PRADO Compared with Other Frameworks? 5

1.2.4 Is PRADO Stable Enough? . 6

1.2.5 History of PRADO . 6

1.3 Installing PRADO . 6

i

1.4 New Features . 7

1.4.1 Version 3.1.3 . 7

1.4.2 Version 3.1.2 . 8

1.4.3 Version 3.1.1 . 8

1.4.4 Version 3.1.0 . 9

1.5 Upgrading from v2.x and v1.x . 9

1.5.1 Component Definition . 10

1.5.2 Application Controller . 10

1.5.3 Pages . 10

1.5.4 Control Relationship . 11

1.5.5 Template Syntax . 11

1.5.6 Theme Syntax . 11

2 Tutorials 13

2.1 My First PRADO Application . 13

2.2 Sample: Hangman Game . 16

2.3 Command Line Tool . 16

2.3.1 Requirements . 16

2.3.2 Usage . 17

2.3.3 Creating a new Prado project skeleton . 17

2.3.4 Interactive Shell . 18

3 Tutorial: Currency Converter 21

3.1 Building a Simple Currency Converter . 21

ii

3.2 Downloading and Installing Prado . 22

3.3 Creating a new Prado web Application . 22

3.4 Creating the Currency Converter User Interface . 22

3.5 Implementing Currency Conversion . 24

3.6 Adding Validation . 26

3.7 Improve User Experience With Active Controls . 27

3.8 Adding Final Touches . 29

4 Tutorial: Building an AJAX Chat Application 31

4.1 Building an AJAX Chat Application . 31

4.2 Download, Install and Create a New Application 32

4.3 Authentication and Authorization . 32

4.3.1 Securing the Home page . 34

4.4 Active Record for chat users table . 35

4.4.1 Custom User Manager class . 36

4.5 Authentication . 38

4.5.1 Default Values for ActiveRecord . 39

4.6 Main Chat Application . 40

4.6.1 Exploring the Active Controls . 42

4.7 Active Record for chat buffer table . 43

4.8 Chat Application Logic . 44

4.9 Putting It Together . 46

4.10 Improving User Experience . 48

iii

5 Tutorial: Addressbook 51

5.1 A Simple Address Book . 51

6 Fundamentals 53

6.1 Architecture . 53

6.2 Components . 53

6.2.1 Component Properties . 53

6.2.2 Component Events . 55

6.2.3 Namespaces . 56

6.2.4 Component Instantiation . 57

6.3 Controls . 58

6.3.1 Control Tree . 58

6.3.2 Control Identification . 58

6.3.3 Naming Containers . 59

6.3.4 ViewState and ControlState . 59

6.4 Pages . 60

6.4.1 PostBack . 60

6.4.2 Page Lifecycles . 60

6.5 Modules . 60

6.5.1 Request Module . 61

6.5.2 Response Module . 61

6.5.3 Session Module . 61

6.5.4 Error Handler Module . 62

6.5.5 Custom Modules . 62

iv

6.6 Services . 62

6.6.1 Page Service . 63

6.7 Applications . 63

6.7.1 Directory Organization . 64

6.7.2 Application Deployment . 64

6.7.3 Application Lifecycles . 65

7 Configurations 69

7.1 Configuration Overview . 69

7.2 Templates: Part I . 69

7.2.1 Component Tags . 70

7.2.2 Template Control Tags . 71

7.2.3 Comment Tags . 72

7.2.4 Include Tags . 72

7.3 Templates: Part II . 72

7.3.1 Dynamic Content Tags . 72

7.4 Templates: Part III . 75

7.4.1 Dynamic Property Tags . 75

7.5 Application Configurations . 78

7.6 Page Configurations . 80

7.7 URL Mapping (Friendly URLs) . 81

7.7.1 Specifying URL Patterns . 82

7.7.2 Constructing Customized URLs . 85

v

8 Control Reference : Standard Controls 87

8.1 TButton . 87

8.2 TCheckBox . 88

8.3 TClientScript . 88

8.3.1 Including Bundled Javascript Libraries in Prado 88

8.3.2 Including Custom Javascript Files . 89

8.3.3 Including Custom Javascript Code Blocks 89

8.4 TColorPicker . 90

8.5 TDatePicker . 90

8.6 TExpression . 92

8.7 TFileUpload . 92

8.8 THead . 93

8.9 THiddenField . 93

8.10 THtmlArea . 93

8.11 THyperLink . 94

8.12 TImageButton . 95

8.13 TImageMap . 95

8.14 TImage . 96

8.15 TInlineFrame . 96

8.16 TJavascriptLogger . 97

8.17 TLabel . 97

8.18 TLinkButton . 98

8.19 TLiteral . 98

vi

8.20 TMultiView . 98

8.21 TOutputCache . 100

8.22 TPager . 101

8.23 TPanel . 102

8.24 TPlaceHolder . 103

8.25 TRadioButton . 103

8.26 TSafeHtml . 103

8.27 TStatements . 104

8.28 TTabPanel . 105

8.29 TTable . 106

8.30 TTextBox . 107

8.31 TTextHighlighter . 107

8.32 TWizard . 108

8.32.1 Overview . 108

8.32.2 Using TWizard . 110

9 Control Reference : List Controls 113

9.1 List Controls . 113

9.1.1 TListBox . 114

9.1.2 TDropDownList . 115

9.1.3 TCheckBoxList . 115

9.1.4 TRadioButtonList . 115

9.1.5 TBulletedList . 116

vii

10 Control Reference : Validation Controls 117

10.1 Validation Controls . 117

10.2 Prado Validation Controls . 118

10.2.1 TRequiredFieldValidator . 118

10.2.2 TRegularExpressionValidator . 119

10.2.3 TEmailAddressValidator . 119

10.2.4 TCompareValidator . 120

10.2.5 TDataTypeValidator . 120

10.2.6 TRangeValidator . 121

10.2.7 TCustomValidator . 121

10.2.8 TValidationSummary . 122

10.3 Interacting the Validators . 123

10.3.1 Resetting or Clearing of Validators . 123

10.3.2 Client and Server Side Conditional Validation 123

11 Control Reference : Data Controls 125

11.1 Data Controls . 125

11.2 TDataList . 125

11.3 TDataGrid . 129

11.3.1 Columns . 129

11.3.2 Item Styles . 130

11.3.3 Events . 130

11.3.4 Using TDataGrid . 131

11.3.5 Interacting with TDataGrid . 133

viii

11.3.6 Sorting . 133

11.3.7 Paging . 134

11.3.8 Extending TDataGrid . 135

11.4 TRepeater . 136

12 Control Reference : Active Controls (AJAX) 141

12.1 TActiveButton . 141

12.1.1 TActiveButton Class Diagram . 142

12.1.2 Adding Client Side Behaviour . 143

12.2 TActiveCheckBox . 143

12.3 TActiveCustomValidator . 144

13 Active Control Overview 145

13.1 Active Controls (AJAX enabled Controls) . 145

13.1.1 Standard Active Controls . 145

13.1.2 Active List Controls . 146

13.1.3 Extended Active Controls . 147

13.1.4 Active Control Abilities . 147

13.1.5 Active Control Infrastructure Classes . 147

13.2 Overview of Active Controls . 149

14 Write New Controls 151

14.1 Writing New Controls . 151

14.1.1 Composition of Existing Controls . 151

14.1.2 Extending Existing Controls . 154

ix

15 Service References 157

15.1 SOAP Service . 157

16 Working with Databases 163

16.1 Data Access Objects (DAO) . 163

16.1.1 Establishing Database Connection . 164

16.1.2 Executing SQL Statements . 164

16.1.3 Fetching Query Results . 165

16.1.4 Using Transactions . 166

16.1.5 Binding Parameters . 166

16.1.6 Binding Columns . 167

16.2 Active Record . 168

16.2.1 When to Use It . 168

16.2.2 Design Implications . 169

16.2.3 Database Supported . 170

16.3 Defining an Active Record . 170

16.3.1 Setting up a database connection . 173

16.3.2 Loading data from the database . 175

16.3.3 Inserting and updating records . 178

16.3.4 Deleting existing records . 179

16.3.5 Transactions . 180

16.3.6 Events . 181

16.4 Active Record Relationships . 182

16.4.1 Foreign Key Mapping . 184

x

16.4.2 Association Table Mapping . 191

16.4.3 Adding/Removing/Updating Related Objects 194

16.4.4 Lazy Loading Related Objects . 195

16.4.5 Column Mapping . 197

16.4.6 References . 198

16.5 Active Record Scaffold Views . 198

16.5.1 Setting up a Scaffold View . 199

16.5.2 TScaffoldListView . 200

16.5.3 TScaffoldEditView . 201

16.5.4 Combining list + edit views . 201

16.5.5 Customizing the TScaffoldView . 201

16.6 Data Mapper . 201

16.6.1 When to Use It . 202

16.6.2 SqlMap Data Mapper . 202

16.6.3 Setting up a database connection and initializing the SqlMap 204

16.6.4 A quick example . 205

16.6.5 Combining SqlMap with Active Records . 206

16.6.6 References . 207

17 Advanced Topics 209

17.1 Collections . 209

17.1.1 Using TList . 209

17.1.2 Using TMap . 211

17.2 Authentication and Authorization . 213

xi

17.2.1 How PRADO Auth Framework Works . 213

17.2.2 Using PRADO Auth Framework . 214

17.2.3 Using TUserManager . 216

17.2.4 Using TDbUserManager . 216

17.3 Security . 218

17.3.1 Viewstate Protection . 218

17.3.2 Cross Site Scripting Prevention . 219

17.3.3 Cookie Attack Prevention . 220

17.4 Assets . 221

17.4.1 Asset Publishing . 221

17.4.2 Customization . 222

17.4.3 Performance . 222

17.4.4 A Toggle Button Example . 223

17.5 Master and Content . 223

17.5.1 Master vs. External Template . 225

17.6 Themes and Skins . 226

17.6.1 Introduction . 226

17.6.2 Understanding Themes . 226

17.6.3 Using Themes . 227

17.6.4 Theme Storage . 227

17.6.5 Creating Themes . 228

17.7 Persistent State . 228

17.7.1 View State . 229

xii

17.7.2 Control State . 229

17.7.3 Application State . 229

17.7.4 Session State . 230

17.8 Logging . 230

17.8.1 Using Logging Functions . 231

17.8.2 Message Routing . 231

17.8.3 Message Filtering . 232

17.9 Internationalization (I18N) and Localization (L10N) 232

17.9.1 Separate culture/locale sensitive data . 233

17.9.2 Configuration . 234

17.9.3 What to do with messages.xml? . 234

17.9.4 Using a Database for translation . 235

17.9.5 Setting and Changing Culture . 236

17.9.6 Localizing your PRADO application . 236

17.9.7 Using localize function to translate text within PHP 237

17.9.8 Compound Messages . 237

17.10I18N Components . 238

17.10.1 TTranslate . 238

17.10.2 TDateFormat . 239

17.10.3 TNumberFormat . 241

17.10.4 TTranslateParameter . 242

17.10.5 TChoiceFormat . 243

17.11Error Handling and Reporting . 245

xiii

17.11.1 Exception Classes . 245

17.11.2 Raising Exceptions . 246

17.11.3 Error Capturing and Reporting . 246

17.11.4 Customizing Error Display . 246

17.12Performance Tuning . 248

17.12.1 Caching . 248

17.12.2 Using pradolite.php . 249

17.12.3 Changing Application Mode . 249

17.12.4 Reducing Page Size . 250

17.12.5 Other Techniques . 250

18 Client-side Scripting 253

18.1 Introduction to Javascript . 253

18.1.1 Hey, I didn’t know you could do that . 253

18.1.2 JSON (JavaScript Object Notation) . 254

18.1.3 What do you mean? A function is an object too? 255

18.1.4 Arrays, items, and object members . 256

18.1.5 Enough about objects, may I have a class now? 257

18.1.6 Functions as arguments, an interesting pattern 259

18.1.7 This is this but sometimes this is also that 260

18.2 Developer Notes for prototype.js . 262

18.2.1 What is that? . 262

18.2.2 Using the $() function . 262

18.2.3 Using the $F() function . 263

xiv

18.3 DOM Events and Javascript . 264

18.3.1 Basic event handling . 264

18.3.2 Observing keystrokes . 264

18.3.3 Getting the coordinates of the mouse pointer 265

18.3.4 Stopping Propagation . 266

18.3.5 Events, Binding, and Objects . 266

18.3.6 Removing Event Listeners . 269

18.4 Javascript in PRADO, Questions and Answers . 270

18.4.1 How do I include the Javascript libraries distributed with Prado? 270

18.4.2 Publishing Javascript Libraries as Assets 271

xv

xvi

Preface

Prado quick start doc

xvii

xviii

License

PRADO is free software released under the terms of the following BSD license.
Copyright 2004-2009, The PRADO Group (http://www.pradosoft.com) All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the PRADO Group nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

xix

Chapter 1

Getting Started

1.1 Welcome to the PRADO Quickstart Tutorial

¡div id=”intro” class=”block-content”¿

This Quickstart tutorial is provided to help you quickly start building your own Web applications
based on PRADO version 3.x.

If you are an existing PRADO 3.x user and would like to learn what enhancements are available
for each new version, please check out the new features page. Otherwise, the following sections are
helpful for newbies.

¡!– ¡div class=”start-page”¿ ¡div class=”concepts start-block”¿

1.1.1 How PRADO Works

Concepts and fundamentals

1. Building web applications with PRADO

2. Web controls and events

3. Validating user input

1

Chapter 1. Getting Started

4. Connecting to your database

5. Displaying data from database

¡/div¿ ¡div class=”examples start-block”¿

1.1.2 Examples and Demos

• Hello World

• Currency Converter

• Address Book

• Blog

• AJAX Chat

• Project Time Tracker

More examples in Standard Controls, Validation Controls and Data Controls. ¡/div¿

¡div class=”tutorials start-block”¿

1.1.3 Tutorials and Help

• Hello World in detail

• Currency Converter Tutorial

• Address Book Tutorial

• AJAX Chat Tutorial

¡/div¿ ¡/div¿ –¿

You may refer to the following resources if you find this tutorial does not fulfill all your needs.

¡/div¿

• PRADO Classes

2

http://www.pradosoft.com/docs/classdoc/

1.2. What is PRADO?

• PRADO API Documentation

• PRADO Forum

• PRADO Wiki

• PRADO Trac

1.2 What is PRADO?

PRADO is a component-based and event-driven programming framework for developing Web ap-
plications in PHP 5. PRADO stands for PHP Rapid Application Development Object-oriented.

A primary goal of PRADO is to enable maximum reusability in Web programming. By reusability,
we mean not only reusing one’s own code, but also reusing other people’s code in an easy way. The
latter is more important as it saves the effort of reinventing the wheels and may cut off development
time dramatically. The introduction of the concept of component is for this purpose.

To achieve the above goal, PRADO stipulates a protocol of writing and using components to
construct Web applications. A component is a software unit that is self-contained and can be
reused with trivial customization. New components can be created by simple composition of
existing components.

To facilitate interacting with components, PRADO implements an event-driven programming
paradigm that allows delegation of extensible behavior to components. End-user activities, such as
clicking on a submit button, are captured as server events. Methods or functions may be attached
to these events so that when the events happen, they are invoked automatically to respond to the
events. Compared with the traditional Web programming in which developers have to deal with
the raw POST or GET variables, event-driven programming helps developers better focus on the
necessary logic and reduces significantly the low-level repetitive coding.

In summary, developing a PRADO Web application mainly involves instantiating prebuilt com-
ponent types, configuring them by setting their properties, responding to their events by writing
handler functions, and composing them into pages for the application. It is very similar to RAD
toolkits, such as Borland Delphi and Microsoft Visual Basic, that are used to develop desktop GUI
applications.

3

http://www.pradosoft.com/docs/manual/
http://www.pradosoft.com/forum/
http://www.pradosoft.com/wiki/
http://trac.pradosoft.com/prado/

Chapter 1. Getting Started

1.2.1 Why PRADO?

PRADO is mostly quoted as a unique framework. In fact, it is so unique that it may turn your
boring PHP programming into a fun task. The following list is a short summary of the main
features of PRADO,

• Reusability - Code following the PRADO component protocol are highly reusable. This
benefits development teams in the long run as they can reuse their previous work and integrate
other parties’ work easily.

• Event-driven programming - End-user activities, such as clicking on a submit button, are
captured as server events so that developers have better focus on dealing with user interac-
tions.

• Team integration - Presentation and logic are separately stored. PRADO applications are
themable.

• Powerful Web controls - PRADO comes with a set of powerful components dealing with Web
user interfaces. Highly interactive Web pages can be created with a few lines of code. For
example, using the datagrid component, one can quickly create a page presenting a data
table which allows paging, sorting, editing, and deleting rows of the data.

• Strong database support - Since version 3.1, PRADO has been equipped with complete
database support which is natively written and thus fits seemlessly with the rest part of the
PRADO framework. According to the complexity of the business objects, one can choose to
use the simple PDO-based data access, or the widely known active record, or the complete
business object mapping scheme SqlMap.

• Seamless AJAX support - Using AJAX in PRADO has never been easier with its innovative
active controls introduced since version 3.1. You can easily write an AJAX-enabled appli-
cation without writing a single line of javascript code. In fact, using active controls is not
much different from using the regular non-AJAX enabled Web controls.

• I18N and L10N support - PRADO includes complete support for building applications with
multiple languages and locales.

• XHTML compliance - Web pages generated by PRADO are XHTML-compliant.

• Accommodation of existing work - PRADO is a generic framework with focus on the pre-
sentational layer. It does not exclude developers from using most existing class libraries or
toolkits. For example, one can AdoDB or Creole to deal with DB in his PRADO application.

4

1.2. What is PRADO?

• Other features - Powerful error/exception handling and message logging; generic caching and
selective output caching; customizable and localizable error handling; extensible authentica-
tion and authorization; security measures such as cross-site script (XSS) prevention, cookie
protection, etc.

1.2.2 What Is PRADO Best For?

PRADO is best suitable for creating Web applications that are highly user-interactive. It can be
used to develop systems as simple as a blog system to those as complex as a content management
system (CMS) or a complete e-commerce solution. Because PRADO promotes object-oriented
programming through its component-based methodology, it fits extremely well for team work and
enterprise development.

PRADO comes with a complete set of caching techniques which help accelerate PRADO Web
applications to accommodate high traffic requirement. Its modular architecture allows developers
to use or plug in different cache modules for different needs. The output caching enables one to
selectively choose to cache part of a rendered Web page.

1.2.3 How Is PRADO Compared with Other Frameworks?

PRADO is often quoted as a unique framework. Its uniqueness mainly lies in the component-based
and event-driven programming paradigm that it tries to promote. Although this programming
paradigm is not new in desktop application programming and not new in a few Web programming
languages, PRADO is perhaps the first PHP framework enabling it.

Most PHP frameworks mainly focuses on separating presentation and logic and promotes the MVC
(model-view-controller) design pattern. PRADO achieves the same goal naturally by requiring logic
be stored in classes and presentation in templates. PRADO does much more on aspects other than
MVC. It fills lot of blank area in PHP Web programming with its component-based programming
paradigm, its rich set of Web controls, its powerful database support, its flexible error handling
and logging feature, and many others.

5

Chapter 1. Getting Started

1.2.4 Is PRADO Stable Enough?

Yes. PRADO was initially released in August 2004. Many test suites have been written and
conducted frequently to ensure its quality. It has been used by thousands of developers and many
Web applications have been developed based on it. Bugs and feature requests are managed through
TRAC system and we have a great user community and development team to ensure all questions
are answered in a timely fashion.

1.2.5 History of PRADO

The very original inspiration of PRADO came from Apache Tapestry. During the design and
implementation, I borrowed many ideas from Borland Delphi and Microsoft ASP.NET. The first
version of PRADO came out in June 2004 and was written in PHP 4. Driven by the Zend PHP 5
coding contest, I rewrote PRADO in PHP 5, which proved to be a wise move, thanks to the new
object model provided by PHP 5. PRADO won the grand prize in the Zend contest, earning the
highest votes from both the public and the judges’ panel.

In August 2004, PRADO started to be hosted on SourceForge as an open source project. Soon
after, the project site xisc.com was announced to public. With the fantastic support of PRADO
developer team and PRADO users, PRADO evolved to version 2.0 in mid 2005. In this version,
Wei Zhuo contributed to PRADO with the excellent I18N and L10N support.

In May 2005, we decided to completely rewrite the PRADO framework to resolve a few fundamental
issues found in version 2.0 and to catch up with some cool features available in Microsoft ASP.NET
2.0. After nearly a year’s hard work with over 50,000 lines of new code, version 3.0 was finally
made available in April 2006.

Starting from version 3.0, significant efforts are allocated to ensure the quality and stability of
PRADO. If we say PRADO v2.x and v1.x are proof-of-concept work, we can say PRADO 3.x has
grown up to a project that is suitable for serious business application development.

1.3 Installing PRADO

¡div id=”install-info” class=”block-content”¿

If you are viewing this page from your own Web server, you are already done with the installation.

6

http://www.xisc.com/

1.4. New Features

The minimum requirement by PRADO is that the Web server support PHP 5. PRADO has been
tested with Apache Web server on Windows and Linux. Highly possibly it may also run on other
platforms with other Web servers, as long as PHP 5 is supported.

¡/div¿

¡div id=”install-steps” class=”block-content”¿

Installation of PRADO mainly involves downloading and unpacking.

1. Go to pradosoft.com to grab the latest version of PRADO.

2. Unpack the PRADO release file to a Web-accessible directory.

¡/div¿ ¡div id=”install-after” class=”block-content”¿

Your installation of PRADO is done and you can start to play with the demo applications included
in the PRADO release via URL http://web-server-address/prado/demos/. Here we assume
PRADO is unpacked to the prado subdirectory under the DocumentRoot of the Web server.

If you encounter any problems with the demo applications, please use the PRADO requirement
checker script, accessible via http://web-server-address/prado/requirements/index.php, to
check first if your server configuration fulfills the conditions required by PRADO.

¡/div¿

1.4 New Features

This page summarizes the main new features that are introduced in each PRADO release.

1.4.1 Version 3.1.3

• Added Drag and drop controls

• Added TActiveDatePicker control

7

http://www.pradosoft.com/

Chapter 1. Getting Started

1.4.2 Version 3.1.2

• Added a new active control TActivePager that allows to paginate a databound control with
an ajax callback.

• Added TFirebugLogRoute to send logs to the Firebug console

1.4.3 Version 3.1.1

• Added a new control TTabPanel that displays tabbed views.

• Added a new control TKeyboard that displays a virtual keyboard for text input.

• Added a new control TCaptcha that displays a CAPTCHA to keep spammers from signing
up for certain accounts online. A related validator TCaptchaValidator is also implemented.

• Added a new control TSlider that displays a slider which can be used for numeric input.

• Added a new control TConditional that conditionally displays one of the two kinds of content.

• Added Oracle DB support to Active Record.

• Added support to TDataGrid to allow grouping consecutive cells with the same content.

• Added support to allow configuring page properties and authorization rules using relative
page paths in application and page configurations. Added support to allow authorization
based on remote host address.

• Added a new page state persister TCachePageStatePersister. It allows page state to be
stored using a cache module (e.g. TMemCache, TDbCache, etc.)

• Added support to the auth framework to allow remembering login.

• Added support to display a prompt item in TDropDownList and TListBox (something like
‘Please select:’ as the first list item.)

• Added support to column mapping in Active Record.

8

1.5. Upgrading from v2.x and v1.x

1.4.4 Version 3.1.0

• Added seamless AJAX support. A whole array of AJAX-enabled controls, called active
controls, are introduced. The usage of these active controls is very similar to their non-
AJAX counterparts, i.e., plug in and use. For more details, see the tutorial about active
controls.

• Added complete database support.

• Added new controls, modules and services, including TSoapService, TOutputCache, TSes-
sionPageStatePersister, TFeedService, TJsonService, cache dependency classes, TXmlTrans-
form.

• Enhanced some data controls with renderers. Renderer enables reusing item templates that
are commonly found in TRepeater, TDataList and TDataGrid, and makes the configuration
on these controls much cleaner. For more details about renders, see the updated tutorials on
TRepeater, TDataList and TDataGrid.

• Added support to allow including external application configurations. Enhanced template
syntax to facilitate subproperty configuration.

• Added TDbUserManager and TDbUser to simplify authentication and authorization with
user accounts stored in a database.

1.5 Upgrading from v2.x and v1.x

¡div id=”from-2-or-1” class=”block-content”¿

PRADO v3.0 is NOT backward compatible with earlier versions of PRADO.

A good news is, properties and events of most controls remain intact, and the syntax of con-
trol templates remains largely unchanged. Therefore, developers’ knowledge of earlier versions of
PRADO are still applicable in v3.0.

We summarize in the following the most significant changes in v3.0 to help developers upgrade
their v2.x and v1.x PRADO applications more easily, if needed.

¡/div¿

9

Chapter 1. Getting Started

1.5.1 Component Definition

Version 3.0 has completely discarded the need of component specification files. It relies more on
conventions for defining component properties and events. In particular, a property is defined by
the existence of a getter method and/or a setter method, while an event is defined by the existence
of an on-method. Property and event names in v3.0 are both case-insensitive. As a consequence,
developers are now required to take care of type conversions when a component property is being
set. For example, the following code is used to define the setter method for the Enabled property
of TControl, which is of boolean type,

public function setEnabled($value)

{

$value=TPropertyValue::ensureBoolean($value);

$this->setViewState(’Enabled’,$value,true);

}

where TPropertyValue::ensureBoolean() is used to ensure that the input value be a boolean.
This is because when the property is configured in template, a string value is passed to the setter.
In previous versions, PRADO knows the property type based on the component specification files
and does the type conversion for you.

1.5.2 Application Controller

Application controller now implements a modular architecture. Modules can be plugged in and
configured in application specifications. Each module assumes a particular functionality, and they
are coordinated together by the application lifecycle. The concept of v2.x modules is replaced in
v3.0 by page directories. As a result, the format of v3.0 application specification is also different
from earlier versions.

1.5.3 Pages

Pages in v3.0 are organized in directories which may be compared to the module concept in v2.x.
Pages are requested using the path to them. For example, a URL index.php?page=Controls.Samples.Sample1

would be used to request for a page named Sample1 stored under the [BasePath]/Controls/Samples
directory, where [BasePath] refers to the root page path. The file name of a page template must be

10

1.5. Upgrading from v2.x and v1.x

ended with .page, mainly to differentiate page templates from non-page control templates whose
file names must be ended with .tpl.

1.5.4 Control Relationship

Version 3.0 redefines the relationships between controls. In particular, the parent-child relation-
ship now refers to the enclosure relationship between controls’ presentation. And a new naming-
container relationship is introduced to help better manage control IDs. For more details, see the
controls section.

1.5.5 Template Syntax

¡div id=”template-syntax” class=”block-content”¿

The syntax of control templates in v3.0 remains similar to those in earlier versions, with many
enhancements. A major change is about the databinding expression. In v3.0, this is done by the
following,

<com:MyComponent PropertyName=<%# PHP expression %> .../>

Expression and statement tags are also changed similarly. For more details, see the template
definition section.

¡/div¿

1.5.6 Theme Syntax

Themes in v3.0 are defined like control templates with a few restrictions.

11

Chapter 1. Getting Started

12

Chapter 2

Tutorials

2.1 My First PRADO Application

¡div id=”hello1” class=”block-content”¿

In this section, we guide you through creating your first PRADO application, the famous “Hello
World” application.

“Hello World” perhaps is the simplest ¡i¿interactive¡/i¿ PRADO application that you can create.
It displays to end-users a page with a submit button whose caption is Click Me. After the user
clicks on the button, its caption is changed to Hello World.

There are many approaches that can achieve the above goal. One can submit the page to the
server, examine the POST variable, and generate a new page with the button caption updated.
Or one can simply use JavaScript to update the button caption upon its onclick client event.

¡/div¿

PRADO promotes component-based and event-driven Web programming. The button is repre-
sented by a TButton object. It encapsulates the button caption as the Text property and associates
the user button click action with a server-side OnClick event. To respond to the user clicking on
the button, one simply needs to attach a function to the button’s OnClick event. Within the
function, the button’s Text property is modified as “Hello World”. The following diagram shows
the above sequence,

13

Chapter 2. Tutorials

Our PRADO application consists of three files, index.php, Home.page and Home.php, which are
organized as follows,

where each directory is explained as follows. Note, the above directory structure can be customized.
For example, one can move the protected directory out of Web directories. You will know how
to do this after you go through this tutorial.

• assets - directory storing published private files. See assets section for more details. This
directory must be writable by the Web server process.

• protected - application base path storing application data and private script files. This
directory should be configured as inaccessible to end-users.

• runtime - application runtime storage path storing application runtime information, such
as application state, cached data, etc. This directory must be writable by the Web server
process.

• pages - base path storing all PRADO pages.

14

2.1. My First PRADO Application

Tip:You may also use the framework/prado-cli.php command line script to cre-

ate the Prado project directory structure. For example, type the command php

path/to/prado-cli.php -c helloworld in the directory where you want to create the

helloworld project.

The three files that we need are explained as follows.

• index.php - entry script of the PRADO application. This file is required by all PRADO
applications and is the only script file that is directly accessible by end-users. Content in
index.php mainly consists of the following three lines,

require_once(’path/to/prado.php’); // include the prado script

$application=new TApplication; // create a PRADO application instance

$application->run(); // run the application

• Home.page - template for the default page returned when users do not explicitly specify
the page requested. A template specifies the presentational layout of components. In this
example, we use two components, TForm and TButton, which correspond to the ¡form¿ and
¡input¿ HTML tags, respectively. The template contains the following content,

<html>

<body>

<com:TForm>

<com:TButton Text="Click me" OnClick="buttonClicked" />

</com:TForm>

</body>

</html>

• Home.php - page class for the Home page. It mainly contains the method responding to the
OnClick event of the button.

class Home extends TPage

{

public function buttonClicked($sender,$param)

{

// $sender refers to the button component

$sender->Text="Hello World!";

}

}

15

Chapter 2. Tutorials

¡div id=”hello-end” class=”block-content”¿

The application is now ready and can be accessed via: http://Web-server-address/helloworld/index.php,
assuming helloworld is directly under the Web DocumentRoot. Try to change TButton in Home.page

to TLinkButton and see what happens.

Complete source code of this demo can be found in the PRADO release. You can also try the
online demo.

¡/div¿

2.2 Sample: Hangman Game

Having seen the simple “Hello World” application, we now build a more complex application called
“Hangman Game”. In this game, the player is asked to guess a word, a letter at a time. If he
guesses a letter right, the letter will be shown in the word. The player can continue to guess as
long as the number of his misses is within a prespecified bound. The player wins the game if he
finds out the word within the miss bound, or he loses.

To facilitate the building of this game, we show the state transition diagram of the gaming process
in the following, ¡br /¿¡br /¿ To be continued...

Fundamentals.Samples.Hangman.Home Demo

2.3 Command Line Tool

The optional prado-cli.php PHP script file in the framework directory provides command line
tools to perform various tedious takes in Prado. The prado-cli.php can be used to create Prado
project skeletons, create initial test fixtures, and access to an interactive PHP shell.

2.3.1 Requirements

To use the command line tool, you need to use your command prompt, command console or
terminal. In addition, PHP must be able to execute PHP scripts from the command line.

16

http://www.pradosoft.com/demos/helloworld/
http://www.pradosoft.com/demos/quickstart/index.php?page=Fundamentals.Samples.Hangman.Home

2.3. Command Line Tool

2.3.2 Usage

If you type php path/to/framework/prado-cli.php, you should see the following information.
Alternatively, if you are not on Windows, you may try to change the prado-cli.php into an
executable and execute it as a script

Command line tools for Prado 3.0.5.

usage: php prado-cli.php action <parameter> [optional]

example: php prado-cli.php -c mysite

actions:

-c <directory>

Creates a Prado project skeleton for the given <directory>.

-t <directory>

Create test fixtures in the given <directory>.

shell [directory]

Runs a PHP interactive interpreter. Initializes the Prado

application in the given [directory].

The ¡parameter¿ are required parameters and [optional] are optional parameters.

2.3.3 Creating a new Prado project skeleton

To create a Prado project skeleton, do the following:

1. Change to the directory where you want to create the project skeleton.

2. Type, php ../prado/framework/prado-cli.php -c helloworld, where helloworld is the
directory name that you want to create the project skeleton files.

3. Type, php ../prado/framework/prado-cli.php -t helloworld to create the test fixtures
for the helloworld project.

17

Chapter 2. Tutorials

2.3.4 Interactive Shell

The interactive shell allows you to evaluate PHP statements from the command line. The prado-cli.php
script can be used to start the shell and load an existing Prado project. For example, let us load
the blog demo project. Assume that your command line is in the prado distribution directory and
you type.

$: php framework/prado-cli.php shell demos/blog

The output should be

Command line tools for Prado 3.0.5.

** Loaded Prado application in directory "demos\blog\protected".

PHP-Shell - Version 0.3.1

(c) 2006, Jan Kneschke <jan@kneschke.de>

>> use ’?’ to open the inline help

>>

Then we will get an instance of the Prado blog application, and from that instance we want an
instance of the ’data’ module. Notice that a semicolon at the end of the line suppresses the

output.

>> $app = Prado::getApplication();

>> $db = $app->getModule(’data’);

Lastly, we want to use the data module to query for a post with ID=1. Notice that we leave out
the semicolon to show the results.

>> $db->queryPostByID(1)

There should not be any errors and you should see the following.

PostRecord#1

(

18

2.3. Command Line Tool

[ID] => 1

[AuthorID] => 1

[AuthorName] => ’Prado User’

[CreateTime] => 1148819691

[ModifyTime] => 0

[Title] => ’Welcome to Prado Weblog’

[Content] => ’Congratulations! You have successfully installed Prado Blog --

a PRADO-driven weblog system. A default administrator account has been created.

Please login with \textbf{admin/prado} and update your password as soon as possible.’

[Status] => 0

[CommentCount] => 0

)

19

Chapter 2. Tutorials

20

Chapter 3

Tutorial: Currency Converter

3.1 Building a Simple Currency Converter

This tutorial introduces the Prado web application framework and teaches you how to build a
simple web application in a few simple steps. This tutorial assumes that you are familiar with
PHP and you have access to a web server that is able to serve PHP5 scripts.

In this tutorial you will build a simple web application that converts a dollar amount to an other
currency, given the rate of that currency relative to the dollar. The completed application is shown
bellow.

You can try the application locally or at Pradosoft.com. Notice that the application still functions
exactly the same if javascript is not available on the user’s browser.

21

file:../currency-converter/index.php
http://www.pradosoft.com/demos/currency-converter/

Chapter 3. Tutorial: Currency Converter

3.2 Downloading and Installing Prado

To install Prado, simply download the latest version of Prado from http://www.pradosoft.com and
unzip the file to a directory not accessible by your web server (you may unzip it to a directory
accessible by the web server if you wish to see the demos and test). For further detailed installation,
see the Quickstart Installation guide.

3.3 Creating a new Prado web Application

The quickest and simplest way to create a new Prado web application is to use the command
tool prado-cli.php found in the framework directory of the Prado distribution. We create a new
application by running the following command in your command prompt or console. The command
creates a new directory named currency-converter in your current working directory. You may
need to change to the appropriate directory first. See the Command Line Tool for more details.

php prado/framework/prado-cli.php -c currency-converter

The above command creates the necessary directory structure and minimal files (including “in-
dex.php” and “Home.page”) to run a Prado web application. Now you can point your browser’s
url to the web server to serve up the index.php script in the currency-converter directory. You
should see the message “Welcome to Prado!”

3.4 Creating the Currency Converter User Interface

We start by editing the Home.page file found in the currency-converter/protected/pages/

directory. Files ending with “.page” are page templates that contains HTML and Prado controls.
We simply add two textboxes, three labels and one button as follows.

<com:TForm>

<fieldset>

<legend>Currency Converter</legend>

<div class="rate-field">

<com:TLabel ForControl="currencyRate" Text="Exchange Rate per $1:" />

<com:TTextBox ID="currencyRate" />

22

http://www.pradosoft.com/

3.4. Creating the Currency Converter User Interface

</div>

<div class="dollar-field">

<com:TLabel ForControl="dollars" Text="Dollars to Convert:" />

<com:TTextBox ID="dollars" />

</div>

<div class="total-field">

Amount in Other Currency:

<com:TLabel ID="total" CssClass="result" />

</div>

<div class="convert-button">

<com:TButton Text="Convert" />

</div>

</fieldset>

</com:TForm>

If you refresh the page, you should see something similar to the following figure. It may not look
very pretty or orderly, but we shall change that later using CSS.

The first component we add is a TForm that basically corresponds to the HTML <form> element.
In Prado, only one TForm element is allowed per page.

The next two pair of component we add is the TLabel and TTextBox that basically defines a label
and a textbox for the user of the application to enter the currency exchange rate. The ForControl

property value determines which component that the label is for. This allows the user of the
application to click on the label to focus on the field (a good thing). You could have used a plain
HTML <label> element to do the same thing, but you would have to find the correct ID of the
textbox (or <input> in HTML) as Prado components may/will render the ID value differently in
the HTML output.

The next pair of components are similar and defines the textbox to hold the dollar value to be
converted. The TLabel with ID value “total” defines a simple label. Notice that the ForControl

property is absent. This means that this label is simply a simple label which we are going to use
to display the converted total amount.

23

http://www.pradosoft.com/docs/manual/System.Web.UI/TForm.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLabel.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTextBox.html

Chapter 3. Tutorial: Currency Converter

The final component is a TButton that the user will click to calculate the results. The Text

property sets the button label.

3.5 Implementing Currency Conversion

If you tried clicking on the “Convert” button then the page will refresh and does not do anything
else. For the button to do some work, we need to add a “Home.php” to where “Home.page” is.
The Home class should extends the TPage, the default base class for all Prado pages.

<?php

class Home extends TPage

{

}

?>

Prado uses PHP’s autoload method to load classes. The convention is to use the class name
with “.php” extension as filename.

So far there is nothing interesting about Prado, we just declared some “web components” in some
template file named Home.page and created a “Home.php” file with a Home class. The more
interesting bits are in Prado’s event-driven architecture as we shall see next.

We want that when the user click on the “Convert” button, we take the values in the textbox, do
some calculation and present the user with the converted total. To handle the user clicking of the
“Convert” button we simply add an OnClick property to the “Convert” button in the “Home.page”
template and add a corresponding event handler method in the “Home.php”.

<com:TButton Text="Convert" OnClick="convert_clicked" />

The value of the OnClick, “convert clicked”, will be the method name in the “Home.php” that
will called when the user clicks on the “Convert” button.

class Home extends TPage

{

public function convert_clicked($sender, $param)

24

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TButton.html
http://www.pradosoft.com/docs/manual/System.Web.UI/TPage.html

3.5. Implementing Currency Conversion

{

$rate = floatval($this->currencyRate->Text);

$dollars = floatval($this->dollars->Text);

$this->total->Text = $rate * $dollars;

}

}

¡div id=”3332” class=”block-content”¿

If you run the application in your web browser, enter some values and click the “Convert” button
then you should see that calculated value displayed next to the “Amount in Other Currency” label.

In the “convert clicked” method the first parameter, $sender, corresponds to the object that
raised the event, in this case, the “Convert” button. The second parameter, $param contains any
additional data that the $sender object may wish to have added.

We shall now examine, the three lines that implements the simply currency conversion in the
“convert clicked” method.

¡/div¿

$rate = floatval($this->currencyRate->Text);

The statement $this->currencyRate corresponds to the TTextBox component with ID value “cur-
rencyRate” in the “Home.page” template. The Text property of the TTextBox contains the value
that the user entered. So, we obtain this value by $this->currencyRate->Text which we convert
the value to a float value.

$dollars = floatval($this->dollars->Text);

¡div id=”5551” class=”block-content”¿

The next line does a similar things, it takes the user value from the TTextBox with ID value “dollars
and converts it to a float value.

The third line calculates the new amount and set this value in the Text property of the TLabel

with ID="total". Thus, we display the new amount to the user in the label.

¡/div¿

$this->total->Text = $rate * $dollars;

25

Chapter 3. Tutorial: Currency Converter

3.6 Adding Validation

The way we convert the user entered value to float ensures that the total amount is always a
number. So the user is free to enter what ever they like, they could even enter letters. The user’s
experience in using the application can be improved by adding validators to inform the user of the
allowed values in the currency rate and the amount to be calcuated.

For the currency rate, we should ensure that

1. the user enters a value,

2. the currency rate is a valid number,

3. the currency rate is positive.

To ensure 1 we add one TRequiredFieldValidator. To ensure 2 and 3, we add one TCompareVal-
idator. We may add these validators any where within the “Home.page” template. Further details
regarding these validator and other validators can be found in the Validation Controls page.

<com:TRequiredFieldValidator

ControlToValidate="currencyRate"

ErrorMessage="Please enter a currency rate." />

<com:TCompareValidator

ControlToValidate="currencyRate"

DataType="Float"

ValueToCompare="0"

Operator="GreaterThan"

ErrorMessage="Please enter a positive currency rate." />

For the amount to be calculated, we should ensure that

1. the user enters a value,

2. the value is a valid number (not including any currency or dollar signs).

To ensure 1 we just add another TRequiredFieldValidator, for 2 we could use a TDataType-
Validator. For simplicity we only allow the user to enter a number for the amount they wish to
convert.

26

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TRequiredFieldValidator.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TCompareValidator.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TCompareValidator.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TDataTypeValidator.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TDataTypeValidator.html

3.7. Improve User Experience With Active Controls

<com:TRequiredFieldValidator

ControlToValidate="dollars"

ErrorMessage="Please enter the amount you wish to calculate." />

<com:TDataTypeValidator

ControlToValidate="dollars"

DataType="Float"

ErrorMessage="Please enter a number." />

Now if you try to enter some invalid data in the application or left out any of the fields the validators
will be activated and present the user with error messages. Notice that the error messages are
presented without reloading the page. Prado’s validators by default validates using both javascript
and server side. The server side validation is always performed. For the server side, we should
skip the calculation if the validators are not satisfied. This can done as follows.

public function convert_clicked($sender, $param)

{

if($this->Page->IsValid)

{

$rate = floatval($this->currencyRate->Text);

$dollars = floatval($this->dollars->Text);

$this->total->Text = $rate * $dollars;

}

}

3.7 Improve User Experience With Active Controls

In this simple application we may further improve the user experience by increasing the responsive-
ness of the application. One way to achieve a faster response is calculate and present the results
without reloading the whole page.

We can replace the TButton with the Active Control counter part, TActiveButton, that can trigger
a server side click event without reloading the page. In addition, we can change the “totals”
TLabel with the Active Control counter part, TActiveLabel, such that the server side can update
the browser without reloading the page.

<div class="total-field">

Amount in Other Currency:

27

http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveButton.html
http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveLabel.html

Chapter 3. Tutorial: Currency Converter

<com:TActiveLabel ID="total" CssClass="result" />

</div>

<div class="convert-button">

<com:TActiveButton Text="Convert" OnClick="convert_clicked" />

</div>

The server side logic remains the same, we just need to import the Active Controls name space as
they are not included by default. We add the following line to the begin of “Home.php”.

Prado::using(’System.Web.UI.ActiveControls.*’);

If you try the application now, you may notice that the page no longer needs to reload to calculate
and display the converted total amount. However, since there is not page reload, there is no
indication or not obvious that by clicking on the “Convert” button any has happened. We can
further refine the user experience by change the text of “total” label to “calculating...” when the
user clicks on the “Convert” button. The text of the “total” label will still be updated with the
new calculate amount as before.

To indicate that the calculation is in progress, we can change the text of the “total” label as
follows. We add a ClientSide.OnLoading property to the “Convert” button (since this button is
responsible for requesting the calculation).

<com:TActiveButton Text="Convert" OnClick="convert_clicked" >

<prop:ClientSide.OnLoading>

$(’<%= $this->total->ClientID %>’).innerHTML = "calculating..."

</prop:ClientSide.OnLoading>

</com:TActiveButton>

The ClientSide.OnLoading and various other properties accept a javascript block as their con-
tent or value. The javascript code $(‘...’) is a javascript function that is equivalent to
document.getElementById(‘...’) that takes a string with the ID of an HTML element. Since
Prado renders its components’s IDs, we need to use the rendered ID of the “total” label, that
is, $this->total->ClientID. We place this bit of code within a <%= %> to obtain the rendered
HTML ID for the “total” label. The rest of the javascript code innerHTML = ‘‘calculating..."

simply changes the content of the “total” label.

28

http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TCallbackClientSide.html

3.8. Adding Final Touches

3.8 Adding Final Touches

So far we have built a simple currency converter web application with little attention of the looks
and feel. Now we can add a stylesheet to improve the overall appearance of the application. We
can simply add the stylesheet inline with the template code or we may create a “theme”.

To create and use a theme with Prado applications, we simply create a new directory “themes/Basic”
in the currency-converter directory. You may need to create the themes directory first. Any
directory within the themes are considered as a theme with the name of the theme being the
directory name. See the Themes and Skins for further details.

We simply create a CSS file named “common.css” and save it in the themes/Basic directory. Then
we add the following code to the beginning of “Home.page” (we add a little more HTML as well).

<%@ Theme="Basic" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

<com:THead Title="Currency Converter" />

<body>

The first line <%@ Theme="Basic" %> defines the theme to be used for this page. The THead
corresponds to the HTML <head> element. In addition to display the Title property by the
THead, all CSS files in the themes/Basic directory are also rendered/linked for the current page.
Our final currency converter web application looks like the following.

This completes introduction tutorial to the Prado web application framework.

29

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THead.html

Chapter 3. Tutorial: Currency Converter

30

Chapter 4

Tutorial: Building an AJAX Chat

Application

4.1 Building an AJAX Chat Application

This tutorial introduces the Prado web application framework’s ActiveRecord and Active Controls
to build a Chat web application. It is assumed that you are familiar with PHP and you have
access to a web server that is able to serve PHP5 scripts. This basic chat application will utilize
the following ideas/components in Prado.

• Building a custom User Manager class.

• Authenticating and adding a new user to the database.

• Using ActiveRecord to interact with the database.

• Using Active Controls and callbacks to implement the user interface.

• Separating application logic and application flow.

In this tutorial you will build an AJAX Chat web application that allows multiple users to com-
municate through their web browser. The application consists of two pages: a login page that asks
the user to enter their nickname and the main application chat page. You can try the application
locally or at Pradosoft.com. The main application chat page is shown bellow.

31

file:../chat/index.php
http://www.pradosoft.com/demos/chat/

Chapter 4. Tutorial: Building an AJAX Chat Application

4.2 Download, Install and Create a New Application

The download and installation steps are similar to those in the Currency converter tutorial. To
create the application, we run from the command line the following. See the Command Line Tool
for more details.

php prado/framework/prado-cli.php -c chat

The above command creates the necessary directory structure and minimal files (including “in-
dex.php” and “Home.page”) to run a Prado web application. Now you can point your browser’s
URL to the web server to serve up the index.php script in the chat directory. You should see the
message “Welcome to Prado!”

4.3 Authentication and Authorization

The first task for this application is to ensure that each user of the chat application is assigned with
a unique (chosen by the user) username. To achieve this, we can secure the main chat application
page to deny access to anonymous users. First, let us create the Login page with the following
code. We save the Login.php and Login.page in the chat/protected/pages/ directory (there
should be a Home.page file created by the command line tool).

<?php

class Login extends TPage

32

4.3. Authentication and Authorization

{

}

?>

<!doctype html public "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Prado Chat Demo Login</title>

</head>

<body>

<com:TForm>

<h1 class="login">Prado Chat Demo Login</h1>

<fieldset class="login">

<legend>Please enter your name:</legend>

<div class="username">

<com:TLabel ForControl="username" Text="Username:" />

<com:TTextBox ID="username" MaxLength="20" />

<com:TRequiredFieldValidator

ControlToValidate="username"

Display="Dynamic"

ErrorMessage="Please provide a username." />

</div>

<div class="login-button">

<com:TButton Text="Login" />

</div>

</com:TForm>

</body>

</html>

The login page contains a TForm, a TTextBox, a TRequiredFieldValidator and a TButton. The
resulting page looks like the following (after applying some a style sheet).

If you click on the Login button without entering any text in the username textbox, an error
message is displayed. This is due to the TRequiredFieldValidator requiring the user to enter some
text in the textbox before proceeding.

33

http://www.pradosoft.com/docs/manual/System.Web.UI/TForm.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTextBox.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TRequiredFieldValidator.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TButton.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TRequiredFieldValidator.html

Chapter 4. Tutorial: Building an AJAX Chat Application

4.3.1 Securing the Home page

Now we wish that if the user is trying to access the main application page, Home.page, before they
have logged in, the user is presented with the Login.page first. We add a chat/protected/application.xml
configuration file to import some classes that we shall use later.

<?xml version="1.0" encoding="utf-8"?>

<application id="Chat" Mode="Debug">

<paths>

<using namespace="System.Data.*" />

<using namespace="System.Data.ActiveRecord.*" />

<using namespace="System.Security.*" />

<using namespace="System.Web.UI.ActiveControls.*" />

</paths>

</application>

Next, we add a chat/protected/pages/config.xml configuration file to secure the pages direc-
tory.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<modules>

<module id="users" class="TUserManager" />

<module id="auth" class="TAuthManager" UserManager="users" LoginPage="Login" />

</modules>

<authorization>

<allow pages="Login" users="?" />

<allow roles="normal" />

<deny users="*" />

</authorization>

</configuration>

34

4.4. Active Record for chat users table

We setup the authentication using the default classes as explained in the authentication/authorization
quickstart. In the authorization definition, we allow anonymous users to access the Login page
(anonymous users is specified by the ? question mark). We allow any users with role equal to
“normal” (to be defined later) to access all the pages, that is, the Login and Home pages. Lastly,
we deny all users without any roles to access any page. The authorization rules are executed on
first match basis.

If you now try to access the Home page by pointing your browser to the index.php you will be
redirected to the Login page.

4.4 Active Record for chat users table

The TUserManager class only provides a read-only list of users. We need to be able to add or login
new users dynamically. So we need to create our own user manager class. First, we shall setup a
database with a chat users table and create an ActiveRecord that can work with the chat users

table with ease. For the demo, we use sqlite as our database for ease of distributing the demo.
The demo can be extended to use other databases such as MySQL or Postgres SQL easily. We
define the chat users table as follows.

CREATE TABLE chat_users

(

username VARCHAR(20) NOT NULL PRIMARY KEY,

last_activity INTEGER NOT NULL DEFAULT "0"

);

Next we define the corresponding ChatUserRecord class and save it as chat/protected/App Code/ChatUserRecord.php

(you need to create the App Code directory as well). We also save the sqlite database file as
App Code/chat.db.

class ChatUserRecord extends TActiveRecord

{

const TABLE=’chat_users’;

public $username;

public $last_activity;

public static function finder($className=__CLASS__)

{

35

http://www.pradosoft.com/docs/manual/System.Secutity/TUserManager.html

Chapter 4. Tutorial: Building an AJAX Chat Application

return parent::finder($className);

}

}

Before using the ChatUserRecord class we to configure a default database connection for ActiveRe-
cord to function. In the chat/protected/application.xml we import classes from the App Code

directory and add an ActiveRecord configuration module.

<?xml version="1.0" encoding="utf-8"?>

<application id="Chat" Mode="Debug">

<paths>

<using namespace="Application.App_Code.*" />

<using namespace="System.Data.*" />

<using namespace="System.Data.ActiveRecord.*" />

<using namespace="System.Security.*" />

<using namespace="System.Web.UI.ActiveControls.*" />

</paths>

<modules>

<module class="TActiveRecordConfig" EnableCache="true"

Database.ConnectionString="sqlite:protected/App_Code/chat.db" />

</modules>

</application>

4.4.1 Custom User Manager class

To implement a custom user manager module class we just need to extends the TModule class and
implement the IUserManager interface. The getGuestName(), getUser() and validateUser()

methods are required by the IUserManager interface. We save the custom user manager class as
App Code/ChatUserManager.php.

class ChatUserManager extends TModule implements IUserManager

{

public function getGuestName()

{

return ’Guest’;

}

public function getUser($username=null)

36

4.4. Active Record for chat users table

{

$user=new TUser($this);

$user->setIsGuest(true);

if($username !== null && $this->usernameExists($username))

{

$user->setIsGuest(false);

$user->setName($username);

$user->setRoles(array(’normal’));

}

return $user;

}

public function addNewUser($username)

{

$user = new ChatUserRecord();

$user->username = $username;

$user->save();

}

public function usernameExists($username)

{

$finder = ChatUserRecord::finder();

$record = $finder->findByUsername($username);

return $record instanceof ChatUserRecord;

}

public function validateUser($username,$password)

{

return $this->usernameExists($username);

}

}

The getGuestName() method simply returns the name for a guest user and is not used in our
application. The getUser() method returns a TUser object if the username exists in the database,
the TUser object is set with role of “normal” that corresponds to the <authorization> rules
defined in our config.xml file.

The addNewUser() and usernameExists() method uses the ActiveRecord corresponding to the
chat users table to add a new user and to check if a username already exists, respectively.

37

Chapter 4. Tutorial: Building an AJAX Chat Application

The next thing to do is change the config.xml configuration to use our new custom user manager
class. We simply change the <module> configuration with id="users".

<module id="users" class="ChatUserManager" />

4.5 Authentication

To perform authentication, we just want the user to enter a unique username. We add a TCus-
tomValidator for validate the uniqueness of the username and add an OnClick event handler for
the login button.

<com:TCustomValidator

ControlToValidate="username"

Display="Dynamic"

OnServerValidate="checkUsername"

ErrorMessage="The username is already taken." />

...

<com:TButton Text="Login" OnClick="createNewUser" />

In the Login.php file, we add the following 2 methods.

function checkUsername($sender, $param)

{

$manager = $this->Application->Modules[’users’];

if($manager->usernameExists($this->username->Text))

$param->IsValid = false;

}

function createNewUser($sender, $param)

{

if($this->Page->IsValid)

{

$manager = $this->Application->Modules[’users’];

$manager->addNewUser($this->username->Text);

//do manual login

38

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TCustomValidator.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TCustomValidator.html

4.5. Authentication

$user = $manager->getUser($this->username->Text);

$auth = $this->Application->Modules[’auth’];

$auth->updateSessionUser($user);

$this->Application->User = $user;

$url = $this->Service->constructUrl($this->Service->DefaultPage);

$this->Response->redirect($url);

}

}

The checkUserName() method uses the ChatUserManager class (recall that in the config.xml

configuration we set the ID of the custom user manager class as “users”) to validate the username
is not taken.

In the createNewUser method, when the validation passes (that is, when the user name is not
taken) we add a new user. Afterward we perform a manual login process:

• First we obtain a TUser instance from our custom user manager class using the $manager->getUser(...)
method.

• Using the TAuthManager we set/update the user object in the current session data.

• Then we set/update the Application’s user instance with our new user object.

Finally, we redirect the client to the default Home page.

4.5.1 Default Values for ActiveRecord

If you try to perform a login now, you will receive an error message like “¡i¿Property ‘ChatUserRecord::$last activity’
must not be null as defined by column ‘last activity’ in table ‘chat users’.¡/i¿”. This means
that the $last activity property value was null when we tried to insert a new record. We need
to either define a default value in the corresponding column in the table and allow null values or
set the default value in the ChatUserRecord class. We shall demonstrate the later by altering the
ChatUserRecord with the addition of a set getter/setter methods for the last activity property.

private $_last_activity;

public function getLast_Activity()

39

Chapter 4. Tutorial: Building an AJAX Chat Application

{

if($this->_last_activity === null)

$this->_last_activity = time();

return $this->_last_activity;

}

public function setLast_Activity($value)

{

$this->_last_activity = $value;

}

Notice that we renamed $last activity to $ last activity (note the underscore after the dollar
sign).

4.6 Main Chat Application

Now we are ready to build the main chat application. We use a simple layout that consist of one
panel holding the chat messages, one panel to hold the users list, a textarea for the user to enter
the text message and a button to send the message.

<!doctype html public "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Prado Chat Demo</title>

<style>

.messages

{

width: 500px;

height: 300px;

float: left;

border: 1px solid ButtonFace;

overflow: auto;

}

.user-list

{

margin-left: 2px;

float: left;

40

4.6. Main Chat Application

width: 180px;

height: 300px;

border: 1px solid ButtonFace;

overflow: auto;

font-size: 0.85em;

}

.message-input

{

float: left;

}

.message-input textarea

{

margin-top: 3px;

padding: 0.4em 0.2em;

width: 493px;

font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

font-size: 0.85em;

height: 40px;

}

.send-button

{

margin: 0.5em;

}

</style>

</head>

<body>

<com:TForm>

\section{Prado Chat Demo}

<div id="messages" class="messages">

<com:TPlaceHolder ID="messageList" />

</div>

<div id="users" class="user-list">

<com:TPlaceHolder ID="userList" />

</div>

<div class="message-input">

<com:TActiveTextBox ID="userinput"

Columns="40" Rows="2" TextMode="MultiLine" />

<com:TActiveButton ID="sendButton" CssClass="send-button"

Text="Send" />

41

Chapter 4. Tutorial: Building an AJAX Chat Application

</div>

</com:TForm>

<com:TJavascriptLogger />

</body>

</html>

We added two Active Control components: a TActiveTextBox and a TActiveButton. We also
added a TJavascriptLogger that will be very useful for understanding how the Active Controls
work.

4.6.1 Exploring the Active Controls

We should have some fun before we proceeding with setting up the chat buffering. We want to see
how we can update the current page when we receive a message. First, we add an OnClick event
handler for the Send button.

<com:TActiveButton ID="sendButton" CssClass="send-button"

Text="Send" OnClick="processMessage"/>

And the corresponding event handler method in the Home.php class (we need to create this new
file too).

class Home extends TPage

{

function processMessage($sender, $param)

{

echo $this->userinput->Text;

}

}

If you now type something in the main application textbox and click the send button you should
see whatever you have typed echoed in the TJavascriptLogger console.

To append or add some content to the message list panel, we need to use some methods in the
TCallbackClientScript class which is available through the CallbackClient property of the current
TPage object. For example, we do can do

function processMessage($sender, $param)

42

http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveTextBox.html
http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveButton.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TJavascriptLogger.html
http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TCallbackClientScript.html

4.7. Active Record for chat buffer table

{

$this->CallbackClient->appendContent("messages", $this->userinput->Text);

}

This is one way to update some part of the existing page during a callback (AJAX style events)
and will be the primary way we will use to implement the chat application.

4.7 Active Record for chat buffer table

To send a message to all the connected users we need to buffer or store the message for each user.
We can use the database to buffer the messages. The chat buffer table is defined as follows.

CREATE TABLE chat_buffer

(

id INTEGER PRIMARY KEY,

for_user VARCHAR(20) NOT NULL,

from_user VARCHAR(20) NOT NULL,

message TEXT NOT NULL,

created_on INTEGER NOT NULL DEFAULT "0"

);

The corresponding ChatBufferRecord class is saved as App Code/ChatBufferRecord.php.

class ChatBufferRecord extends TActiveRecord

{

const TABLE=’chat_buffer’;

public $id;

public $for_user;

public $from_user;

public $message;

private $_created_on;

public function getCreated_On()

{

if($this->_created_on === null)

$this->_created_on = time();

43

Chapter 4. Tutorial: Building an AJAX Chat Application

return $this->_created_on;

}

public function setCreated_On($value)

{

$this->_created_on = $value;

}

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

4.8 Chat Application Logic

We finally arrive at the guts of the chat application logic. First, we need to save a received message
into the chat buffer for all the current users. We add this logic in the ChatBufferRecord class.

public function saveMessage()

{

foreach(ChatUserRecord::finder()->findAll() as $user)

{

$message = new self;

$message->for_user = $user->username;

$message->from_user = $this->from_user;

$message->message = $this->message;

$message->save();

if($user->username == $this->from_user)

{

$user->last_activity = time(); //update the last activity;

$user->save();

}

}

}

We first find all the current users using the ChatUserRecord finder methods. Then we duplicate
the message and save it into the database. In addition, we update the message sender’s last

44

4.8. Chat Application Logic

activity timestamp. The above piece of code demonstrates the simplicity and succinctness of using
ActiveRecords for simple database designs.

The next piece of the logic is to retrieve the users’ messages from the buffer. We simply load all the
messages for a particular username and format that message appropriately (remember to escape
the output to prevent Cross-Site Scripting attacks). After we load the messages, we delete those
loaded messages and any older messages that may have been left in the buffer.

public function getUserMessages($user)

{

$content = ’’;

foreach($this->findAll(’for_user = ?’, $user) as $message)

$content .= $this->formatMessage($message);

$this->deleteAll(’for_user = ? OR created_on < ?’,

$user, time() - 300); //5 min inactivity

return $content;

}

protected function formatMessage($message)

{

$user = htmlspecialchars($message->from_user);

$content = htmlspecialchars($message->message);

return "<div class=\"message\">\textbf{{$user}:}"

." {$content}</div>";

}

To retrieve a list of current users (formatted), we add this logic to the ChatUserRecord class. We
delete any users that may have been inactive for awhile.

public function getUserList()

{

$this->deleteAll(’last_activity < ?’, time()-300); //5 min inactivity

$content = ’\begin{itemize}’;

foreach($this->findAll() as $user)

$content .= ’\item ’.htmlspecialchars($user->username).’’;

$content .= ’\end{itemize}’;

return $content;

}

45

Chapter 4. Tutorial: Building an AJAX Chat Application

Note: For simplicity we formatted the messages in these Active Record classes. For large

applications, these message formatting tasks should be done using Prado components (e.g.

using a TRepeater in the template or a custom component).

4.9 Putting It Together

Now comes to put the application flow together. In the Home.php we update the Send buttons
OnClick event handler to use the application logic we just implemented.

function processMessage($sender, $param)

{

if(strlen($this->userinput->Text) > 0)

{

$record = new ChatBufferRecord();

$record->message = $this->userinput->Text;

$record->from_user = $this->Application->User->Name;

$record->saveMessage();

$this->userinput->Text = ’’;

$messages = $record->getUserMessages($this->Application->User->Name);

$this->CallbackClient->appendContent("messages", $messages);

$this->CallbackClient->focus($this->userinput);

}

}

We simply save the message to the chat buffer and then ask for all the messages for the current
user and update the client side message list using a callback response (AJAX style).

At this point the application is actually already functional, just not very user friendly. If you open
two different browsers, you should be able to communicate between the two users whenever the
Send button is clicked.

The next part is perhaps the more tricker and fiddly than the other tasks. We need to improve
the user experience. First, we want a list of current users as well. So we add the following method
to Home.php, we can call this method when ever some callback event is raised, e.g. when the Send

button is clicked.

protected function refreshUserList()

46

4.9. Putting It Together

{

$lastUpdate = $this->getViewState(’userList’,’’);

$users = ChatUserRecord::finder()->getUserList();

if($lastUpdate != $users)

{

$this->CallbackClient->update(’users’, $users);

$this->setViewstate(’userList’, $users);

}

}

Actually, we want to periodically update the messages and user list as new users join in and new
message may arrive from other users. So we need to refresh the message list as well.

function processMessage($sender, $param)

{

...

$this->refreshUserList();

$this->refreshMessageList();

...

}

protected function refreshMessageList()

{

//refresh the message list

$finder = ChatBufferRecord::finder();

$content = $finder->getUserMessages($this->Application->User->Name);

if(strlen($content) > 0)

{

$anchor = (string)time();

$content .= " ";

$this->CallbackClient->appendContent("messages", $content);

$this->CallbackClient->focus($anchor);

}

}

The anchor using time() as ID for a focus point is so that when the message list on the client side
gets very long, the focus method will scroll the message list to the latest message (well, it works
in most browsers).

47

Chapter 4. Tutorial: Building an AJAX Chat Application

Next, we need to redirect the user back to the login page if the user has been inactive for some
time, say about 5 mins, we can add this check to any stage of the page life-cycle. Lets add it to
the onLoad() stage.

public function onLoad($param)

{

$username = $this->Application->User->Name;

if(!$this->Application->Modules[’users’]->usernameExists($username))

{

$auth = $this->Application->Modules[’auth’];

$auth->logout();

//redirect to login page.

$this->Response->Redirect($this->Service->ConstructUrl($auth->LoginPage));

}

}

4.10 Improving User Experience

The last few details are to periodically check for new messages and refresh the user list. We
can accomplish this by polling the server using a TTimeTriggeredCallback control. We add a
TTimeTriggeredCallback to the Home.page and call the refresh handler method defined in
Home.php. We set the polling interval to 2 seconds.

<com:TTimeTriggeredCallback OnCallback="refresh"

Interval="2" StartTimerOnLoad="true" />

function refresh($sender, $param)

{

$this->refreshUserList();

$this->refreshMessageList();

}

The final piece requires us to use some javascript. We want that when the user type some text in
the textarea and press the Enter key, we want it to send the message without clicking on the Send

button. We add to the Home.page some javascript.

48

http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TTimeTriggeredCallback.html

4.10. Improving User Experience

<com:TClientScript>

Event.observe($("<%= $this->userinput->ClientID %>"), "keypress", function(ev)

{

if(Event.keyCode(ev) == Event.KEY_RETURN)

{

if(Event.element(ev).value.length > 0)

new Prado.Callback("<%= $this->sendButton->UniqueID %>");

Event.stop(ev);

}

});

</com:TClientScript>

Details regarding the javascript can be explored in the Introduction to Javascript section of the
quickstart.

This completes the tutorial on making a basic chat web application using the Prado framework.
Hope you have enjoyed it.

49

Chapter 4. Tutorial: Building an AJAX Chat Application

50

Chapter 5

Tutorial: Addressbook

5.1 A Simple Address Book

This tutorial introduces the basics of connecting to a database using ActiveRecord and using Active
Record scaffolds to quickly build a simple address book.

51

Chapter 5. Tutorial: Addressbook

52

Chapter 6

Fundamentals

6.1 Architecture

PRADO is primarily a presentational framework, although it is not limited to be so. The framework
focuses on making Web programming, which deals most of the time with user interactions, to be
component-based and event-driven so that developers can be more productive. The following class
tree depicts some of the major classes provided by PRADO,

When a PRADO application is processing a page request, its static object diagram can be shown
as follows,

6.2 Components

A component is an instance of TComponent or its child class. The base class TComponent implements
the mechanism of component properties and events.

6.2.1 Component Properties

A component property can be viewed as a public variable describing a specific aspect of the
component, such as the background color, the font size, etc. A property is defined by the existence
of a getter and/or a setter method in the component class. For example, in TControl, we define

53

Chapter 6. Fundamentals

its ID property using the following getter and setter methods,

class TControl extends TComponent {

public function getID() {

...

}

public function setID($value) {

...

}

}

54

6.2. Components

To get or set the ID property, do as follows, just like working with a variable,

$id = $component->ID;

$component->ID = $id;

This is equivalent to the following,

$id = $component->getID();

$component->setID($id);

A property is read-only if it has a getter method but no setter method. Since PHP method names
are case-insensitive, property names are also case-insensitive. A component class inherits all its
ancestor classes’ properties.

Subproperties

A subproperty is a property of some object-typed property. For example, TWebControl has a Font

property which is of TFont type. Then the Name property of Font is referred to as a subproperty
(with respect to TWebControl).

To get or set the Name subproperty, use the following method,

$name = $component->getSubProperty(’Font.Name’);

$component->setSubProperty(’Font.Name’, $name);

This is equivalent to the following,

$name = $component->getFont()->getName();

$component->getFont()->setName($name);

6.2.2 Component Events

Component events are special properties that take method names as their values. Attaching
(setting) a method to an event will hook up the method to the places at which the event is raised.
Therefore, the behavior of a component can be modified in a way that may not be foreseen during
the development of the component.

55

Chapter 6. Fundamentals

A component event is defined by the existence of a method whose name starts with the word on.
The event name is the method name and is thus case-insensitve. For example, in TButton, we have

class TButton extends TWebControl {

public function onClick($param) {

...

}

}

This defines an event named OnClick, and a handler can be attached to the event using one of the
following ways,

$button->OnClick = $callback;

$button->OnClick->add($callback);

$button->OnClick[] = $callback;

$button->attachEventHandler(’OnClick’ , $callback);

where $callback refers to a valid PHP callback (e.g. a function name, a class method array($object,’method’),
etc.)

6.2.3 Namespaces

A namespace refers to a logical grouping of some class names so that they can be differentiated
from other class names even if their names are the same. Since PHP does not support namespace
intrinsically, you cannot create instances of two classes who have the same name but with different
definitions. To differentiate from user defined classes, all PRADO classes are prefixed with a letter
‘T’ (meaning ‘Type’). Users are advised not to name their classes like this. Instead, they may
prefix their class names with any other letter(s).

A namespace in PRADO is considered as a directory containing one or several class files. A class
may be specified without ambiguity using such a namespace followed by the class name. Each
namespace in PRADO is specified in the following format,

<div class="source">

where PathAlias is an alias of some directory, while Dir1 and Dir2 are subdirectories under that di-
rectory. A class named MyClass defined under Dir2 may now be fully qualified as PathAlias.Dir1.Dir2.MyClass.

To use a namespace in code, do as follows,

56

6.2. Components

Prado::using(’PathAlias.Dir1.Dir2.*’);

which appends the directory referred to by PathAlias.Dir1.Dir2 into PHP include path so that
classes defined under that directory may be instantiated without the namespace prefix. You may
also include an individual class definition by

Prado::using(’PathAlias.Dir1.Dir2.MyClass’);

which will include the class file if MyClass is not defined.

For more details about defining path aliases, see application configuration section.

6.2.4 Component Instantiation

Component instantiation means creating instances of component classes. There are two types of
component instantation: static instantiation and dynamic instantiation. The created components
are called static components and dynamic components, respectively.

Dynamic Component Instantiation

Dynamic component instantiation means creating component instances in PHP code. It is the
same as the commonly referred object creation in PHP. A component can be dynamically created
using one of the following two methods in PHP,

$component = new ComponentClassName;

$component = Prado::createComponent(’ComponentType’);

where ComponentType refers to a class name or a type name in namespace format (e.g. System.Web.UI.TControl).
The second approach is introduced to compensate for the lack of namespace support in PHP.

Static Component Instantiation

Static component instantiation is about creating components via configurations. The actual cre-
ation work is done by the PRADO framework. For example, in an application configuration, one
can configure a module to be loaded when the application runs. The module is thus a static
component created by the framework. Static component instantiation is more commonly used in

57

Chapter 6. Fundamentals

templates. Every component tag in a template specifies a component that will be automatically
created by the framework when the template is loaded. For example, in a page template, the
following tag will lead to the creation of a TButton component on the page,

<com:TButton Text="Register" />

6.3 Controls

A control is an instance of class TControl or its subclass. A control is a component defined in
addition with user interface. The base class TControl defines the parent-child relationship among
controls which reflects the containment relationship among user interface elements.

6.3.1 Control Tree

Controls are related to each other via parent-child relationship. Each parent control can have one or
several child controls. A parent control is in charge of the state transition of its child controls. The
rendering result of the child controls are usually used to compose the parent control’s presentation.
The parent-child relationship brings together controls into a control tree. A page is at the root of
the tree, whose presentation is returned to the end-users.

The parent-child relationship is usually established by the framework via templates. In code, you
may explicitly specify a control as a child of another using one of the following methods,

$parent->Controls->add($child);

$parent->Controls[]=$child;

where the property Controls refers to the child control collection of the parent.

6.3.2 Control Identification

Each control has an ID property that can be uniquely identify itself among its sibling controls.
In addition, each control has a UniqueID and a ClientID which can be used to globally identify
the control in the tree that the control resides in. UniqueID and ClientID are very similar. The
former is used by the framework to determine the location of the corresponding control in the tree,

58

6.3. Controls

while the latter is mainly used on the client side as HTML tag IDs. In general, you should not
rely on the explicit format of UniqueID or ClientID.

6.3.3 Naming Containers

Each control has a naming container which is a control creating a unique namespace for differ-
entiating between controls with the same ID. For example, a TRepeater control creates multiple
items each having child controls with the same IDs. To differentiate these child controls, each
item serves as a naming container. Therefore, a child control may be uniquely identified using its
naming container’s ID together with its own ID. As you may already have understood, UniqueID
and ClientID rely on the naming containers.

A control can serve as a naming container if it implements the INamingContainer interface.

6.3.4 ViewState and ControlState

HTTP is a stateless protocol, meaning it does not provide functionality to support continuing
interaction between a user and a server. Each request is considered as discrete and independent
of each other. A Web application, however, often needs to know what a user has done in previous
requests. People thus introduce sessions to help remember such state information.

PRADO borrows the viewstate and controlstate concept from Microsoft ASP.NET to provides
additional stateful programming mechanism. A value storing in viewstate or controlstate may be
available to the next requests if the new requests are form submissions (called postback) to the
same page by the same user. The difference between viewstate and controlstate is that the former
can be disabled while the latter cannot.

Viewstate and controlstate are implemented in TControl. They are commonly used to define
various properties of controls. To save and retrieve values from viewstate or controlstate, use
following methods,

$this->getViewState(’Name’,$defaultValue);

$this->setViewState(’Name’,$value,$defaultValue);

$this->getControlState(’Name’,$defaultValue);

$this->setControlState(’Name’,$value,$defaultValue);

where $this refers to the control instance, Name refers to a key identifying the persistent value,

59

Chapter 6. Fundamentals

$defaultValue is optional. When retrieving values from viewstate or controlstate, if the corre-
sponding key does not exist, the default value will be returned.

6.4 Pages

Pages are top-most controls that have no parent. The presentation of pages are directly displayed
to end-users. Users access pages by sending page service requests.

Each page must have a template file. The file name suffix must be .page. The file name (without
suffix) is the page name. PRADO will try to locate a page class file under the directory containing
the page template file. Such a page class file must have the same file name (suffixed with .php) as
the template file. If the class file is not found, the page will take class TPage.

6.4.1 PostBack

A form submission is called ¡i¿postback¡/i¿ if the submission is made to the page containing the
form. Postback can be considered an event happened on the client side, raised by the user. PRADO
will try to identify which control on the server side is responsible for a postback event. If one is
determined, for example, a TButton, we call it the postback event sender which will translate
the postback event into some specific server-side event (e.g. OnClick and OnCommand events for
TButton).

6.4.2 Page Lifecycles

Understanding the page lifecycles is crucial to grasp PRADO programming. Page lifecycles refer
to the state transitions of a page when serving this page to end-users. They can be depicted in the
following statechart,

6.5 Modules

A module is an instance of a class implementing the IModule interface. A module is commonly
designed to provide specific functionality that may be plugged into a PRADO application and
shared by all components in the application.

60

6.5. Modules

PRADO uses configurations to specify whether to load a module, load what kind of modules,
and how to initialize the loaded modules. Developers may replace the core modules with their
own implementations via application configuration, or they may write new modules to provide
additional functionalities. For example, a module may be developed to provide common database
logic for one or several pages. For more details, please see the configurations.

There are three core modules that are loaded by default whenever an application runs. They are
request module, response module, and error handler module. In addition, session module is loaded
when it is used in the application. PRADO provides default implementation for all these modules.
Custom modules may be configured or developed to override or supplement these core modules.

6.5.1 Request Module

Request module represents provides storage and access scheme for user request sent via HTTP. User
request data comes from several sources, including URL, post data, session data, cookie data, etc.
These data can all be accessed via the request module. By default, PRADO uses THttpRequest

as request module. The request module can be accessed via the Request property of application
and controls.

6.5.2 Response Module

Response module implements the mechanism for sending output to client users. Response module
may be configured to control how output are cached on the client side. It may also be used to send
cookies back to the client side. By default, PRADO uses THttpResponse as response module. The
response module can be accessed via the Response property of application and controls.

6.5.3 Session Module

Session module encapsulates the functionalities related with user session handling. Session module
is automatically loaded when an application uses session. By default, PRADO uses THttpSession
as session module, which is a simple wrapper of the session functions provided by PHP. The session
module can be accessed via the Session property of application and controls.

61

Chapter 6. Fundamentals

6.5.4 Error Handler Module

Error handler module is used to capture and process all error conditions in an application. PRADO
uses TErrorHandler as error handler module. It captures all PHP warnings, notices and exceptions,
and displays in an appropriate form to end-users. The error handler module can be accessed via
the ErrorHandler property of the application instance.

6.5.5 Custom Modules

PRADO is released with a few more modules besides the core ones. They include caching modules
(TSqliteCache and TMemCache), user management module (TUserManager), authentication and
authorization module (TAuthManager), etc.

When TPageService is requested, it also loads modules specific for page service, including asset
manager (TAssetManager), template manager (TTemplateManager), theme/skin manager (TThemeManager).

Custom modules and core modules are all configurable via configurations.

6.6 Services

A service is an instance of a class implementing the IService interface. Each kind of service
processes a specific type of user requests. For example, the page service responds to users’ requests
for PRADO pages.

A service is uniquely identified by its ID property. By default when THttpRequest is used as the
request module, GET variable names are used to identify which service a user is requesting. If a
GET variable name is equal to some service ID, the request is considered for that service, and the
value of the GET variable is passed as the service parameter. For page service, the name of the GET
variable must be page. For example, the following URL requests for the Fundamentals.Services

page,

http://hostname/index.php?page=Fundamentals.Services

Developers may implement additional services for their applications. To make a service available,
configure it in application configurations.

62

6.7. Applications

6.6.1 Page Service

PRADO implements TPageService to process users’ page requests. Pages are stored under a
directory specified by the BasePath property of the page service. The property defaults to pages

directory under the application base path. You may change this default by configuring the service
in the application configuration.

Pages may be organized into subdirectories under the BasePath. In each directory, there may be a
page configuration file named config.xml, which contains configurations effective only when a page
under that directory or a sub-directory is requested. For more details, see the page configuration
section.

Service parameter for the page service refers to the page being requested. A parameter like
Fundamentals.Services refers to the Services page under the <BasePath>/Fundamentals di-
rectory. If such a parameter is absent in a request, a default page named Home is assumed. Using
THttpRequest as the request module (default), the following URLs will request for Home, About
and Register pages, respectively,

http://hostname/index.php

http://hostname/index.php?page=About

http://hostname/index.php?page=Users.Register

where the first example takes advantage of the fact that the page service is the default service and
Home is the default page.

6.7 Applications

An application is an instance of TApplication or its derived class. It manages modules that
provide different functionalities and are loaded when needed. It provides services to end-users. It
is the central place to store various parameters used in an application. In a PRADO application,
the application instance is the only object that is globally accessible via Prado::getApplication()

function call.

Applications are configured via application configurations. They are usually created in entry scripts
like the following,

require_once(’/path/to/prado.php’);

63

Chapter 6. Fundamentals

$application = new TApplication;

$application->run();

where the method run() starts the application to handle user requests.

6.7.1 Directory Organization

A minimal PRADO application contains two files: an entry file and a page template file. They
must be organized as follows,

• wwwroot - Web document root or sub-directory.

• index.php - entry script of the PRADO application.

• assets - directory storing published private files. See assets section.

• protected - application base path storing application data and private script files. This
directory should be configured inaccessible to Web-inaccessible, or it may be located outside
of Web directories.

• runtime - application runtime storage path. This directory is used by PRADO to store
application runtime information, such as application state, cached data, etc.

• pages - base path storing all PRADO pages. See services section.

• Home.page - default page returned when users do not explicitly specify the page requested.
This is a page template file. The file name without suffix is the page name. The page class
is TPage. If there is also a class file Home.php, the page class becomes Home.

A product PRADO application usually needs more files. It may include an application configura-
tion file named application.xml under the application base path protected. The pages may be
organized in directories, some of which may contain page configuration files named config.xml.
Fore more details, please see configurations section.

6.7.2 Application Deployment

Deploying a PRADO application mainly involves copying directories. For example, to deploy the
above minimal application to another server, follow the following steps,

64

6.7. Applications

1. Copy the content under wwwroot to a Web-accessible directory on the new server.

2. Modify the entry script file index.php so that it includes correctly the prado.php file.

3. Remove all content under assets and runtime directories and make sure both directories
are writable by the Web server process.

6.7.3 Application Lifecycles

Like page lifecycles, an application also has lifecycles. Application modules can register for the
lifecycle events. When the application reaches a particular lifecycle and raises the corresponding
event, the registered module methods are invoked automatically. Modules included in the PRADO
release, such as TAuthManager, are using this way to accomplish their goals.

The application lifecycles can be depicted as follows,

65

Chapter 6. Fundamentals

66

6.7. Applications

67

Chapter 6. Fundamentals

68

Chapter 7

Configurations

7.1 Configuration Overview

PRADO uses configurations to glue together components into pages and applications. There are
application configurations, page configurations, and templates.

Application and page configurations are optional if default values are used. Templates are mainly
used by pages and template controls. They are optional, too.

7.2 Templates: Part I

Templates are used to specify the presentational layout of controls. A template can contain static
text, components, or controls that contribute to the ultimate presentation of the associated con-
trol. By default, an instance of TTemplateControl or its subclass may automatically load and
instantiate a template from a file whose name is the same as the control class name. For page
templates, the file name suffix must be .page; for other regular template controls, the suffix is
.tpl.

The template format is like HTML, with a few PRADO-specifc tags, including component tags,
template control tags, comment tags, dynamic content tags, and dynamic property tags. .

69

Chapter 7. Configurations

7.2.1 Component Tags

A component tag specifies a component as part of the body content of the template control. If the
component is a control, it usually will become a child or grand child of the template control, and
its rendering result will be inserted at the place where it is appearing in the template.

The format of a component tag is as follows,

<com:ComponentType PropertyName="PropertyValue" ... EventName="EventHandler" ...>

body content

</com:ComponentType>

ComponentType can be either the class name or the dotted type name (e.g. System.Web.UI.TControl)
of the component. PropertyName and EventName are both case-insensitive. PropertyName can be
a property or subproperty name (e.g. Font.Name). Note, PropertyValue will be HTML-decoded
when assigned to the corresponding property. Content enclosed between the opening and closing
component tag are normally treated the body of the component.

It is required that component tags nest properly with each other and an opening component tag
be paired with a closing tag, similar to that in XML.

The following template shows a component tag specifying the Text property and OnClick event
of a button control,

<com:TButton Text="Register" OnClick="registerUser" />

Note, property names and event names are all case-insensitive, while component type names are
case-sensitive. Event names always begin with On.

Also note, initial values for properties whose name ends with Template are specially processed. In
particular, the initial values are parsed as TTemplate objects. The ItemTemplate property of the
TRepeater control is such an example.

To facilitate initializing properties with big trunk of data, the following property initialization
tag is introduced. It is equivalent to ...PropertyName="PropertyValue"... in every aspect.
Property initialization tags must be directly enclosed between the corresponding opening and
closing component tag.

<prop:PropertyName>

70

7.2. Templates: Part I

PropertyValue

</prop:PropertyName>

Since version 3.1.0, the property initialization tag can also be used to initialize a set of sub-
properties who share the same parent property. For example, the following is equivalent to
HeaderStyle.BackColor="black" and HeaderStyle.ForeColor="red".

<prop:HeaderStyle BackColor="black" ForeColor="red" />

Component IDs

When specified in templates, component ID property has special meaning in addition to its normal
property definition. A component tag specified with an ID value in template will register the
corresponding component to the template owner control. The component can thus be directly
accessed from the template control with its ID value. For example, in Home page’s template, the
following component tag

<com:TTextBox ID="TextBox" Text="First Name" />

makes it possible to get the textbox object in code using $page->TextBox.

7.2.2 Template Control Tags

A template control tag is used to configure the initial property values of the control owning the
template. Its format is as follows,

<%@ PropertyName="PropertyValue" ... %>

Like in component tags, PropertyName is case-insensitive and can be a property or subproperty
name.

Initial values specified via the template control tag are assigned to the corresponding properties
when the template control is being constructed. Therefore, you may override these property values
in a later stage, such as the Init stage of the control.

Template control tag is optional in a template. Each template can contain at most one template
control tag. You can place the template control tag anywhere in the template. It is recommended
that you place it at the beginning of the template for better visibility.

71

Chapter 7. Configurations

7.2.3 Comment Tags

Comment tags are used to put in a template developer comments that will not display to end-users.
Contents enclosed within a comment tag will be treated as raw text strings and PRADO will not
attempt to parse them. Comment tags cannot be used within property values. The format of
comment tags is as follows,

<!---

Comments INVISIBLE to end-users

--->

Note: The new comment tag <!--- ... ---> has been introduced since PRADO version

3.1. Previously, it was <!-- ... --!> which was deprecated because some editors have

problems in syntax-highlighting such tags.

7.2.4 Include Tags

Since version 3.0.5, PRADO starts to support external template inclusion. This is accomplished
via include tags, where external template files are specified in namespace format and their file
name must be terminated as .tpl.

<%include path.to.templateFile %>

External templates will be inserted at the places where the include tags occur in the base template.

Note, nested template inclusion is not supported, i.e., you cannot have include tags in an external
template.

7.3 Templates: Part II

7.3.1 Dynamic Content Tags

Dynamic content tags are introduced as shortcuts to some commonly used component tags. These
tags are mainly used to render contents resulted from evaluating some PHP expressions or state-

72

7.3. Templates: Part II

ments. They include expression tags, statement tags, databind tags, parameter tags, asset tags
and localization tags.

Expression Tags

An expression tag represents a PHP expression that is evaluated when the template control is in
PreRender stage. The expression evaluation result is inserted at the place where the tag resides in
the template. The context (namely $this) of the expression is the control owning the template.

The format of an expression tag is as follows,

<%= PhpExpression %>

For example, the following expression tag will display the current page title at the place,

<%= $this->Title %>

Statement Tags

Statement tags are similar to expression tags, except that statement tags contain PHP statements
rather than expressions. The output of the PHP statements (using for example echo or print in
PHP) are displayed at the place where the statement tag resides in the template. The context
(namely $this) of the statements is the control owning the template. The format of statement
tags is as follows,

<%%

PHP Statements

%>

The following example displays the current time in Dutch at the place,

<%%

setlocale(LC_ALL, ’nl_NL’);

echo strftime("%A %e %B %Y",time());

%>

73

Chapter 7. Configurations

Databind Tags

Databind tags are similar to expression tags, except that the expressions are evaluated only when
a dataBind() call is invoked on the controls representing the databind tags. The context (namely
$this) of a databind expression is the control owning the template. The format of databind tags
is as follows,

<%# PhpExpression %>

Parameter Tags

Parameter tags are used to insert application parameters at the place where they appear in the
template. The format of parameter tags is as follows,

<%$ ParameterName %>

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and display the corresponding the URLs. For example,
if you have an image file that is not Web-accessible and you want to make it visible to end-users,
you can use asset tags to publish this file and show the URL to end-users so that they can fetch
the published image.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

74

7.4. Templates: Part III

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]%>

where string will be translated to different languages according to the end-user’s language pref-
erence. Localization tags are in fact shortcuts to the function call Prado::localize(string).

URL Tags

URL tags are used to insert the relative web url path to the Prado application in the template.
You can use it in the following format:

<%/ image.jpg %>

If your Prado application is deployed on http://localhost/pradoapp/, the tag above will produce
“/pradoapp/image.jpg”. This tag will help you to use the correct file path even with UrlFormat
set to Path, or if you are using url mappings.

7.4 Templates: Part III

7.4.1 Dynamic Property Tags

Dynamic property tags are very similar to dynamic content tags, except that they are applied to
component properties. The purpose of dynamic property tags is to allow more versatile component
property configuration. Note, you are not required to use dynamic property tags because what
can be done using dynamic property tags can also be done in PHP code. However, using dynamic
property tags bring you much more convenience at accomplishing the same tasks. The basic usage
of dynamic property tags is as follows,

<com:ComponentType PropertyName=DynamicPropertyTag ...>

body content

</com:ComponentType>

75

Chapter 7. Configurations

where you may enclose DynamicPropertyTag within single or double quotes for better readability.

Like dynamic content tags, we have expression tags, databind tags, parameter tags, asset tags and
localization tags. (Note, there is no statement tag here.)

Expression Tags

An expression tag represents a PHP expression that is evaluated when the control is in PreRender

stage. The expression evaluation result is assigned to the corresponding component property. The
format of expression tags is as follows,

<%= PhpExpression %>

In the expression, $this refers to the control owning the template. The following example specifies
a TLabel control whose Text property is initialized as the current page title when the TLabel

control is being constructed,

<com:TLabel Text=<%= $this->Page->Title %> />

Databind Tags

Databind tags are similar to expression tags, except that they can only be used with control
properties and the expressions are evaluated only when a dataBind() call is invoked on the controls
represented by the component tags. In the expression, $this refers to the control owning the
template. Databind tags do not apply to all components. They can only be used for controls.

The format of databind tags is as follows,

<%# PhpExpression %>

Since v3.0.2, expression tags and databind tags can be embedded within static strings. For example,
you can write the following in a template,

<com:TLabel>

<prop:Text>

Today is <%= date(’F d, Y’,time()) %>.

76

7.4. Templates: Part III

The page class is <%= get_class($this) %>.

</prop:Text>

</com:TLabel>

Previously, you would have to use a single expression with string concatenations to achieve the
same effect.

Parameter Tags

Parameter tags are used to assign application parameter values to the corresponding component
properties. The format of parameter tags is as follows,

<%$ ParameterName %>

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and assign the corresponding the URLs to the component
properties. For example, if you have an image file that is not Web-accessible and you want to make
it visible to end-users, you can use asset tags to publish this file and show the URL to end-users
so that they can fetch the published image. The asset tags are evaluated when the template is
instantiated.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

77

Chapter 7. Configurations

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]%>

where string will be translated to different languages according to the end-user’s language pref-
erence. The localization tags are evaluated when the template is instantiated. Localization tags
are in fact shortcuts to the function call Prado::localize(string).

7.5 Application Configurations

Application configurations are used to specify the global behavior of an application. They include
specification of path aliases, namespace usages, module and service configurations, and parameters.

Configuration for an application is stored in an XML file named application.xml, which should
be located under the application base path. Its format is shown in the following. Complete
specification of application configurations can be found in the DTD and XSD files.

<application PropertyName="PropertyValue" ...>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

<include file="path.to.extconfig" when="PHP expression" />

<services>

<service id="ServiceID" class="ServiceClass" PropertyName="PropertyValue" ... />

</services>

</application>

78

file:<%~../../../../../docs/specs/application.dtd%>
file:<%~../../../../../docs/specs/application.xsd%>

7.5. Application Configurations

• The outermost element <application> corresponds to the TApplication instance. The
PropertyName="PropertyValue" pairs specify the initial values for the properties of TApplication.

• The <paths> element contains the definition of path aliases and the PHP inclusion paths for
the application. Each path alias is specified via an <alias> whose path attribute takes an
absolute path or a path relative to the directory containing the application configuration file.
The <using> element specifies a particular path (in terms of namespace) to be appended
to the PHP include paths when the application runs. PRADO defines two default aliases:
System and Application. The former refers to the PRADO framework root directory, and
the latter refers to the directory containing the application configuration file.

• The <modules> element contains the configurations for a list of modules. Each module is
specified by a <module> element. Each module is uniquely identified by the id attribute and
is of type class. The PropertyName="PropertyValue" pairs specify the initial values for
the properties of the module.

• The <parameters> element contains a list of application-level parameters that are accessible
from anywhere in the application. You may specify component-typed parameters like spec-
ifying modules, or you may specify string-typed parameters which take a simpler format as
follows,

<parameter id="ParameterID" value="ParameterValue" />

Note, if the value attribute is not specified, the whole parameter XML node (of type
TXmlElement) will be returned as the parameter value. In addition, the System.Util.TParameterModule
module provides a way to load parameters from an external XML file. See more details in
its API documentation.

• The <include> element allows one to include external configuration files. It has been intro-
duced since v3.1.0. The file attribute specifies the external configuration file in namespace
format. The extension name of the file must be .xml. The when attribute contains a PHP
expression and is optional (defaults to true). Only when the expression evaluates true, will
the external configuration file be included. The context of the expression is the application,
i.e., $this in the expression would refer to the application object.

• The <services> element is similar to the <modules> element. It mainly specifies the services
provided by the application. Within a <service> element, one can have any of the above
elements. They will be effective only when the corresponding service is being requested.

79

Chapter 7. Configurations

An external configuration file has the same format as described above. Although the name of
the root element does not matter, it is recommended to be <configuration>. External config-
urations will append to the main configuration. For example, if a path alias is specified in an
external configuration, it will become available in addition to those aliases specified in the main
configuration.

By default without explicit configuration, a PRADO application will load a few core modules,
such as THttpRequest, THttpResponse, etc. It will also provide the TPageService as a default
service. Configuration and usage of these modules and services are covered in individual sections
of this tutorial. Note, if your application takes default settings for these modules and service, you
do not need to provide an application configuration. However, if these modules or services are not
sufficient, or you want to change their behavior by configuring their property values, you will need
an application configuration.

7.6 Page Configurations

Page configurations are mainly used by TPageService to modify or append the application con-
figuration. As the name indicates, a page configuration is associated with a directory storing some
page files. It is stored as an XML file named config.xml.

When a user requests a page stored under <BasePath>/dir1/dir2, the TPageService will try to
parse and load config.xml files under <BasePath>, <BasePath>/dir1 and <BasePath>/dir1/dir2.
Paths, modules, and parameters specified in these configuration files will be appended or merged
into the existing application configuration. Here <BasePath> is as defined in page service.

The format of a page configuration file is as follows,

<configuration>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

80

7.7. URL Mapping (Friendly URLs)

</parameters>

<include file="path.to.extconfig" when="PHP expression" />

<authorization>

<allow pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="get" />

<deny pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="post" />

</authorization>

<pages PropertyName="PropertyValue" ...>

<page id="PageID" PropertyName="PropertyValue" ... />

</pages>

</configuration>

The <paths>, <modules>, <parameters> and <include> are similar to those in an application
configuration. The <authorization> element specifies the authorization rules that apply to the
current page directory and all its subdirectories. For more details, see authentication and au-
thorization section. The <pages> element specifies the initial values for the properties of pages.
Each <page> element specifies the initial property values for a particular page identified by the id

attribute. Initial property values given in the <pages> element apply to all pages in the current
directory and all its subdirectories.

Complete specification of page configurations can be found in the DTD and XSD files.

Since version 3.1.1, the id attribute in the ¡page¿ element can be a relative page path pointing
to a page in the subdirectory of the directory containing the page configuration. For example,
id="admin.Home" refers to the Home page under the admin directory. The id attribute can also
contain wildcard ‘*’ to match all pages under the specified directory. For example, id="admin.*"
refers to all pages under the admin directory and its subdirectories. This enhancement allows
developers to centralize their page configurations (e.g. put all page initializations in the aplication
configuration or the root page configuration.)

7.7 URL Mapping (Friendly URLs)

System.Web.TUrlMapping API Reference

The TUrlMapping module allows PRADO to construct and recognize friendly URLs based on
specific patterns.

TUrlMapping consists of a list of URL patterns which are used to match against the currently
requested URL. The first matching pattern will then be used to decompose the URL into request

81

file:<%~../../../../../docs/specs/config.dtd%>
file:<%~../../../../../docs/specs/config.xsd%>
http://www.pradosoft.com/docs/manual/System.Web/TUrlMapping.html

Chapter 7. Configurations

parameters (accessible via $this->Request[‘paramname’]). The patterns can also be used to
construct customized URLs. In this case, the parameters in an applied pattern will be replaced
with the corresponding GET variable values.

To use TUrlMapping, one must set the UrlManager property of the THttpRequest module as the
TUrlMapping module ID. See following for an example,

<modules>

<module id="request" class="THttpRequest" UrlManager="friendly-url" />

<module id="friendly-url" class="System.Web.TUrlMapping">

<url ServiceParameter="Posts.ViewPost" pattern="post/{id}/" parameters.id="\d+" />

<url ServiceParameter="Posts.ListPost" pattern="archive/{time}/" parameters.time="\d{6}" />

<url ServiceParameter="Posts.ListPost" pattern="category/{cat}/" parameters.cat="\d+" />

</module>

</modules>

The above example is part of the application configuration of the blog demo in the PRADO release.
It enables recognition of the following URL formats:

• /index.php/post/123 is recognized as /index.php?page=Posts.ViewPost&id=123

• /index.php/archive/200605 is recognized as /index.php?page=Posts.ListPost&time=200605

• /index.php/category/2 is recognized as /index.php?page=Posts.ListPost&cat=2

The ServiceParameter and ServiceID (the default ID is ‘page’) set the service parameter and
service ID, respectively, of the Request module. The service parameter for the TPageService

service is the Page class name, e.g., for an URL “index.php?page=Home”, “page” is the service
ID and the service parameter is “Home”. Other services may use the service parameter and ID
differently. See Services for further details.

Info: The TUrlMapping must be configured before the request module resolves the request.

This means delcaring the TUrlMapping outside of the <services> element in the application

configuration. Specifying the mappings in the per directory config.xml is not supported.

7.7.1 Specifying URL Patterns

TUrlMapping enables recognition of customized URL formats based on a list prespecified of URL
patterns. Each pattern is specified in a <url> tag.

82

7.7. URL Mapping (Friendly URLs)

The Pattern and Parameters attribute values are regular expression patterns that determine the
mapping criteria. The Pattern property takes a regular expression with parameter names enclosed
between a left brace ‘{’ and a right brace ‘}’. The patterns for each parameter can be set using
Parameters attribute collection. For example,

<url ServiceParameter="ArticleView" pattern="articles/{year}/{month}/{day}"

parameters.year="\d{4}" parameters.month="\d{2}" parameters.day="\d+" />

The example is equivalent to the following regular expression (it uses the “named group” feature
in regular expressions available in PHP):

<url ServiceParameter="ArticleView"

RegularExpression="/articles\/(?P<year>\d{4})\/(?P<month>\d{2})\/(?P<day>\d+)/u" />

In the above example, the pattern contains 3 parameters named “year”, “month” and “day”. The
pattern for these parameters are, respectively, “{.4}” (4 digits), “{.2}” (2 digits) and “+.” (1 or more
digits). Essentially, the Parameters attribute name and values are used as substrings in replacing
the placeholders in the Pattern string to form a complete regular expression string.

Note: If you intended to use the RegularExpression property you need to escape the

slash in regular expressions.

Following from the above pattern example, an URL http://example.com/index.php/articles/2006/07/21

will be matched and valid. However, http://example.com/index.php/articles/2006/07/hello
is not valid since the day parameter pattern is not satisfied. In the default TUrlMappingPattern

class, the pattern is matched against the PATHINFOpartoftheURLonly.Forexample, onlythe/articles/2006/07/21portionoftheURLisconsidered.

The mapped request URL is equivalent to index.php?page=ArticleView&year=2006&month=07&day=21.

The request parameter values are available through the standard Request object. For

example, $this->Request[‘year’].

The URL mapping are evaluated in order they are placed and only the first pattern

that matches the URL will be used. Cascaded mapping can be achieved by placing the

URL mappings in particular order. For example, placing the most specific mappings

first.

Since version 3.1.4, Prado also provides wildcard patterns to use friendly URLs for

a bunch of pages in a directory with a single rule. Therefore you can use the {*}

83

Chapter 7. Configurations

wildcard in your pattern to let Prado know, where to find the ServiceID in your

request URL. You can also specify parameters with these patterns if a lot of pages

share common parameters.

<url ServiceParameter="Posts.*" pattern="posts/{*}/{id}" parameters.id="\d+" />

<url ServiceParameter="Posts.*" pattern="posts/{*}" />

<url ServiceParameter="Static.Info.*" pattern="info/{*}" />

With these rules, any of the following URLs will be recognized:

• /index.php/post/ViewPost/123 is recognized as /index.php?page=Posts.ViewPost&id=123

• /index.php/post/ListPost/123 is recognized as /index.php?page=Posts.ListPost&id=123

• /index.php/post/ListPost/123 is recognized as /index.php?page=Posts.ListPost&id=123

• /index.php/post/MyPost is recognized as /index.php?page=Posts.MyPost

• /index.php/info/Conditions is recognized as /index.php?page=Static.Info.Conditions

• /index.php/info/About is recognized as /index.php?page=Static.Info.About

As above, put more specific rules before more common rules as the first matching

rule will be used.

To make configuration of friendly URLs for multiple pages even easier, you can also

use UrlFormat="Path" in combination with wildcard patterns. In fact, this feature only

is available in combination with wildcard rules:¡/P¿

<url ServiceParameter="user.admin.*" pattern="admin/{*}" UrlFormat="Path"/>

<url ServiceParameter="*" pattern="{*}" UrlFormat="Path" />

Parameters will get appended to the specified patterns as name/value pairs, separated

by a “/”. (You can change the separator character with UrlParamSeparator.)

• /index.php/list/cat/15/month/12 is recognized as /index.php?page=list&cat=15&month=12

• /index.php/edit/id/12 is recognized as /index.php?page=list&id=12

• /index.php/show/name/foo is recognized as /index.php?page=show&name=foo

• /index.php/admin/edit/id/12 is recognized as /index.php?page=user.admin.edit&id=12

84

7.7. URL Mapping (Friendly URLs)

7.7.2 Constructing Customized URLs

Since version 3.1.1, TUrlMapping starts to support constructing customized URLs based

on the provided patterns. To enable this feature, set TUrlMapping.EnableCustomUrl to

true. When THttpRequest.constrcutUrl() is invoked, the actual URL construction

work will be delegated to a matching TUrlMappingPattern instance. It replaces the pa-

rameters in the pattern with the corresponding GET variables passed to constructUrl().

A matching pattern is one whose ServiceID and ServiceParameter properties are the

same as those passed to constructUrl() and whose named parameters are found in

the GET variables. For example, constructUrl(‘Posts.ListPost’,array(‘cat’=>2)) will

use the third pattern in the above example.

By default, TUrlMapping will construct URLs prefixed with the currently requesting

PHP script path, such as /path/to/index.php/article/3. Users may change this be-

havior by explicitly specifying the URL prefix through its UrlPrefix property. For

example, if the Web server configuration treats index.php as the default script, we can

set UrlPrefix as /path/to and the constructed URL will look like /path/to/article/3.

Note: If you use constructUrl() with string parameters that contain slashes

(“/”) they will get encoded to %2F. By default most Apache installations give

a “404 Not found” if a URL contains a %2F. You can add AllowEncodedSlashes

On to your VirtualHost configuration to resolve this. (Available since Apache

2.0.46).

85

Chapter 7. Configurations

86

Chapter 8

Control Reference : Standard

Controls

8.1 TButton

System.Web.UI.WebControls.TButton API Reference

TButton creates a click button on a Web page. The button’s caption is specified

by Text property. A button is used to submit data to a page. TButton raises two

server-side events, OnClick and OnCommand, when it is clicked on the client-side. The

difference between OnClick and OnCommand events is that the latter event is bubbled

up to the button’s ancestor controls. An OnCommand event handler can use CommandName

and CommandParameter associated with the event to perform specific actions.

Clicking on button can trigger form validation, if CausesValidation is true. And the

validation may be restricted within a certain group of validator controls according to

ValidationGroup.

Controls.Samples.TButton.Home Demo

TODO: custom attributes

87

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TButton.Home

Chapter 8. Control Reference : Standard Controls

8.2 TCheckBox

System.Web.UI.WebControls.TCheckBox API Reference

TCheckBox displays a check box on a Web page. A caption can be specified via Text and

displayed beside the check box. It can appear either on the right or left of the check

box, which is determined by TextAlign. You may further specify attributes applied

to the text by using LabelAttributes.

To determine whether the check box is checked, test the Checked property. A CheckedChanged

event is raised if the state of Checked is changed between posts to the server. If

AutoPostBack is true, changing the check box state will cause postback action. And if

CausesValidation is also true, upon postback validation will be performed for valida-

tors within the specified ValidationGroup.

Controls.Samples.TCheckBox.Home Demo

8.3 TClientScript

System.Web.UI.WebControls.TClientScript API Reference

8.3.1 Including Bundled Javascript Libraries in Prado

TClientScript allows Javascript code to be insert or linked to the page template.

PRADO is bundled with a large library of Javascript functionality including effects,

AJAX, basic event handlers, and many others. The bundled Javascript libraries can

be linked to the current page template using the PradoScripts property. Multiple

bundled Javascript libraries can be specified using comma delimited string of the

name of Javascript library to include on the page. For following example will include

the “ajax” and “effects” library.

<com:TClientScript PradoScripts="ajax, effects" />

The available bundled libraries included in Prado are

• prado : basic prado javascript framework based on Prototype

88

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TCheckBox.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCheckBox.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TClientScript.html

8.3. TClientScript

• effects : visual effects from script.aculo.us

• ajax : ajax and callback related based on Prototype

• validator : validation

• logger : javascript logger and object browser

• datepicker : datepicker

• colorpicker : colorpicker

Many of the libraries, such as validator and datepicker will automatically when con-

trols that uses these libraries are visible on the page. For example, all the validators

if they have their EnableClientScript set to true will include both the prado and

validator javascript libraries. The dependencies for each library are automatically

resolved. That is, specifying, say the “ajax”, will also include the “prado” library.

8.3.2 Including Custom Javascript Files

Custom Javascript files can be register using the ScriptUrl property. The following

example includes the Javascript file “test.js” to the page. In this case, the file “test.js”

is relative the current template you are using. Since the property value is dynamic

asset tag, the file “test.js” will be published automatically, that is, the file will be

copied to the assets directory if necessary.

<com:TClientScript ScriptUrl=<%~ test.js %> />

You can include Javascript files from other servers by specifying the full URL string

in the ScriptUrl property.

8.3.3 Including Custom Javascript Code Blocks

Any content within the TClientScript control tag will be considered as Javascript code

and will be rendered where it is declared.

89

Chapter 8. Control Reference : Standard Controls

8.4 TColorPicker

System.Web.UI.WebControls.TColorPicker API Reference

TBD

8.5 TDatePicker

System.Web.UI.WebControls.TDatePicker API Reference

TDatePicker displays a text box for date input purpose. When the text box receives

focus, a calendar will pop up and users can pick up from it a date that will be

automatically entered into the text box. The format of the date string displayed

in the text box is determined by the DateFormat property. Valid formats are the

combination of the following tokens:

Character Format Pattern (en-US)

d day digit

dd padded day digit e.g. 01, 02

M month digit

MM padded month digit

MMM localized abbreviated month names, e.g. Mar, Apr

MMMM localized month name, e.g. March, April

yy 2 digit year

yyyy 4 digit year

The date of the date picker can be set using the Date or Timestamp properties. The Date

property value must be in the same format as the pattern specified in the DateFormat

property. The Timestamp property only accepts integers such as the Unix timestamp.

TDatePicker has three Mode to show the date picker popup.

• Basic - Only shows a text input, focusing on the input shows the date picker.

• Button - Shows a button next to the text input, clicking on the button shows the

date, button text can be by the ButtonText property.

90

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TColorPicker.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TDatePicker.html

8.5. TDatePicker

• ImageButton - Shows an image next to the text input, clicking on the image shows

the date picker, image source can be change through the ImageUrl property.

The CssClass property can be used to override the CSS class name for the date picker

panel. The CalendarStyle property changes the overall calendar style. The following

CalendarStyle values are available:

• default - The default calendar style.

The InputMode property can be set to “TextBox” or “DropDownList” with default as

“TextBox”. In DropDownList mode, in addition to the popup date picker, three drop

down list (day, month and year) are presented to select the date . When InputMode

equals “DropDownList”, the order and appearance of the date, month, and year will

depend on the pattern specified in DateFormat property.

The popup date picker can be hidden by specifying ShowCalendar as false. Much of

the text of the popup date picker can be changed to a different language using the

Culture property.

The calendar picker year limit can be set using the FromYear and UpToYear properties

where FromYear is the starting year and UpToYear is the last year selectable. The

starting day of the week can be changed by the FirstDayOfWeek property, with 0 as

Sunday, 1 as Monday, etc.

Note 1: If the InputMode is “TextBox”, the DateFormat should only NOT contain MMM

or MMMM patterns. The server side date parser will not be able to determine the correct

date if MMM or MMMM are used. When InputMode equals “DropDownList”, all patterns

can be used.

Note 2: When the TDatePicker is used together with a validator, the DateFormat prop-

erty of the validator must be equal to the DateFormat of the TDatePicker AND must set

DataType=”Date” on the validator to ensure correct validation. See TCompareVal-

idator, TDataTypeValidator and TRangeValidator for details.

Controls.Samples.TDatePicker.Home Demo

91

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDatePicker.Home

Chapter 8. Control Reference : Standard Controls

8.6 TExpression

System.Web.UI.WebControls.TExpression API Reference

TExpression evaluates a PHP expression and displays the evaluation result. To spec-

ify the expression to be evaluated, set the Expression property. Note, TExpression

evaluates the expression during the rendering control lifecycle.

The context of the expression in a TExpression control is the control itself. That is,

$this represents the control object if it is present in the expression. For example, the

following template tag will display the title of the page containing the TExpression

control.

<com:TExpression Expression="$this->Page->Title" />

Be aware, since TExpression allows execution of arbitrary PHP code, in general you

should not use it to evaluate expressions submitted by your application users.

Controls.Samples.TExpression.Home Demo

8.7 TFileUpload

System.Web.UI.WebControls.TFileUpload API Reference

TFileUpload displays a file upload field on a Web page. Upon postback, the text

entered into the field will be treated as the (local) name of the file that is uploaded

to the server.

TFileUpload raises an OnFileUpload event when it is post back. The property HasFile

indicates whether the file upload is successful or not. If successful, the uploaded file

may be saved on the server by calling saveAs() method.

The following properties give the information about the uploaded file:

• FileName - the original client-side file name without directory information.

• FileType - the MIME type of the uploaded file.

92

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TExpression.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TExpression.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TFileUpload.html

8.8. THead

• FileSize - the file size in bytes.

• LocalName - the absolute file path of the uploaded file on the server. Note, this

file will be deleted after the current page request is completed. Call saveAs() to

save the uploaded file.

If the file upload is unsuccessful, the property ErrorCode gives the error code describ-

ing the cause of failure. See PHP documentation for a complete explanation of the

possible error codes.

Controls.Samples.TFileUpload.Home Demo

8.8 THead

System.Web.UI.WebControls.THead API Reference

TBD

8.9 THiddenField

System.Web.UI.WebControls.THiddenField API Reference

THiddenField represents a hidden field on a Web page. The value of the hidden field

can be accessed via its Value property.

THiddenField raises an OnValueChanged event if its value is changed during postback.

8.10 THtmlArea

System.Web.UI.WebControls.THtmlArea API Reference

THtmlArea displays a WYSIWYG text input field on a Web page to collect input in

HTML format. The text displayed in the THtmlArea control is specified or determined

by using the Text property. To adjust the size of the input region, set Width and Height

93

http://www.php.net/manual/en/features.file-upload.errors.php
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TFileUpload.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THead.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THiddenField.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THtmlArea.html

Chapter 8. Control Reference : Standard Controls

properties instead of Columns and Rows because the latter has no meaning under this

situation. To disable the WYSIWYG feature, set EnableVisualEdit to false.

THtmlArea provides the WYSIWYG feature by wrapping the functionalities provided

by the TinyMCE project.

The default editor gives only the basic tool bar. To change or add additional tool

bars, use the Options property to add additional editor options with each options on a

new line. See TinyMCE website for a complete list of options. The following example

displays a toolbar specific for HTML table manipulation,

<com:THtmlArea>

<prop:Options>

plugins : "table"

theme_advanced_buttons3 : "tablecontrols"

</prop:Options>

</com:THtmlArea>

The client-side visual editing capability is supported by Internet Explorer 5.0+ for

Windows and Gecko-based browser. If the browser does not support the visual editing,

a traditional textarea will be displayed.

<pre>

Controls.Samples.THtmlArea.Home Demo

8.11 THyperLink

System.Web.UI.WebControls.THyperLink API Reference

THyperLink displays a hyperlink on a page. The hyperlink URL is specified via the

NavigateUrl property, and link text is via the Text property. The link target is specified

via the Target property. It is also possible to display an image by setting the ImageUrl

property. In this case, Text is displayed as the alternate text of the image. If both

ImageUrl and Text are empty, the content enclosed within the control tag will be

rendered.

Controls.Samples.THyperLink.Home Demo

94

http://tinymce.moxiecode.com/
http://tinymce.moxiecode.com/tinymce/docs/index.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.THtmlArea.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THyperLink.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.THyperLink.Home

8.12. TImageButton

8.12 TImageButton

System.Web.UI.WebControls.TImageButton API Reference

TImageButton is also similar to TButton, except that TImageButton displays the button

as an image. The image is specified via ImageUrl, and the alternate text is specified

by Text. In addition, it is possible to obtain the coordinate of the point where the

image is clicked. The coordinate information is contained in the event parameter of

the OnClick event (not OnCommand).

Controls.Samples.TImageButton.Home Demo

8.13 TImageMap

System.Web.UI.WebControls.TImageMap API Reference

TImageMap represents an image on a Web page with predefined hotspot regions that

can respond differently to users’ clicks on them. Depending on the HotSpotMode of

the hotspot region, clicking on the hotspot may trigger a postback or navigate to a

specified URL.

Each hotspot is described using a THotSpot object and is maintained in the HotSpots

collection in TImageMap. A hotspot can be a circle, rectangle, polygon, etc.

Hotspots can be added to TImageMap via its HotSpots property or in a template like

the following,

<com:TImageMap ... >

<com:TCircleHotSpot ... />

<com:TRectangleHotSpot ... />

<com:TPolygonHotSpot ... />

</com:TImageMap>

Controls.Samples.TImageMap.Home Demo

95

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TImageButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TImageButton.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TImageMap.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TImageMap.Home

Chapter 8. Control Reference : Standard Controls

8.14 TImage

System.Web.UI.WebControls.TImage API Reference

TImage displays an image on a page. The image is specified via the ImageUrl property

which takes a relative or absolute URL to the image file. The alignment of the image

displayed is set by the ImageAlign property. To set alternate text or long description

of the image, use AlternateText or DescriptionUrl, respectively.

Controls.Samples.TImage.Home Demo

8.15 TInlineFrame

System.Web.UI.WebControls.TInlineFrame API Reference

TInlineFrame displays an inline frame (¡iframe¿) on a Web page. The location of the

frame content is specified by the FrameUrl property.

The appearance of a TInlineFrame may be customized with the following properties,

in addition to those inherited from TWebControl.

• Align - the alignment of the frame.

• DescriptionUrl - the URI of a long description of the frame’s contents.

• MarginWidth and MarginHeight - the number of pixels to use as the left/right

margins and top/bottom margins, respectively.

• ScrollBars - whether scrollbars are provided for the inline frame. By default, it

is Auto, meaning the scroll bars appear as needed. Setting it as None or Both to

explicitly hide or show the scroll bars.

The following samples show TInlineFrame with different property settings. The Google

homepage is used as the frame content.

Controls.Samples.TInlineFrame.Home Demo

96

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TImage.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TImage.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TInlineFrame.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TInlineFrame.Home

8.16. TJavascriptLogger

8.16 TJavascriptLogger

System.Web.UI.WebControls.TJavascriptLogger API Reference

TJavascriptLogger provides logging for client-side javascript. It is mainly a wrapper

of the Javascript developed at http://gleepglop.com/javascripts/logger/.

To use TJavascriptLogger, simply place the following component tag in a page tem-

plate.

<com:TJavascriptLogger />

Then, the client-side Javascript may contain the following statements. When they are

executed, they will appear in the logger window.

Logger.info(’something happend’);

Logger.warn(’A warning’);

Logger.error(’This is an error’);

Logger.debug(’debug information’);

To toggle the visibility of the logger and console on the browser window, press ALT-D

(or CTRL-D on OS X).

8.17 TLabel

System.Web.UI.WebControls.TLabel API Reference

TLabel displays a piece of text on a Web page. The text to be displayed is set via

its Text property. If Text is empty, content enclosed within the TLabel component

tag will be displayed. TLabel may also be used as a form label associated with some

control on the form. Since Text is not HTML-encoded when being rendered, make

sure it does not contain dangerous characters that you want to avoid.

Controls.Samples.TLabel.Home Demo

97

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TJavascriptLogger.html
http://gleepglop.com/javascripts/logger/
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLabel.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TLabel.Home

Chapter 8. Control Reference : Standard Controls

8.18 TLinkButton

System.Web.UI.WebControls.TLinkButton API Reference

TLinkButton is similar to TButton in every aspect except that TLinkButton is displayed

as a hyperlink. The link text is determined by its Text property. If the Text property

is empty, then the body content of the button is displayed (therefore, you can enclose

a ¡img¿ tag within the button body and get an image button.

Controls.Samples.TLinkButton.Home Demo

8.19 TLiteral

System.Web.UI.WebControls.TLiteral API Reference

TLiteral displays a static text on a Web page. TLiteral is similar to the TLabel control,

except that the TLiteral * control has no style properties, such as BackColor, Font,

etc.

The text displayed by TLiteral can be programmatically controlled by setting the

Text property. The text displayed may be HTML-encoded if the Encode is true (the

default value is false).

TLiteral will render the contents enclosed within its component tag if Text is empty.

Be aware, if Encode is false, make sure Text does not contain unwanted characters that

may bring security vulnerabilities.

Controls.Samples.TLiteral.Home Demo

8.20 TMultiView

System.Web.UI.WebControls.TMultiView API Reference

TMultiView serves as a container for a group of TView controls, which can be retrieved

by the Views property. Each view contains child controls. TMultiView determines

which view and its child controls are visible. At any time, at most one view is visible

98

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLinkButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TLinkButton.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLiteral.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TLiteral.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TMultiView.html

8.20. TMultiView

(called ¡i¿active¡/i¿). To make a view active, set ActiveView or ActiveViewIndex. Note,

by default there is no active view.

To add a view to TMultiView, manipulate the Views collection or add it in template as

follows,

<com:TMultiView>

<com:TView>

view 1 content

</com:TView>

<com:TView>

view 2 content

</com:TView>

</com:TMultiView>

TMultiView responds to the following command events to manage the visibility of its

views.

• NextView : switch to the next view (with respect to the currently active view).

• PreviousView : switch to the previous view (with respect to the currently active

view).

• SwitchViewID : switch to a view by its ID path. The ID path is fetched from the

command parameter.

• SwitchViewIndex : switch to a view by its zero-based index in the Views collection.

The index is fetched from the command parameter.

Upon postback, if the active view index is changed, TMultiView will raise an OnActiveViewChanged

event.

The Hangman game is a typical use of TMultiView. The following example demon-

strates another usage of TMultiView.

Controls.Samples.TMultiView.Home Demo

99

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TMultiView.Home

Chapter 8. Control Reference : Standard Controls

8.21 TOutputCache

System.Web.UI.WebControls.TOutputCache API Reference

TOutputCache enables caching a portion of a Web page, also known as partial caching.

The content being cached are HTML page source coming from static texts on a

PRADO template or rendered by one or several controls on the template. When the

cached content is used, controls generating the content are no longer created for the

page hierarchy and thus significant savings in page processing time can be achieved.

The side-effect, as you might already find out, is that the content displayed may be

stale if the cached version is shown to the users.

To use TOutputCache, simply enclose the content to be cached within the TOutputCache

component tag on a template (either page or non-page control template), e.g.,

<com:TOutputCache>

content to be cached

</com:TOutputCache>

where content to be cached can be static text and/or template tags. If the latter, the

rendering results of the template tags will be cached. You can place one or several

TOutputCache on a single template and they can be nested.

Note: TOutputCache stores cached content via PRADO cache modules (e.g.

TSqliteCache) and thus requires at least one cache module loaded when the

application runs.

The validity of the cached content is determined based on two factors: the Duration

and the cache dependency. The former specifies the number of seconds that the data

can remain valid in cache (defaults to 60s), while the latter specifies conditions that

the cached data depends on. If a dependency changes (e.g. relevant data in DB are

updated), the cached data will be invalidated and discarded.

There are two ways to specify cache dependency. One may write event handlers

to respond to the OnCheckDependency event and set the event parameter’s IsValid

property to indicate whether the cached data remains valid or not. One can also

extend TOutputCache and override its getCacheDependency() method.

100

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TOutputCache.html

8.22. TPager

The content fetched from cache may be variated with respect to some parameters.

TOutputCache supports variation with respect to request parameters, which is specified

by VaryByParam property. If a specified request parameter is different, a different

version of cached content is used. This is extremely useful if a page’s content may be

variated according to some GET parameters. The content being cached may also be

variated with user sessions if VaryBySession is set true. To variate the cached content

by other factors, override calculateCacheKey() method.

Output caches can be nested. An outer cache takes precedence over an inner cache

in determining the validity of cached contents. This means, if the content cached by

the inner cache expires or is invalidated, while that by the outer cache not, the outer

cached content will be used.

By default, TOutputCache is effective only for non-postback page requests and when a

cache module is enabled. Do not attempt to address child controls of TOutputCache

when the cached content is currently being used. Use ContentCached property to

determine whether the content is cached or not.

8.22 TPager

System.Web.UI.WebControls.TPager API Reference

TPager creates a pager that provides UI for end-users to interactively specify which

page of data to be rendered in a TDataBoundControl-derived control, such as TDataList,

TRepeater, TCheckBoxList, etc. The target data-bound control is specified by the

ControlToPaginate property, which must be the ID path of the target control reaching

from the pager’s naming container.

Note, the target data-bound control must have its AllowPaging set to true. Otherwise

the pager will be invisible. Also, in case when there is only one page of data available,

the pager will also be invisible.

TPager can display one of the following three types of user interface, specified via its

Mode property:

• NextPrev - a next page and a previous page button are rendered on each page.

• Numeric - a list of page index buttons are rendered.

101

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TPager.html

Chapter 8. Control Reference : Standard Controls

• DropDownList - a dropdown list of page indices is rendered.

These user interfaces may be further customized by configuring the following proper-

ties

• NextPageText and PrevPageText - the label of the next/previous page button.

These properties are used when the pager Mode is NextPrev or Numeric.

• FirstPageText and LastPageText - the label of the first/last page button. If empty,

the corresponding button will not be displayed. These properties are used when

the pager Mode is NextPrev or Numeric.

• PageButtonCount - the maximum number of page index buttons on a page. This

property is used when the pager Mode is Numeric.

• ButtonType - type of page buttons, either PushButton meaning normal form sub-

mission buttons, or LinkButton meaning hyperlink buttons.

TPager raises an OnPageIndexChanged event when an end-user interacts with it and

specifies a new page (e.g. by clicking on a next page button that would lead to the

next page.) Developers may write handlers to respond to this event and obtain the

desired new page index from the event parameter’s property NewPageIndex. Using this

new page index, one can feed a new page of data to the associated data-bound control.

Controls.Samples.TPager.Sample1 Demo

8.23 TPanel

System.Web.UI.WebControls.TPanel API Reference

TPanel acts as a presentational container for other control. It displays a ¡div¿ element

on a page. The property Wrap specifies whether the panel’s body content should wrap

or not, while HorizontalAlign governs how the content is aligned horizontally and

Direction indicates the content direction (left to right or right to left). You can set

BackImageUrl to give a background image to the panel, and you can set GroupingText

so that the panel is displayed as a field set with a legend text. Finally, you can specify

102

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TPager.Sample1
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TPanel.html

8.24. TPlaceHolder

a default button to be fired when users press ‘return’ key within the panel by setting

the DefaultButton property.

Controls.Samples.TPanel.Home Demo

8.24 TPlaceHolder

System.Web.UI.WebControls.TPlaceHolder API Reference

TPlaceHolder reserves a place on a template, where static texts or controls may be

dynamically inserted.

Controls.Samples.TPlaceHolder.Home Demo

8.25 TRadioButton

System.Web.UI.WebControls.TRadioButton API Reference

TRadioButton is similar to TCheckBox in every aspect, except that TRadioButton displays

a radio button on a Web page. The radio button can belong to a specific group

specified by GroupName such that only one radio button within that group can be

selected at most.

Controls.Samples.TRadioButton.Home Demo

8.26 TSafeHtml

System.Web.UI.WebControls.TSafeHtml API Reference

TSafeHtml is a control that strips down all potentially dangerous HTML content. It

is mainly a wrapper of the SafeHTML project. According to the SafeHTML project,

it tries to safeguard the following situations when the string is to be displayed to

end-users:

• Opening tag without its closing tag

103

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TPanel.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TPlaceHolder.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TPlaceHolder.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TRadioButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRadioButton.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TSafeHtml.html
http://pixel-apes.com/safehtml/

Chapter 8. Control Reference : Standard Controls

• closing tag without its opening tag

• any of these tags: base, basefont, head, html, body, applet, object, iframe, frame,

frameset, script, layer, ilayer, embed, bgsound, link, meta, style, title, blink, xml,

etc.

• any of these attributes: on*, data*, dynsrc

• javascript:/vbscript:/about: etc. protocols

• expression/behavior etc. in styles

• any other active content.

To use TSafeHtml, simply enclose the content to be secured within the TSafeHtml com-

ponent tag in a template. The content may consist of both static text and PRADO

controls. If the latter, the rendering result of the controls will be secured.

Controls.Samples.TSafeHtml.Home Demo

8.27 TStatements

System.Web.UI.WebControls.TStatements API Reference

TStatements evaluates a sequence of PHP statements and displays the content rendered

by the statements. To specify the PHP statements to be evaluated, set the Statements

property. For example, the following component tag displays the current time on the

Web page,

<com:TStatements>

<prop:Statements>

setlocale(LC_ALL, ’nl_NL’);

echo strftime("%A %e %B %Y",time());

</prop:Statements>

</com:TStatements>

Note, TStatements evaluates the PHP statements during the rendering control life-

cycle. Unlike TExpression, TStatements only displays the content ‘echoed’ within the

statements.

104

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TSafeHtml.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TStatements.html

8.28. TTabPanel

The context of the statements in a TStatements control is the control itself. That is,

$this represents the control object if it is present in the statements. For example, the

following statement tag will display the title of the page containing the TStatements

control.

<com:TStatements>

<prop:Statements>

$page=$this->Page;

echo $page->Title;

</prop:Statements>

</com:TStatements>

Be aware, since TStatements allows execution of arbitrary PHP code, in general you

should not use it to evaluate PHP code submitted by your application users.

Controls.Samples.TStatements.Home Demo

8.28 TTabPanel

System.Web.UI.WebControls.TTabPanel API Reference

TTabPanel displays a tabbed panel. Users can click on the tab bar to switching among

different tab views. Each tab view is an independent panel that can contain arbitrary

content.

A TTabPanel control consists of one or several TTabView controls representing the pos-

sible tab views. At any time, only one tab view is visible (active), which is specified

by any of the following properties:

• ActiveViewIndex - the zero-based integer index of the view in the view collection.

• ActiveViewID - the text ID of the visible view.

• ActiveView - the visible view instance.

If both ActiveViewIndex and ActiveViewID are set, the latter takes precedence.

105

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TStatements.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTabPanel.html

Chapter 8. Control Reference : Standard Controls

TTabPanel uses CSS to specify the appearance of the tab bar and panel. By default,

an embedded CSS file will be published which contains the default CSS for TTabPanel.

You may also use your own CSS file by specifying the CssUrl property. The following

properties specify the CSS classes used for elements in a TTabPanel:

• CssClass - the CSS class name for the outer-most div element (defaults to ‘tab-

panel’);

• TabCssClass - the CSS class name for nonactive tab div elements (defaults to

‘tab-normal’);

• ActiveTabCssClass - the CSS class name for the active tab div element (defaults

to ‘tab-active’);

• ViewCssClass - the CSS class for the div element enclosing view content (defaults

to ‘tab-view’);

To use TTabPanel, write a template like following:

<com:TTabPanel>

<com:TTabView Caption="View 1">

content for view 1

</com:TTabView>

<com:TTabView Caption="View 2">

content for view 2

</com:TTabView>

<com:TTabView Caption="View 3">

content for view 3

</com:TTabView>

</com:TTabPanel>

Controls.Samples.TTabPanel.Home Demo

8.29 TTable

System.Web.UI.WebControls.TTable API Reference

106

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTabPanel.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTable.html

8.30. TTextBox

TTable displays an HTML table on a page. It is used together with TTableRow and

TTableCell to allow programmatically manipulating HTML tables. The rows of the

table is stored in Rows property. You may set the table cellspacing and cellpadding

via the CellSpacing and CellPadding properties, respectively. The table caption can

be specified via Caption whose alignment is specified by CaptionAlign. The GridLines

property indicates how the table should display its borders, and the BackImageUrl

allows the table to have a background image.

Controls.Samples.TTable.Home Demo

8.30 TTextBox

System.Web.UI.WebControls.TTextBox API Reference

TTextBox displays a text box on a Web page. The content in the text box is determined

by the Text property. You can create a SingleLine, a MultiLine, or a Password text

box by setting the TextMode property. The Rows and Columns properties specify their

dimensions. If AutoPostBack is true, changing the content in the text box and then

moving the focus out of it will cause postback action.

Controls.Samples.TTextBox.Home Demo

8.31 TTextHighlighter

System.Web.UI.WebControls.TTextHighlighter API Reference

TTextHighlighter does syntax highlighting for its body content, including both static

text and the rendering results of its child controls. The text being highlighted follows

the syntax of the specified Language, which can be ‘php’ (default), ‘prado’, ‘css’, ‘html’,

etc. Here, ‘prado’ stands for the syntax of PRADO control templates.

If line numbers are desired in front of each line, set ShowLineNumbers to true.

To use TTextHighlighter, simply enclose the contents to be syntax highlighted within

the body of a TTextHighlighter control. The following example highlights a piece of

PHP code,

107

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTable.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTextBox.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTextBox.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTextHighlighter.html

Chapter 8. Control Reference : Standard Controls

<com:TTextHighlighter ShowLineNumbers="true">

<?php

$str = ’one|two|three|four’;

print_r(explode(’|’, $str, 2)); // will output an array

?>

</com:TTextHighlighter>

Controls.Samples.TTextHighlighter.Home Demo

8.32 TWizard

System.Web.UI.WebControls.TWizard API Reference

8.32.1 Overview

TWizard is analogous to the installation wizard commonly used to install software on

Windows. It splits a large form and presents the user with a series of smaller forms,

called wizard steps, to complete. The following figure shows how a wizard is composed

of when presented to users, where step content is the main content of a wizard step

for users to complete, header refers to header content common to all steps, navigation

contains buttons that allow users to navigate step by step, and side bar contains a

list of hyperlinks by which users can reach to any step with one click. The visibility

of the side bar can be toggled by setting ShowSideBar.

By default, TWizard embeds the above components in an HTML table so that the side

bar is displayed on the left while the rest on the right. If UseDefaultLayout is set to

false, no HTML table will be used, and developers should use pure CSS techniques

to position the wizard components. Note, each component is displayed as a ¡div¿ and

the wizard itself is also a ¡div¿ that encloses its components’ ¡div¿.

108

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTextHighlighter.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TWizard.html

8.32. TWizard

Wizard steps are represented by TWizardStep and are maintained in TWizard through

its WizardSteps property. At any time, only one step is visible, which is determined by

the ActiveStep property. The ActiveStepIndex property gives the index of the active

step in the step collection. Clicking on navigation buttons can activate different wizard

steps.

Wizard steps are typically added to a wizard through template as follows,

<com:TWizard>

<com:TWizardStep Title="step 1" StepType="Start">

content in step 1, may contain other controls

</com:TWizardStep>

<com:TWizardStep Title="step 2" StepType="Step">

content in step 2, may contain other controls

</com:TWizardStep>

<com:TWizardStep Title="finish step" StepType="Finish">

content in finish step, may contain other controls

</com:TWizardStep>

</com:TWizard>

In the above, StepType refers to the type of a wizard step, which can affect how the

navigation appearance and behavior of the step. A wizard step can be of one of the

following types:

• Start - the first step in the wizard.

• Step - the internal steps in the wizard.

• Finish - the last step that allows user interaction.

• Complete - the step that shows a summary to user. In this step, both side bar

and navigation panel are invisible. Thus, this step usually does not allow user

interaction.

• Auto - the step type is determined by wizard automatically.

109

Chapter 8. Control Reference : Standard Controls

8.32.2 Using TWizard

A Single-Step Wizard Sample

In this sample, we use wizard to collect user’s preference of color. In the first step,

the user is presented with a dropdown list from which he can choose his favorite color.

In the second step, the complete step, his choice in the previous step is displayed. In

real application, at this step the choice may be stored in database in the backend.

Controls.Samples.TWizard.Sample1 Demo

Customizing Wizard Styles

TWizard defines a whole set of properties for customization of appearance of its various

components as shown in the above figure. In particular, the following properties are

provided for style customization:

• Header - HeaderStyle.

• Step - StepStyle.

• Navigation - NavigationStyle, StartNextButtonStyle, StepNextButtonStyle, StepPreviousButtonStyle,

FinishPreviousButtonStyle, FinishCompleteButtonStyle, CancelButtonStyle.

• Side bar - SideBarStyle, SideBarButtonStyle.

Controls.Samples.TWizard.Sample2 Demo

Customizing Wizard Navigation

Given a set of wizard steps, TWizard supports three different ways of navigation among

them:

• Bidirectional - Users can navigate forward and backward along a sequence of

wizard steps. User input data is usually collected at the last step. This is also

known as commit-at-the-end model. It is the default navigation way that TWizard

supports.

110

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample1
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample2

8.32. TWizard

• Unidirectional - Users can navigate forward along a sequence of wizard steps.

Backward move is not allowed. User input data is usually collected step by step.

This is also known as command-as-you-go model. To disallow backward move to

a specific step, set its AllowReturn property to false.

• Nonlinear - User input in a step determines which step to go next. To do so, set

ActiveStepIndex to the step that you want the user to go to. In this case, when a

user clicks on the previous button in the navigation panel, the previous step that

they visited (not the previous step in the sequential order) will become visible.

Controls.Samples.TWizard.Sample3 Demo

Using Templates in Wizard

TWizard supports more concrete control of its outlook through templates. In particu-

lar, it provides the following template properties that allow complete customization

of the wizard’s header, navigation and side bar.

• Header - HeaderTemplate.

• Navigation - StartNavigationTemplate, StepNavigationTemplate, FinishNavigationTemplate.

• Side bar - SideBarTemplate.

Controls.Samples.TWizard.Sample4 Demo

Using Templated Wizard Steps

Wizard steps can also be templated. By using TTemplatedWizardStep, one can cus-

tomize step content and navigation through its ContentTemplate and NavigationTemplate

properties, respectively. This is useful for control developers to build specialized wiz-

ards, such as user registration, shopping carts, etc.

Controls.Samples.TWizard.Sample5 Demo

111

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample3
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample4
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample5

Chapter 8. Control Reference : Standard Controls

112

Chapter 9

Control Reference : List Controls

9.1 List Controls

List controls covered in this section all inherit directly or indirectly from TListControl.

Therefore, they share the same set of commonly used properties, including,

• Items - list of items in the control. The items are of type TListItem. The item
list can be populated via databinding or specified in templates like the following:

<com:TListBox>

<com:TListItem Text="text 1" Value="value 1" />

<com:TListItem Text="text 2" Value="value 2" Selected="true" />

<com:TListItem Text="text 3" Value="value 3" />

</com:TListBox>

• SelectedIndex - the zero-based index of the first selected item in the item list.

• SelectedIndices - the indices of all selected items.

• SelectedItem - the first selected item in the item list.

• SelectedValue - the value of the first selected item in the item list.

• AutoPostBack - whether changing the selection of the control should trigger post-

back.

113

Chapter 9. Control Reference : List Controls

• CausesValidation - whether validation should be performed when postback is

triggered by the list control.

Since TListControl inherits from TDataBoundControl, these list controls also share a

common operation known as databinding. The Items can be populated from preex-

isting data specified by DataSource or DataSourceID. A function call to dataBind() will

cause the data population. For list controls, data can be specified in the following two

kinds of format:

• one-dimensional array or objects implementing ITraversable : array keys will be
used as list item values, and array values will be used as list item texts. For
example

$listbox->DataSource=array(

’key 1’=>’item 1’,

’key 2’=>’item 2’,

’key 3’=>’item 3’);

$listbox->dataBind();

• tabular (two-dimensional) data : each row of data populates a single list item.
The list item value is specified by the data member indexed with DataValueField,
and the list item text by DataTextField. For example,

$listbox->DataTextField=’name’;

$listbox->DataValueField=’id’;

$listbox->DataSource=array(

array(’id’=>’001’,’name’=>’John’,’age’=>31),

array(’id’=>’002’,’name’=>’Mary’,’age’=>30),

array(’id’=>’003’,’name’=>’Cary’,’age’=>20));

$listbox->dataBind();

9.1.1 TListBox

TListBox displays a list box that allows single or multiple selection. Set the property

SelectionMode as Single to make a single selection list box, and Multiple a multiple

selection list box. The number of rows displayed in the box is specified via the Rows

property value.

Controls.Samples.TListBox.Home Demo

114

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TListBox.Home

9.1. List Controls

9.1.2 TDropDownList

TDropDownList displays a dropdown list box that allows users to select a single option

from a few prespecified ones.

Since v3.1.1, TDropDownList starts to support prompt text (something like ‘Please

select:’ as the first list item). To use this feature, set either PromptText or PromptValue,

or both. If the user chooses the prompt item, the dropdown list will be unselected.

Controls.Samples.TDropDownList.Home Demo

9.1.3 TCheckBoxList

TCheckBoxList displays a list of checkboxes on a Web page. The alignment of the text

besides each checkbox can be specified TextAlign. The layout of the checkboxes can

be controlled by the following properties:

• RepeatLayout - can be either Table or Flow. A Table uses HTML table cells to

organize the checkboxes, while a Flow uses HTML span tags and breaks for the

organization. With Table layout, you can set CellPadding and CellSpacing.

• RepeatColumns - how many columns the checkboxes should be displayed in.

• RepeatDirection - how to traverse the checkboxes, in a horizontal way or a vertical

way (because the checkboxes are displayed in a matrix-like layout).

Controls.Samples.TCheckBoxList.Home Demo

9.1.4 TRadioButtonList

TRadioButtonList is similar to TCheckBoxList in every aspect except that each TRadioButtonList

displays a group of radiobuttons. Only one of the radiobuttions can be selected

(TCheckBoxList allows multiple selections.)

Controls.Samples.TRadioButtonList.Home Demo

115

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDropDownList.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCheckBoxList.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRadioButtonList.Home

Chapter 9. Control Reference : List Controls

9.1.5 TBulletedList

TBulletedList displays items in a bullet format on a Web page. The style of the

bullets can be specified by BulletStyle. When the style is CustomImage, the bullets are

displayed as images, which is specified by BulletImageUrl.

TBulletedList displays the item texts in three different modes,

• Text - the item texts are displayed as static texts;

• HyperLink - each item is displayed as a hyperlink whose URL is given by the item

value, and Target property can be used to specify the target browser window;

• LinkButton - each item is displayed as a link button which posts back to the

page if a user clicks on that, and the event OnClick will be raised under such a

circumstance.

Controls.Samples.TBulletedList.Home Demo

116

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TBulletedList.Home

Chapter 10

Control Reference : Validation

Controls

10.1 Validation Controls

Validation controls, called validators, perform validation on user-entered data values

when they are post back to the server. The validation is triggered by a postback

control, such as a TButton, a TLinkButton or a TTextBox (under AutoPostBack mode)

whose CausesValidation property is true.

Validation is always performed on server side. If EnableClientScript is true and the

client browser supports JavaScript, validators may also perform client-side validation.

Client-side validation will validate user input before it is sent to the server. The form

data will not be submitted if any error is detected. This avoids the round-trip of

information necessary for server-side validation.

Validators share a common set of properties, which are defined in the base class

TBaseValidator class and listed as follows,

• ControlToValidate specifies the input control to be validated. This property must

be set to the ID path of an input control. An ID path is the dot-connected IDs of

the controls reaching from the validator’s naming container to the target control.

117

Chapter 10. Control Reference : Validation Controls

• ErrorMessage specifies the error message to be displayed in case the corresponding

validator fails.

• Text is similar to ErrorMessage. If they are both present, Text takes precedence.

This property is useful when used together with TValidationSummary.

• ValidationGroup specifies which group the validator is in. The validator will

perform validation only if the current postback is triggered by a control which

is in the same group.

• EnableClientScript specifies whether client-side validation should be performed.

By default, it is enabled.

• Display specifies how error messages are displayed. It takes one of the following

three values:

– None - the error message will not be displayed even if the validator fails.

– Static - the space for displaying the error message is reserved. Therefore,

showing up the error message will not change your existing page layout.

– Dynamic - the space for displaying the error message is NOT reserved. There-

fore, showing up the error message will shift the layout of your page around

(usually down).

• ControlCssClass - the CSS class that is applied to the control being validated in

case the validation fails.

• FocusOnError - set focus at the validating place if the validation fails. Defaults to

false.

• FocusElementID - the ID of the HTML element that will receive focus if validation

fails and FocusOnError is true.

10.2 Prado Validation Controls

10.2.1 TRequiredFieldValidator

TRequiredFieldValidator ensures that the user enters some data in the specified input

field. By default, TRequiredFieldValidator will check if the user input is empty or

118

10.2. Prado Validation Controls

not. The validation fails if the input is empty. By setting InitialValue, the validator

can check if the user input is different from InitialValue. If not, the validation fails.

Controls.Samples.TRequiredFieldValidator.Home Demo

10.2.2 TRegularExpressionValidator

TRegularExpressionValidator verifies the user input against a regular pattern. The

validation fails if the input does not match the pattern. The regular expression can be

specified by the RegularExpression property. Some commonly used regular expressions

include:

• At least 6 characters: [\w]{6,}

• Japanese Phone Number: (0\d{1,4}-|\(0\d{1,4}\) ?)?\d{1,4}-\d{4}

• Japanese Postal Code: \d{3}(-(\d{4}|\d{2}))?

• P.R.C. Phone Number: (\(\d{3}\)|\d{3}-)?\d{8}

• P.R.C. Postal Code: \d{6}

• P.R.C. Social Security Number: \d{18}|\d{15}

• U.S. Phone Number: ((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}

• U.S. ZIP Code: \d{5}(-\d{4})?

• U.S. Social Security Number: \d{3}-\d{2}-\d{4}

More regular expression patterns can be found on the Internet, e.g. http://regexlib.com/.

Note, TRegularExpressionValidator only checks for nonempty user input. Use a TRe-

quiredFieldValidator to ensure the user input is not empty.

Controls.Samples.TRegularExpressionValidator.Home Demo

10.2.3 TEmailAddressValidator

TEmailAddressValidator verifies that the user input is a valid email address. The val-

idator uses a regular expression to check if the input is in a valid email address format.

119

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRequiredFieldValidator.Home
http://regexlib.com/
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRegularExpressionValidator.Home

Chapter 10. Control Reference : Validation Controls

If CheckMXRecord is true, the validator will also check whether the MX record indicated

by the email address is valid, provided checkdnsrr() is available in the installed PHP.

Note, if the input being validated is empty, TEmailAddressValidator will not do

validation. Use a TRequiredFieldValidator to ensure the value is not empty.

Controls.Samples.TEmailAddressValidator.Home Demo

10.2.4 TCompareValidator

TCompareValidator compares the user input with a constant value specified by ValueToCompare,

or another user input specified by ControlToCompare. The Operator property specifies

how to compare the values, which includes Equal, NotEqual, GreaterThan, GreaterThanEqual,

LessThan and LessThanEqual. Before comparison, the values being compared will be

converted to the type specified by DataType listed as follows,

• String - A string data type.

• Integer - A 32-bit signed integer data type.

• Float - A double-precision floating point number data type.

• Date - A date data type. The date format can be specified by setting DateFormat

property, which must be recognizable by TSimpleDateFormatter. If the property

is not set, the GNU date syntax is assumed.

Note, if the input being validated is empty, TEmailAddressValidator will not do

validation. Use a TRequiredFieldValidator to ensure the value is not empty.

N.B. If validating against a TDatePicker the DataType must be equal to “Date” and

the DateFormat property of the validator must be equal to the DateFormat of the

TDatePicker.

Controls.Samples.TCompareValidator.Home Demo

10.2.5 TDataTypeValidator

TDataTypeValidator verifies if the input data is of specific type indicated by DataType.

The data types that can be checked against are the same as those in TCompareVal-

120

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TEmailAddressValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCompareValidator.Home

10.2. Prado Validation Controls

idator.

N.B. If validating against a TDatePicker the DataType must be equal to “Date” and

the DateFormat property of the validator must be equal to the DateFormat of the

TDatePicker.

Controls.Samples.TDataTypeValidator.Home Demo

10.2.6 TRangeValidator

TRangeValidator verifies whether an input value is within a specified range. TRangeVal-

idator uses three key properties to perform its validation. The MinValue and MaxValue

properties specify the minimum and maximum values of the valid range. The DataType

property specifies the data type of the value being validated. The value will be first

converted into the specified type and then compare with the valid range. The data

types that can be checked against are the same as those in TCompareValidator.

If StrictComparison property is set to true, then the ranges are compared as strictly

less than the MaxValue and/or strictly greater than the MinValue.

N.B. If validating against a TDatePicker the DataType must be equal to “Date” and

the DateFormat property of the validator must be equal to the DateFormat of the

TDatePicker.

Controls.Samples.TRangeValidator.Home Demo

10.2.7 TCustomValidator

TCustomValidator performs user-defined validation (either server-side or client-side

or both) on an input control.

To create a server-side validation function, provide a handler for the OnServerValidate

event that performs the validation. The data string of the input control to validate

can be accessed by the event parameter’s Value property. The result of the validation

should be stored in the IsValid property of the parameter.

To create a client-side validation function, add the client-side validation javascript

function to the page template and assign its name to the ClientValidationFunction

121

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataTypeValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRangeValidator.Home

Chapter 10. Control Reference : Validation Controls

property. The function should have the following signature:

<script type="text/javascript">

function ValidationFunctionName(sender, parameter)

{

// if(parameter == ...)

// return true;

// else

// return false;

}

</script>

Controls.Samples.TCustomValidator.Home Demo

10.2.8 TValidationSummary

TValidationSummary displays a summary of validation errors inline on a Web page,

in a message box, or both.

By default, a validation summary will collect ErrorMessage of all failed validators on

the page. If ValidationGroup is not empty, only those validators who belong to the

group will show their error messages in the summary.

The summary can be displayed as a list, a bulleted list, or a single paragraph based

on the DisplayMode property. The messages shown can be prefixed with HeaderText.

The summary can be displayed on the Web page or in a JavaScript message box, by

setting the ShowSummary and ShowMessageBox properties, respectively. Note, the latter

is only effective when EnableClientScript is true.

Controls.Samples.TValidationSummary.Home Demo

122

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCustomValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TValidationSummary.Home

10.3. Interacting the Validators

10.3 Interacting the Validators

10.3.1 Resetting or Clearing of Validators

Validators can be reset on the client-side using javascript by calling the Prado.Validation.reset(groupID)

where groupID is the validator grouping name. If groupID is null, then validators with-

out grouping are used.

<script type="text/javascript">

function reset_validator()

{

Prado.Validation.reset("group1");

}

</script>

Controls.Samples.ResetValidation.Home Demo

10.3.2 Client and Server Side Conditional Validation

All validators contains the following events. The corresponding events for the client

side is available as sub-properties of the ClientSide property of the validator.

• The OnValidate event is raise before the validator validation functions are called.

• The OnValidationSuccess event is raised after the validator has successfully vali-

date the control.

• The OnValidationError event is raised after the validator fails validation.

Note: For Prado versions earlier than 3.1 the property names were OnError

and OnSuccess. For Prado version 3.1 or later they are OnValidationError and

OnValidationSuccess, respectively.

The following example pop-up a message saying “hello” when the validator fails on
the client-side.

123

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.ResetValidation.Home

Chapter 10. Control Reference : Validation Controls

<com:TRequiredFieldValidator ... >

<prop:ClientSide.OnValidationError>

alert("hello");

</prop:ClientSide.OnValidationError>

</com:TRequiredFieldValidator>

The resulting client-side event callback function is of the following form.

function onErrorHandler(sender, parameter)

{

alert("hello");

}

Where sender is the current client-side validator and parameter is the control that

invoked the validator.

Conditional Validation Example

The following example show the use of client-side and server side validator events. The

example demonstrates conditional validation. Notice that, we need to write code for

both the server side and client-side. Moreover, on the server side, we need to re-enable

the conditional validator so that its javascript code are produced no matter what (oth-

erwise, the client-side validator is not available). Controls.Samples.TClientSideValidator.Home

Demo

124

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TClientSideValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TClientSideValidator.Home

Chapter 11

Control Reference : Data Controls

11.1 Data Controls

• TDataList is used to display or modify a list of data items.

• TDataGrid displays data in a tabular format with rows and columns.

• TRepeater displays its content defined in templates repeatedly based on the

given data.

11.2 TDataList

TDataList represents a data bound and updatable list control. Like TRepeater, TDataL-

ist displays its content repeatedly based on the data fetched from DataSource. The

repeated contents in TDataList are called items, which are controls and can be ac-

cessed through Items. When dataBind() is invoked, TDataList creates an item for

each row of data and binds the data row to the item. Optionally, a TDataList can

have a header, a footer and/or separators between items.

TDataList differs from TRepeater in that it introduces the concept of item state and

allows applying different styles to items in different states. In addition, TDataList

supports tiling the repeated items in various ways.

125

Chapter 11. Control Reference : Data Controls

The layout of the repeated contents in TDataList are specified by inline templates.

TDataList items, header, footer, etc. are being instantiated with the corresponding

templates when data is being bound to the repeater.

Since v3.1.0, the layout can also be by renderers. A renderer is a control class that

can be instantiated as datalist items, header, etc. A renderer can thus be viewed

as an external template (in fact, it can also be non-templated controls). For more

details, see the explanation about renderer in the TRepeater tutorial.

The following properties are used to specify different types of template and renderer

for a datalist. If a content type is defined with both a template and a renderer, the

latter takes precedence.

• ItemTemplate, ItemRenderer: for each repeated row of data

• AlternatingItemTemplate, AlternatingItemRenderer: for each alternating row of

data. If not set, ItemTemplate or ItemRenderer will be used instead.

• HeaderTemplate, HeaderRenderer: for the datalist header.

• FooterTemplate, FooterRenderer: for the datalist footer.

• SeparatorTemplate, SeparatorRenderer: for content to be displayed between items.

• EmptyTemplate, EmptyRenderer: used when data bound to the datalist is empty.

• EditItemTemplate, EditItemRenderer: for the row being editted.

• SelectedItemTemplate, SelectedItemRenderer: for the row being selected.

When dataBind() is called, TDataList undergoes the following lifecycles for each row

of data:

1. create item based on templates or renderers

2. set the row of data to the item

3. raise an OnItemCreated event

4. add the item as a child control

5. call dataBind() of the item

126

11.2. TDataList

6. raise an OnItemDataBound event

TDataList raises an OnItemCommand whenever a button control within some datalist

item raises an OnCommand event. Therefore, you can handle all sorts of OnCommand

event in a central place by writing an event handler for OnItemCommand. An additional

event is raised if the OnCommand event has one of the following command names (case-

insensitive):

• edit - user wants to edit an item. OnEditCommand event will be raised.

• update - user wants to save the change to an item. OnUpdateCommand event will be

raised.

• select - user selects an item. OnSelectedIndexChanged event will be raised.

• delete - user deletes an item. OnDeleteCommand event will be raised.

• cancel - user cancels previously editting action. OnCancelCommand event will be

raised.

TDataList provides a few properties to support tiling the items. The number of

columns used to display the data items is specified via RepeatColumns property, while

the RepeatDirection governs the order of the items being rendered. The layout of the

data items in the list is specified via RepeatLayout, which takes one of the following

values:

• Table (default) - items are organized using HTML table and cells. When using

this layout, one can set CellPadding and CellSpacing to adjust the cellpadding

and cellspacing of the table, and Caption and CaptionAlign to add a table caption

with the specified alignment.

• Flow - items are organized using HTML spans and breaks.

• Raw - TDataList does not generate any HTML tags to do the tiling.

Items in TDataList can be in one of the three states: being browsed, being editted

and being selected. To change the state of a particular item, set SelectedItemIndex or

EditItemIndex. The former will change the indicated item to selected mode, which will

cause the item to use SelectedItemTemplate or SelectedItemRenderer for presentation.

127

Chapter 11. Control Reference : Data Controls

The latter will change the indicated item to edit mode and to use corresponding

template or renderer. Note, if an item is in edit mode, then selecting this item will

have no effect.

Different styles may be applied to items in different status. The style application is

performed in a hierarchical way: Style in higher hierarchy will inherit from styles in

lower hierarchy. Starting from the lowest hierarchy, the item styles include:

• item’s own style

• ItemStyle

• AlternatingItemStyle

• SelectedItemStyle

• EditItemStyle

Therefore, if background color is set as red in ItemStyle, EditItemStyle will also have

red background color unless it is set to a different value explicitly.

When a page containing a datalist is post back, the datalist will restore automatically

all its contents, including items, header, footer and separators. However, the data

row associated with each item will not be recovered and become null. To access the

data, use one of the following ways:

• Use DataKeys to obtain the data key associated with the specified repeater item

and use the key to fetch the corresponding data from some persistent storage

such as DB.

• Save the whole dataset in viewstate, which will restore the dataset automatically

upon postback. Be aware though, if the size of your dataset is big, your page

size will become big. Some complex data may also have serializing problem if

saved in viewstate.

The following example shows how to use TDataList to display tabular data, with

different layout and styles.

Controls.Samples.TDataList.Sample1 Demo

128

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataList.Sample1

11.3. TDataGrid

A common use of TDataList is for maintaining tabular data, including browsing,

editing, deleting data items. This is enabled by the command events and various item

templates of TDataList.

The following example displays a computer product information. Users can add new

products, modify or delete existing ones. In order to locate the data item for updating

or deleting, DataKeys property is used.

Be aware, for simplicity, this application does not do any input validation. In real

applications, make sure user inputs are valid before saving them into databases.

Controls.Samples.TDataList.Sample2 Demo

11.3 TDataGrid

TDatagrid is an important control in building complex Web applications. It displays

data in a tabular format with rows (also called items) and columns. A row is com-

posed by cells, while columns govern how cells should be displayed according to their

association with the columns. Data specified via DataSource or DataSourceID are bound

to the rows and feed contents to cells.

TDataGrid is highly interactive. Users can sort the data along specified columns,

navigate through different pages of the data, and perform actions, such as editing and

deleting, on rows of the data.

Rows of TDataGrid can be accessed via its Items property. A row (item) can be in one

of several modes: browsing, editing and selecting, which affects how cells in the row

are displayed. To change an item’s mode, modify EditItemIndex or SelectedItemIndex.

Note, if an item is in edit mode, then selecting this item will have no effect.

11.3.1 Columns

Columns of a data grid determine how the associated cells are displayed. For example,

cells associated with a TBoundColumn are displayed differently according to their modes.

A cell is displayed as a static text if the cell is in browsing mode, a text box if it is in

editing mode, and so on.

129

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataList.Sample2

Chapter 11. Control Reference : Data Controls

PRADO provides five types of columns:

• TBoundColumn associates cells with a specific field of data and displays the cells

according to their modes.

• TLiteralColumn associates cells with a specific field of data and displays the cells

with static texts.

• TCheckBoxColumn associates cells with a specific field of data and displays in each

cell a checkbox whose check state is determined by the data field value.

• TDropDownListColumn associates cells with a specific field of data and displays the

cells according to their modes. If in edit mode, a cell will be displayed with a

TDropDownList.

• THyperLinkColumn displays in the cells a hyperlink whose caption and URL can

be either statically specified or bound to some fields of data.

• TEditCommandColumn displays in the cells edit/update/cancel command buttons

according to the state of the item that a cell resides in.

• TButtonColumn displays in the cells a command button.

• TTemplateColumn displays the cells according to different templates defined for it.

11.3.2 Item Styles

TDataGrid defines different styles applied to its items. For example, AlternatingItemStyle

is applied to alternating items (item 2, 4, 6, etc.) Through these properties, one can

set CSS style fields or CSS classes for the items.

Item styles are applied in a hierarchical way. Styles in higher hierarchy will inherit

from styles in lower hierarchy. Starting from the lowest hierarchy, the item styles

include item’s own style, ItemStyle, AlternatingItemStyle, SelectedItemStyle, and

EditItemStyle. Therefore, if background color is set as red in ItemStyle, EditItemStyle

will also have red background color, unless it is explicitly set to a different value.

11.3.3 Events

TDataGrid provides several events to facilitate manipulation of its items,

130

11.3. TDataGrid

• OnItemCreated - raised each time an item is newly created. When the event is

raised, data and child controls are both available for the new item.

• OnItemDataBound - raised each time an item just completes databinding. When

the event is raised, data and child controls are both available for the item, and

the item has finished databindings of itself and all its child controls.

• OnItemCommand - raised when a child control of some item (such as a TButton) raises

an OnCommand event.

• command events - raised when a child control’s OnCommand event has a specific

command name,

– OnSelectedIndexChanged - if the command name is select.

– OnEditCommand - if the command name is edit.

– OnDeleteCommand - if the command name is delete.

– OnUpdateCommand - if the command name is update.

– OnCancelCommand - if the command name is cancel.

– OnSortCommand - if the command name is sort.

– OnPageIndexChanged - if the command name is page.

11.3.4 Using TDataGrid

Automatically Generated Columns

TDataGrid by default will create a list of columns based on the structure of the bound

data. TDataGrid will read the first row of the data, extract the field names of the

row, and construct a column for each field. Each column is of type TBoundColumn.

The following example displays a list of computer product information using a TData-

Grid. Columns are automatically generated. Pay attention to how item styles are

specified and inherited. The data are populated into the datagrid using the following

code, which is common among most datagrid applications,

public function onLoad($param) {

parent::onLoad($param);

if(!$this->IsPostBack) {

131

Chapter 11. Control Reference : Data Controls

$this->DataGrid->DataSource=$this->Data;

$this->DataGrid->dataBind();

}

}

Controls.Samples.TDataGrid.Sample1 Demo

Manually Specified Columns

Using automatically generated columns gives a quick way of browsing tabular data. In

real applications, however, automatically generated columns are often not sufficient

because developers have no way customizing their appearance. Manually specified

columns are thus more desirable.

To manually specify columns, set AutoGenerateColumns to false, and specify the columns

in a template like the following,

<com:TDataGrid ...>

<com:TBoundColumn DataField="name" .../>

<com:TBoundColumn DataField="price" .../>

<com:TEditCommandColumn ...>

...

</com:TDataGrid>

Note, if AutoGenerateColumns is true and there are manually specified columns, the

automatically generated columns will be appended to the manually specified columns.

Also note, the datagrid’s Columns property contains only manually specified columns

and no automatically generated ones.

The following example uses manually specified columns to show a list of book infor-

mation,

• Book title - displayed as a hyperlink pointing to the corresponding amazon.com

book page. THyperLinkColumn is used.

• Publisher - displayed as a piece of text using TBoundColumn.

• Price - displayed as a piece of text using TBoundColumn with output formatting

string and customized styles.

132

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample1

11.3. TDataGrid

• In-stock or not - displayed as a checkbox using TCheckBoxColumn.

• Rating - displayed as an image using TTemplateColumn which allows maximum

freedom in specifying cell contents.

Pay attention to how item (row) styles and column styles cooperate together to affect

the appearance of the cells in the datagrid. Controls.Samples.TDataGrid.Sample2

Demo

11.3.5 Interacting with TDataGrid

Besides the rich data presentation functionalities as demonstrated in previous section,

TDataGrid is also highly user interactive. An import usage of TDataGrid is editing

or deleting rows of data. The TBoundColumn can adjust the associated cell presentation

according to the mode of datagrid items. When an item is in browsing mode, the cell is

displayed with a static text; when the item is in editing mode, a textbox is displayed to

collect user inputs. TDataGrid provides TEditCommandColumn for switching item modes.

In addition, TButtonColumn offers developers the flexibility of creating arbitrary buttons

for various user interactions.

The following example shows how to make the previous book information table an

interactive one. It allows users to edit and delete book items from the table. Two

additional columns are used in the example to allow users interact with the datagrid:

TEditCommandColumn and TButtonColumn. In addition, TDropDownListColumn replaces the

previous TTemplateColumn to allow users to select a rating from a dropdown list. Note,

it is also possible to use TTemplateColumn to achieve the same task.

Controls.Samples.TDataGrid.Sample3 Demo

11.3.6 Sorting

TDataGrid supports sorting its items according to specific columns. To enable sorting,

set AllowSorting to true. This will turn column headers into clickable buttons if their

SortExpression property is not empty. When users click on the header buttons, an

OnSortCommand event will be raised. Developers can write handlers to respond to the

sort command and sort the data according to SortExpression which is specified in the

corresponding column.

133

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample2
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample2
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample3

Chapter 11. Control Reference : Data Controls

The following example turns the datagrid in Example 2 into a sortable one. Users

can click on the link button displayed in the header of any column, and the data will

be sorted in ascending order along that column.

Controls.Samples.TDataGrid.Sample4 Demo

11.3.7 Paging

When dealing with large datasets, paging is helpful in reducing the page size and com-

plexity. TDataGrid has an embedded pager that allows users to specify which page

of data they want to see. The pager can be customized via PagerStyle. For example,

PagerStyle.Visible determines whether the pager is visible or not; PagerStyle.Position

indicates where the pager is displayed; and PagerStyle.Mode specifies what type of

pager is displayed, a numeric one or a next-prev one.

To enable paging, set AllowPaging to true. The number of rows of data displayed in a

page is specified by PageSize, while the index (zero-based) of the page currently show-

ing to users is by CurrentPageIndex. When users click on a pager button, TDataGrid

raises OnPageIndexChanged event. Typically, the event handler is written as follows,

public function pageIndexChanged($sender,$param) {

$this->DataGrid->CurrentPageIndex=$param->NewPageIndex;

$this->DataGrid->DataSource=$this->Data;

$this->DataGrid->dataBind();

}

The following example enables the paging functionality of the datagrid shown in Ex-

ample 1. In this example, you can set various pager styles interactively to see how

they affect the pager display.

Controls.Samples.TDataGrid.Sample5 Demo

Custom Paging

The paging functionality shown above requires loading all data into memory, even

though only a portion of them is displayed in a page. For large datasets, this is

inefficient and may not always be feasible. TDataGrid provides custom paging to solve

134

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample4
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample5

11.3. TDataGrid

this problem. Custom paging only requires the portion of the data to be displayed to

end users.

To enable custom paging, set both AllowPaging and AllowCustomPaging to true. Notify

TDataGrid the total number of data items (rows) available by setting VirtualItemCount.

And respond to the OnPageIndexChanged event. In the event handler, use the NewPageIndex

property of the event parameter to fetch the new page of data from data source. For

MySQL database, this can be done by using LIMIT clause in an SQL select statement.

Controls.Samples.TDataGrid.Sample6 Demo

11.3.8 Extending TDataGrid

Besides traditional class inheritance, extensibility of TDataGrid is mainly through

developing new datagrid column components. For example, one may want to display

an image column. He may use TTemplateColumn to accomplish this task. A better

solution is to develop an image column component so that the work can be reused

easily in other projects.

All datagrid column components must inherit from TDataGridColumn. The main method

that needs to be overridden is initializeCell() which creates content for cells in the

corresponding column. Since each cell is also in an item (row) and the item can

have different types (such as Header, AltneratingItem, etc.), different content may be

created according to the item type. For the image column example, one may want

to create a TImage control within cells residing in items of Item and AlterantingItem

types.

class ImageColumn extends TDataGridColumn {

...

public function initializeCell($cell,$columnIndex,$itemType) {

parent::initializeCell($cell,$columnIndex,$itemType);

if($itemType===’Item’ || $itemType===’AlternatingItem’) {

$image=new TImage;

// ... customization of the image

$cell->Controls[]=$image;

}

}

}

135

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample6

Chapter 11. Control Reference : Data Controls

In initializeCell(), remember to call the parent implementation, as it initializes cells

in items of Header and Footer types.

11.4 TRepeater

TRepeater displays its content repeatedly based on the data fetched from DataSource.

The repeated contents in TRepeater are called ¡i¿items¡/i¿ which are controls accessi-

ble through Items property. When dataBind() is invoked, TRepeater creates an item

for each row of data and binds the data row to the item. Optionally, a repeater can

have a header, a footer and/or separators between items.

The layout of the repeated contents are specified by inline templates. In particular,

repeater items, header, footer, etc. are being instantiated with the corresponding

templates when data is being bound to the repeater.

Since v3.1.0, the layout can also be specified by ¡i¿renderers¡/i¿. A renderer is a

control class that can be instantiated as repeater items, header, etc. A renderer can

thus be viewed as an external template (in fact, it can also be non-templated controls).

A renderer can be any control class. By using item renderers, one can avoid writing

long and messy templates. Since a renderer is a class, it also helps reusing templates

that previously might be embedded within other templates. If implemented with one

of the following interfaces, a renderer will be initialized with additional properties

relevant to the repeater items:

• IDataRenderer - the Data property will be set as the row of the data bound to the

repeater item. Many PRADO controls implement this interface, such as TLabel,

TTextBox, etc.

• IItemDataRenderer - the ItemIndex property will be set as the zero-based in-

dex of the item in the repeater item collection, and the ItemType property

as the item’s type (such as TListItemType::Item). As a convenient base class,

TRepeaterItemRenderer implements IDataItemRenderer and can have an associated

template because it extends from TTemplateControl.

The following properties are used to specify different types of template and renderer

for a repeater. If an item type is defined with both a template and a renderer, the

latter takes precedence.

136

11.4. TRepeater

• ItemTemplate, ItemRenderer - for each repeated row of data.

• AlternatingItemTemplate, AlternatingItemRenderer: for each alternating row of

data. If not set, ItemTemplate or ItemRenderer will be used instead, respectively.

• HeaderTemplate, HeaderRenderer - for the repeater header.

• FooterTemplate, FooterRenderer - for the repeater footer.

• SeparatorTemplate, SeparatorRenderer - for content to be displayed between items.

• EmptyTemplate, EmptyRenderer - used when data bound to the repeater is empty.

To populate data into the repeater items, set DataSource to a valid data object, such

as array, TList, TMap, or a database table, and then call dataBind() for the repeater.

That is,

class MyPage extends TPage {

public function onLoad($param) {

parent::onLoad($param);

if(!$this->IsPostBack) {

$this->Repeater->DataSource=$data;

$this->Repeater->dataBind();

}

}

}

When dataBind() is called, TRepeater undergoes the following lifecycles for each row

of data:

1. create item based on templates or renderers

2. set the row of data to the item

3. raise an OnItemCreated event

4. add the item as a child control

5. call dataBind() of the item

6. raise an OnItemDataBound event

137

Chapter 11. Control Reference : Data Controls

Normally, you only need to bind the data to repeater when the page containing

the repeater is initially requested. When the page is post back, the repeater will

restore automatically all its contents, including items, header, footer and separators.

However, the data row associated with each item will not be recovered and thus

become null.

To access the repeater item data in postbacks, use one of the following ways:

• Use DataKeys to obtain the data key associated with the specified repeater item

and use the key to fetch the corresponding data from some persistent storage

such as DB.

• Save the whole dataset in viewstate, which will restore the dataset automatically

upon postback. Be aware though, if the size of your dataset is big, your page

size will become big. Some complex data may also have serializing problem if

saved in viewstate.

TRepeater raises an OnItemCommand event whenever a button control within some re-

peater item raises a OnCommand event. Therefore, you can handle all sorts of OnCommand

event in a central place by writing an event handler for OnItemCommand.

The following example shows how to use TRepeater to display tabular data.

Controls.Samples.TRepeater.Sample1 Demo

TRepeater can be used in more complex situations. As an example, we show in the

following how to use nested repeaters, i.e., repeater in repeater. This is commonly

seen in presenting master-detail data. To use a repeater within another repeater,

for an item for the outer repeater is created, we need to set the detail data source

for the inner repeater. This can be achieved by responding to the OnItemDataBound

event of the outer repeater. An OnItemDataBound event is raised each time an outer

repeater item completes databinding. In the following example, we exploit another

event of repeater called OnItemCreated, which is raised each time a repeater item (and

its content) is newly created. We respond to this event by setting different background

colors for repeater items to achieve alternating item background display. This saves

us from writing an AlternatingItemTemplate for the repeaters.

Controls.Samples.TRepeater.Sample2 Demo

138

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample1
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample2

11.4. TRepeater

Besides displaying data, TRepeater can also be used to collect data from users. Val-

idation controls can be placed in TRepeater templates to verify that user inputs are

valid.

The PRADO component composer demo is a good example of such usage. It uses

a repeater to collect the component property and event definitions. Users can also

delete or adjust the order of the properties and events, which is implemented by

responding to the OnItemCommand event of repeater.

See in the following yet another example showing how to use repeater to collect user

inputs.

Controls.Samples.TRepeater.Sample3 Demo

This sample shows how to use “drop-in” item renderers, available since v3.1.0. These

renderers come in the PRADO release. They are essentially controls implementing

the IDataRenderer interface. Common Web controls, such as TTextBox, TLabel, all

implement this interface. When such controls are used item renderers, their Data

property is assigned with the row of the data being bound to the repeater item.

Controls.Samples.TRepeater.Sample4 Demo

More often, one needs to customize the layout of repeater items. The sample above

relies on OnItemCreated to adjust the appearance of the renderer. Templated item

renderers are perferred in this situation, as they allow us to put in more complex

layout and content in a repeater item. The following sample reimplements the nested

repeater sample using a templated item renderer called RegionDisplay. As we can see,

the new code is much easier to understand and maintain.

Controls.Samples.TRepeater.Sample5 Demo

139

file:../composer/index.php
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample3
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample4
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample5

Chapter 11. Control Reference : Data Controls

140

Chapter 12

Control Reference : Active

Controls (AJAX)

12.1 TActiveButton

System.Web.UI.ActiveControls.TActiveButton API Reference

TActiveButton is the active control counter part to TButton. When a TActiveButton

is clicked, rather than a normal post back request a callback request is initiated. The

OnCallback event is raised during a callback request and it is raise after the OnClick

event.

When the ActiveControl.EnableUpdate property is true, changing the Text property

during a callback request will update the button’s caption on the client-side.

Since the OnCallback event is raised only during a callback request, the OnCallback

event handler can be used to handle logic specifically related to callback requests.

The OnClick event handler is raised when ever the button is clicked, even if javascript

is disabled.

The following example the use of both the OnClick and OnCallback events of an

TActiveButton.

ActiveControls.Samples.TActiveButton.Home Demo

141

http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=ActiveControls.Samples.TActiveButton.Home

Chapter 12. Control Reference : Active Controls (AJAX)

12.1.1 TActiveButton Class Diagram

The class diagram for TActiveButton is illustrated in the figure below. Most active

control that can perform callback request have a similar structure.

TActiveButton is an extension of TButton and implements two additional interfaces

ICallbackEventHandler and IActiveControl. The TActiveButton contains an instance of

TBaseActiveCallbackControl available through the ActiveControl property of TActiveButton.

The following example set the callback parameter of the TActiveButton when a callback

request is dispatched.

<com:TActiveButton

Text="Click Me"

OnCallback="button_callback"

ActiveControl.CallbackParameter="value" />

In the OnCallback event handler method, the CallbackParameter is available in the
$param object.

public function button_callback($sender, $param)

{

echo $param->CallbackParameter; //outputs "value"

}

142

12.2. TActiveCheckBox

12.1.2 Adding Client Side Behaviour

With in the ActiveControl property is an instance of TCallbackClientSide available

as a property ClientSide of TActiveButton. The ClientSide property contains sub-

properties, such as RequestTimeOut, and client-side javascript event handler, such as

OnLoading, that are used by the client-side when making a callback request. The

following example demonstrates the toggling of a “loading” indicator when the client-

side is making a callback request.

<com:TClientScript PradoScripts="effects" />

Loading...

<com:TActiveButton

Text="Click Me"

OnCallback="button_callback"

ActiveControl.CallbackParameter="value" >

<prop:ClientSide

OnLoading="Element.show(’callback_status’)"

OnComplete="Element.hide(’callback_status’)" />

</com:TActiveButton>

The example loads the “effects” javascript library using the TClientScript component.

The ClientSide.OnLoading property value contains javascript statement that uses the

“effects” library to show the “Loading...” span tag. Similarly, ClientSide.OnComplete

property value contains the javascript statement that hides the “Loading...” span tag.

See TCallbackClientSide for further details on client-side property details.

12.2 TActiveCheckBox

System.Web.UI.ActiveControls.TActiveCheckBox API Reference

TActiveCheckBox is the active control counter part to TCheckbox. The AutoPostBack

property of TActiveCheckBox is set to true by default. Thus, when the checkbox is

clicked the OnCallback event is raise after the OnCheckedChanged event.

The Text and Checked properties of TActiveCheckBox can be changed during a callback

request. The TextAlign property of TActiveCheckBox can not be changed during a

143

http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveCheckBox.html

Chapter 12. Control Reference : Active Controls (AJAX)

callback request.

ActiveControls.Samples.TActiveCheckBox.Home Demo

12.3 TActiveCustomValidator

System.Web.UI.ActiveControls.TActiveCustomValidator API Reference

Performs custom validation using only server-side OnServerValidate validation event.

The client-side uses callbacks to raise onServerValidate event. The ClientValidationFunction

property is disabled and will throw an exception if trying to set this property.

Beware that the onServerValidate may be raised when the control to validate on the

client side changes value, that is, the server validation may be called many times.

After the callback or postback, the @link onServerValidate onServerValidate is raised

once more. The IsCallback property of the TPage class will be true when validation is

made during a callback request.

ActiveControls.Samples.TActiveCustomValidator.Home Demo

144

http://www.pradosoft.com/demos/quickstart/index.php?page=ActiveControls.Samples.TActiveCheckBox.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.ActiveControls/TActiveCustomValidator.html
http://www.pradosoft.com/demos/quickstart/index.php?page=ActiveControls.Samples.TActiveCustomValidator.Home

Chapter 13

Active Control Overview

13.1 Active Controls (AJAX enabled Controls)

See the Introduction for a quick overview of the concept behind active controls (AJAX

enabled controls). Most active controls have a property of ActiveControl and a sub-

property ClientSide that provides many properties to customize the controls. The

CallbackClient property of the TPage class provides many methods to update and

alter the client-side content during a callback request. Active controls is reliant on a

collection of javascript classes.

For a quick demo of active controls, try the TActiveButton control. See also the later

part of the Currency Converter tutorial for a more in depth example.

* the tutorial for this control is not completed yet.

13.1.1 Standard Active Controls

• TActiveButton represents a click button on a Web page. It can be used to trigger

a callback request.

• TActiveCheckBox represents a checkbox on a Web page. It can be used to collect

two-state user input and can trigger a callback request.

• TActiveCustomValidator validates a particular control using a callback request.

145

Chapter 13. Active Control Overview

• TActiveHyperLink represents a hyperlink on a Web page.

• * TActiveImage represents an image on a Web page.

• * TActiveImageButton represents a click button that has an image as the back-

ground. It is can be used to trigger a callback request.

• * TActiveLabel represents a label on a Web page. The label can be customized

via various CSS attributes.

• * TActiveLinkButton represents a hyperlink that can perform a callback request.

• * TActivePanel represents a container for other controls on a Web page. In

HTML, it is displayed as a ¡div¿ element. The panel’s contents can be replaced

during a callback request.

• TActivePager generates UI that allows users to interactively specify which page

of data to be displayed in a data-bound control.

• * TActiveRadioButton represents a radiobutton on a Web page. It is mainly

used in a group from which users make a choice. It can be used to perform a

callback request.

• * TActiveTextBox represents a text input field on a Web page. It can collect

single-line, multi-line or password text input from users. It can be used to

perform a callback request.

• * TCallbackOptions callback options such as OnLoading client-side event handlers.

13.1.2 Active List Controls

• * TActiveCheckBoxList displays a list of checkboxes on a Web page and each

checkbox can trigger a callback request.

• * TActiveDropDownList displays a dropdown list box that allows users to select

a single option from a few prespecified ones. It can be used to perform a callback

request.

• * TActiveListBox displays a list box that allows single or multiple selection. It

can be used to perform a callback request.

146

13.1. Active Controls (AJAX enabled Controls)

• * TActiveRadioButtonList is similar to TActiveCheckBoxList in every aspect

except that each TActiveRadioButtonList displays a group of radiobuttons. Each

radio button can perform a callback request.

13.1.3 Extended Active Controls

• TAutoComplete extends TActiveTextBox to offer text completion suggestions.

• * TCallback a generic control that can perform callback requests.

• * TEventTriggeredCallback triggers a callback request based on HTML DOM

events.

• * TInPlaceTextBox represents a label that can be edited by clicked.

• * TTimeTriggeredCallback triggers a callback request based on time elapsed.

• * TValueTriggeredCallback monitors (using a timer) an attribute of an HTML

element and triggers a callback request when the attribute value changes.

• TDropContainer TDraggable represents drag and drop containers. The former

will make its child controls “draggable” while the latter will raise a callback when

a draggable control is dropped on it.

13.1.4 Active Control Abilities

The following table shows the Active Controls that can trigger a callback event and

whether the control will raise a PostBack event if Javascript was disabled on the

client’s browser.

13.1.5 Active Control Infrastructure Classes

The following classes provide the basic infrastructure classes required to realize the

active controls.

• * TActiveControlAdapter tracks the viewstate values of the control and update

differences of the client-side HTML element attributes.

147

Chapter 13. Active Control Overview

Control Name Triggers Callback Falls back to PostBack

TActiveButton Yes Yes

TActiveCheckBox Yes Yes

TActiveCustomValidator Yes Yes

TActiveHyperLink No Yes

TActiveImage No Yes

TActiveImageButton Yes Yes

TActiveLabel No Yes

TActiveLinkButton Yes No

TActivePanel No Yes

TActiveRadioButton Yes Yes

TActiveTextBox Yes Yes

TCallbackOptions No N/A

TActiveCheckBoxList Yes Yes

TActiveDropDownList Yes Yes

TActiveListBox Yes Yes

TActiveRadioButtonList Yes Yes

TAutoComplete Yes No

TCallback Yes No

TEventTriggeredCallback Yes No

TInPlaceTextBox Yes No

TTimeTriggeredCallback Yes No

TValueTriggeredCallback Yes No

TDropContainer Yes No

TDraggable No No
148

13.2. Overview of Active Controls

• * TActiveListControlAdapter allows the adapted list controls to change the se-

lections on the client-side during a callback request.

• * TActivePageAdapter process the page life-cycle for callback requests.

• * TBaseActiveControl common active control methods and options.

• * TCallbackClientScript methods to manipulate the client-side HTML elements,

also includes methods to invoke javascript Effects on HTML elements.

• * TCallbackClientSide common client-side callback request options, and client-

side event handlers.

• * TCallbackResponseAdapter HTTP response for callback requests.

13.2 Overview of Active Controls

TODO:

149

Chapter 13. Active Control Overview

150

Chapter 14

Write New Controls

14.1 Writing New Controls

Writing new controls is often desired by advanced programmers, because they want

to reuse the code that they write for dealing with complex presentation and user

interactions.

In general, there are two ways of writing new controls: composition of existing controls

and extending existing controls. They all require that the new control inherit from

TControl or its child classes.

14.1.1 Composition of Existing Controls

Composition is the easiest way of creating new controls. It mainly involves instantiat-

ing existing controls, configuring them and making them the constituent components.

The properties of the constituent components are exposed through subproperties.

One can compose a new control in two ways. One is to extend TCompositeControl

and override the TControl::createChildControls() method. The other is to extend

TTemplateControl (or its child classes) and write a control template. The latter is

easier to use and can organize the layout constituent components more intuitively,

while the former is more efficient because it does not require parsing of the template.

151

Chapter 14. Write New Controls

As an example, we show how to create a labeled textbox called LabeledTextBox using

the above two approaches. A labeled textbox displays a label besides a textbox. We

want reuse the PRADO provided TLabel and TTextBox to accomplish this task.

Composition by Writing Templates

We need two files: a control class file named LabeledTextBox.php and a control template

file named LabeledTextBox.tpl. Both must reside under the same directory.

Like creating a PRADO page, we can easily write down the content in the control

template file.

<com:TLabel ID="Label" ForControl="TextBox" />

<com:TTextBox ID="TextBox" />

The above template specifies a TLabel control named Label and a TTextBox control

named TextBox. We would to expose these two controls. This can be done by defining

a property for each control in the LabeledTextBox class file. For example, we can define

a Label property as follows,

class LabeledTextBox extends TTemplateControl {

public function getLabel() {

$this->ensureChildControls();

return $this->getRegisteredObject(’Label’);

}

}

In the above, the method call to ensureChildControls() ensures that both the label

and the textbox controls are created (from template) when the Label property is

accessed. The TextBox property can be implemented similarly.

Controls.Samples.LabeledTextBox1.Home Demo

Composition by Overriding createChildControls()

For a composite control as simple as LabeledTextBox, it is better to create it by ex-

tending TCompositeControl and overriding the createChildControls() method, because

152

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.LabeledTextBox1.Home

14.1. Writing New Controls

it does not use templates and thus saves template parsing time.

Complete code for LabeledTextBox is shown as follows,

class LabeledTextBox extends TCompositeControl {

private $_label;

private $_textbox;

public function createChildControls() {

$this->_label=new TLabel;

$this->_label->setID(’Label’);

// add the label as a child of LabeledTextBox

$this->getControls()->add($this->_label);

$this->_textbox=new TTextBox;

$this->_textbox->setID(’TextBox’);

$this->_label->setForControl(’TextBox’);

// add the textbox as a child of LabeledTextBox

$this->getControls()->add($this->_textbox);

}

public function getLabel() {

$this->ensureChildControls();

return $this->_label;

}

public function getTextBox() {

$this->ensureChildControls();

return $this->_textbox;

}

}

Controls.Samples.LabeledTextBox2.Home Demo

Using LabeledTextBox

To use LabeledTextBox control, first we need to include the corresponding class file.

Then in a page template, we can write lines like the following,

<com:LabeledTextBox ID="Input" Label.Text="Username" />

In the above, Label.Text is a subproperty of LabeledTextBox, which refers to the Text

property of the Label property. For other details of using LabeledTextBox, see the

153

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.LabeledTextBox2.Home

Chapter 14. Write New Controls

above online examples.

14.1.2 Extending Existing Controls

Extending existing controls is the same as conventional class inheritance. It allows de-

velopers to customize existing control classes by overriding their properties, methods,

events, or creating new ones.

The difficulty of the task depends on how much an existing class needs to be cus-

tomized. For example, a simple task could be to customize TLabel control, so that

it displays a red label by default. This would merely involves setting the ForeColor

property to "red" in the constructor. A difficult task would be to create controls that

provide completely innovative functionalities. Usually, this requires the new controls

extend from “low level” control classes, such as TControl or TWebControl.

In this section, we mainly introduce the base control classes TControl and TWebControl,

showing how they can be customized. We also introduce how to write controls with

specific functionalities, such as loading post data, raising post data and databinding

with data source.

Extending TControl

TControl is the base class of all control classes. Two methods are of the most impor-

tance for derived control classes:

• addParsedObject() - this method is invoked for each component or text string en-

closed within the component tag specifying the control in a template. By default,

the enclosed components and text strings are added into the Controls collection

of the control. Derived controls may override this method to do special process-

ing about the enclosed content. For example, TListControl only accepts TListItem

components to be enclosed within its component tag, and these components are

added into the Items collection of TListControl.

• render() - this method renders the control. By default, it renders items in the

Controls collection. Derived controls may override this method to give cus-

tomized presentation.

154

14.1. Writing New Controls

Other important properties and methods include:

• ID - a string uniquely identifying the control among all controls of the same

naming container. An automatic ID will be generated if the ID property is not

set explicitly.

• UnqiueID - a fully qualified ID uniquely identifying the control among all controls

on the current page hierarchy. It can be used to locate a control in the page

hierarchy by calling TControl::findControl() method. User input controls often

use it as the value of the name attribute of the HTML input element.

• ClientID - similar to UniqueID, except that it is mainly used for presentation and

is commonly used as HTML element id attribute value. Do not rely on the

explicit format of ClientID.

• Enabled - whether this control is enabled. Note, in some cases, if one of the con-

trol’s ancestor controls is disabled, the control should also be treated as disabled,

even if its Enabled property is true.

• Parent - parent control of this control. The parent control is in charge of whether

to render this control and where to place the rendered result.

• Page - the page containing this control.

• Controls - collection of all child controls, including static texts between them.

It can be used like an array, as it implements Traversable interface. To add a

child to the control, simply insert it into the Controls collection at appropriate

position.

• Attributes - collection of custom attributes. This is useful for allowing users to

specify attributes of the output HTML elements that are not covered by control

properties.

• getViewState() and setViewState() - these methods are commonly used for defin-

ing properties that are stored in viewstate.

• saveState() and loadState() - these two methods can be overriden to provide

last step state saving and loading.

• Control lifecycles - Like pages, controls also have lifecycles. Each control under-

goes the following lifecycles in order: constructor, onInit(), onLoad(), onPreRender(),

render(), and onUnload. More details can be found in the page section.

155

Chapter 14. Write New Controls

Extending TWebControl

TWebControl is mainly used as a base class for controls representing HTML elements.

It provides a set of properties that are common among HTML elements. It breaks the

TControl::render() into the following methods that are more suitable for rendering

an HTML element:

• addAttributesToRender() - adds attributes for the HTML element to be rendered.

This method is often overridden by derived classes as they usually have different

attributes to be rendered.

• renderBeginTag() - renders the opening HTML tag.

• renderContents() - renders the content enclosed within the HTML element. By

default, it displays the items in the Controls collection of the control. Derived

classes may override this method to render customized contents.

• renderEndTag() - renders the closing HTML tag.

When rendering the openning HTML tag, TWebControl calls getTagName() to obtain the

tag name. Derived classes may override this method to render different tag names.

Creating Controls with Special Functionalities

If a control wants to respond to client-side events and translate them into server side

events (called postback events), such as TButton, it has to implement the IPostBackEventHandler

interface.

If a control wants to be able to load post data, such as TTextBox, it has to implement

the IPostBackDataHandler interface.

If a control wants to get data from some external data source, it can extend TDataBoundControl.

TDataBoundControl implements the basic properties and methods that are needed for

populating data via databinding. In fact, controls like TListControl, TRepeater are

TDataGrid are all derived from it.

156

Chapter 15

Service References

15.1 SOAP Service

SOAP forms the foundation layer of the Web services stack. It provides a neat way

for PHP applications to communicate with each other or with applications written

in other languages. PRADO provides TSoapService that makes developing a SOAP

server application an extremely easy task.

To use TSoapService, configure it in the application specification like following:

<services>

<service id="soap" class="System.Web.Services.TSoapService">

<soap id="stockquote" provider="path.to.StockQuote" />

<!--

<soap...other soap service... />

-->

</service>

</services>

The example specifies a SOAP service provider named stockquote which implements

the getPrice SOAP method in the provider class StockQuote,

class StockQuote

157

Chapter 15. Service References

{

/**

* @param string $symbol the symbol of the stock

* @return float the stock price

* @soapmethod

*/

public function getPrice($symbol)

{

....return stock price for $symbol

}

}

Note: TSoapService is based on PHP SOAP extension and thus requires the

extension to be installed.

With the above simple code, we already finish a simple SOAP service that allows

other applications to query the price of a specific stock. For example, a typical SOAP

client may be written as follows to query the stock price of IBM,

$client=new SoapClient(’http://path/to/index.php?soap=stockquote.wsdl’);

echo $client->getPrice(’IBM’);

Notice the URL used to construct SoapClient (a class provided by PHP SOAP exten-

sion). This is the URL for the WSDL that describes the communication protocol for

the SOAP service we just implemented. WSDL is often too complex to be manually

written. Fortunately, TSoapService can generate this for us using a WSDL genera-

tor. In general, the URL for the automatically generated WSDL in PRADO has the

following format:

http://path/to/index.php?SoapServiceID=SoapProviderID.wsdl

In order for the WSDL generator to generate WSDL for a SOAP service, the provider

class needs to follow certain syntax. In particular, for methods to be exposed as SOAP

methods, a keyword @soapmethod must appear in the phpdoc comment of the method

with the following lines specifying method parameters and return value:

• parameter: @param parameter-type $parameter-name description

158

http://www.php.net/manual/en/ref.soap.php
http://en.wikipedia.org/wiki/WSDL

15.1. SOAP Service

• return value: @return value-type description

Valid parameter and return types include: string, int, boolean, float, array, mixed,

etc. You may also specify a class name as the type, which translates into a complex

SOAP type. For example, for a complex type Contact

/**

* Extends TComponent to provide property setter/getter methods

*/

class Contact {

/**

* @var string $name

* @soapproperty

*/

public $name;

/**

* @var Address $address

* @soapproperty

*/

private $_address;

public function setAddress($value) {

$this->_address=$value;

}

public function getAddress() {

if($this->_address===null)

$this->_address=new Address;

return $this->_address;

}

}

class Address{

/**

* @var string $city

* @soapproperty

*/

public $city;

159

Chapter 15. Service References

}

class ContactManager {

/**

* @return Contact[] an array of contacts

* @soapmethod

*/

function getAllContacts() {

return array(new Contact);

}

/**

* @return Contact one contact

* @soapmethod

*/

function getContact($name) {

return new Contact;

}

}

For a complex soap object, the properties of the object are specified with @soapproperty

keyword in the property phpdocs. Furthermore, the propert’s type name must be

specified as @var type $name where type is any valid type in mentioned earlier and

$name will defined a property name (notice that if your class is a TComponent, you can

provide property setter/getter methods).

An array of complex objects can also be returned by adding a pair of enclosing square

brackets after the type name. For example, to return an array of Contact type, we

define @return Contact[]

Tip: A very useful tool to test out your web services is the free tool WebSer-

viceStudio 2.0. It can invoke webmethods interactively. The user can provide

a WSDL endpoint. On clicking button Get the tool fetches the WSDL, gen-

erates .NET proxy from the WSDL and displays the list of methods available.

The user can choose any method and provide the required input parameters.

The tool requires a MS .NET runtime to be installed.

A similar tool is available for Mac OS X Tiger from

http://www.ditchnet.org/soapclient/

160

http://www.ditchnet.org/soapclient/

15.1. SOAP Service

TSoapService may be configured and customized in several ways. In the example above,

the <soap> element actually specifies a SOAP service using the default TSoapServer

implementation. Attributes in <soap> are passed to TSoapServer as its initial prop-

erty values. For example, the provider attribute initializes the Provider property of

TSoapServer. By setting SessionPersistent to be true in <soap> element, the provider

instance will persist within the user session. You may develop your own SOAP server

class and use it by specifying the class attribute of <soap>.

By default, PHP’s soap server will create objects of the type StdClass when objects
are received from the client. The soap server can be configured to automatically create
objects of certain type objects are received as method parameters. For example, if
we have a Soap method that accepts a Contact object as parameter.

/**

* @param Contact $contact

* @return boolean true if saved, false otherwise

* @soapmethod

*/

function save(Contact $contact)

{

return true

}

The do this, we need to set the ClassMaps property of the TSoapServer in the <soap>

tags as a comma separated string of class names that we wish to be automatically
converted.

<soap id="contact-manager" provider="path.to.ContactManager"

ClassMaps="Contact, Address"/>

161

Chapter 15. Service References

162

Chapter 16

Working with Databases

16.1 Data Access Objects (DAO)

Data Access Objects (DAO) separates a data resource’s client interface from its data

access mechanisms. It adapts a specific data resource’s access API to a generic client

interface. As a result, data access mechanisms can be changed independently of the

code that uses the data.

Since version 3.1, PRADO starts to provide a DAO that is a thin wrap around PHP

Data Objects (PDO). Although PDO has a nice feature set and good APIs, we choose

to implement the PRADO DAO on top of PDO because the PRADO DAO classes

are component classes and are thus configurable in a PRADO application. Users can

use these DAO classes in a more PRADO-preferred way.

Note: Since the PRADO DAO is based on PDO, the PDO PHP extension

needs to be installed. In addition, you need to install the corresponding PDO

driver for the database to be used in your application. See more details in the

PHP Manual.

The PRADO DAO mainly consists of the following four classes (in contrast to PDO

which uses only two classes, PDO and PDOStatement):

• TDbConnection - represents a connection to a database.

163

http://www.php.net/manual/en/ref.pdo.php
http://www.php.net/manual/en/ref.pdo.php
http://www.php.net/manual/en/ref.pdo.php

Chapter 16. Working with Databases

• TDbCommand - represents an SQL statement to execute against a database.

• TDbDataReader - represents a forward-only stream of rows from a query result set.

• TDbTransaction - represents a DB transaction.

In the following, we introduce the usage of PRADO DAO in different scenarios.

16.1.1 Establishing Database Connection

To establish a database connection, one creates a TDbConnection instance and activate

it. A data source name (DSN) is needed to specify the information required to connect

to the database. The database username and password may need to be supplied to

establish the connection.

$connection=new TDbConnection($dsn,$username,$password);

// call setAttribute() to pass in additional connection parameters

// $connection->Persistent=true; // use persistent connection

$connection->Active=true; // connection is established

....

$connection->Active=false; // connection is closed

Complete specification of DSN may be found in the PDO documentation. Below is a

list of commonly used DSN formats:

• MySQL - mysql:host=localhost;dbname=test

• SQLite - sqlite:/path/to/dbfile

• ODBC - odbc:SAMPLE

In case any error occurs when establishing the connection (such as bad DSN or user-

name/password), a TDbException will be raised.

16.1.2 Executing SQL Statements

Once a database connection is established, SQL statements can be executed through

TDbCommand. One creates a TDbCommand by calling TDbConnection.createCommand() with

164

http://www.php.net/manual/en/ref.pdo.php#pdo.drivers

16.1. Data Access Objects (DAO)

the specified SQL statement:

$command=$connection->createCommand($sqlStatement);

// if needed, the SQL statement may be updated as follows:

$command->Text=$newSqlStatement;

An SQL statement is executed via TDbCommand in one of the following two ways:

• execute() - performs a non-query SQL statement, such as INSERT, UPDATE and

DELETE. If successful, it returns the number of rows that are affected by the

execution.

• query() - performs an SQL statement that returns rows of data, such as SELECT.

If successful, it returns a TDbDataReader instance from which one can fetch the

resulting rows of data.

$affectedRowCount=$command->execute(); // execute the non-query SQL

$dataReader=$command->query(); // execute a query SQL

$row=$command->queryRow(); // execute a query SQL and return the first row of result

$value=$command->queryScalar(); // execute a query SQL and return the first column value

In case an error occurs during the execution of SQL statements, a TDbException will

be raised.

16.1.3 Fetching Query Results

After TDbCommand.query() generates the TDbDataReader instance, one can retrieve rows

of resulting data by calling TDbDataReader.read() repeatedly. One can also use TDbDataReader

in PHP’s foreach language construct to retrieve row by row.

// calling read() repeatedly until it returns false

while(($row=$dataReader->read())!==false) { ... }

// using foreach to traverse through every row of data

foreach($dataReader as $row) { ... }

// retrieving all rows at once in a single array

$rows=$dataReader->readAll();

165

Chapter 16. Working with Databases

16.1.4 Using Transactions

When an application executes a few queries, each reading and/or writing information

in the database, it is important to be sure that the database is not left with only some

of the queries carried out. A transaction, represented as a TDbTransaction instance in

PRADO, may be initiated in this case:

• Begin the transaction.

• Execute queries one by one. Any updates to the database are not visible to the

outside world.

• Commit the transaction. Updates become visible if the transaction is successful.

• If one of the queries fails, the entire transaction is rolled back.

$transaction=$connection->beginTransaction();

try

{

$connection->createCommand($sql1)->execute();

$connection->createCommand($sql2)->execute();

//.... other SQL executions

$transaction->commit();

}

catch(Exception $e) // an exception is raised if a query fails will be raised

{

$transaction->rollBack();

}

16.1.5 Binding Parameters

To avoid SQL injection attacks and to improve performance of executing repeatedly

used SQL statements, one can “prepare” an SQL statement with optional parameter

placeholders that are to be replaced with the actual parameters during the parameter

binding process.

The parameter placeholders can be either named (represented as unique tokens)

or unnamed (represented as question marks). Call TDbCommand.bindParameter() or

166

http://en.wikipedia.org/wiki/SQL_injection

16.1. Data Access Objects (DAO)

TDbCommand.bindValue() to replace these placeholders with the actual parameters. The

parameters do not need to be quoted: the underlying database driver does it for you.

Parameter binding must be done before the SQL statement is executed.

// an SQL with two placeholders ":username" and ":email"

$sql="INSERT INTO users(username, email) VALUES(:username,:email)";

$command=$connection->createCommand($sql);

// replace the placeholder ":username" with the actual username value

$command->bindParameter(":username",$username,PDO::PARAM_STR);

// replace the placeholder ":email" with the actual email value

$command->bindParameter(":email",$email,PDO::PARAM_STR);

$command->execute();

// insert another row with a new set of parameters

$command->bindParameter(":username",$username2,PDO::PARAM_STR);

$command->bindParameter(":email",$email2,PDO::PARAM_STR);

$command->execute();

The methods bindParameter() and bindValue() are very similar. The only difference

is that the former binds a parameter with a PHP variable reference while the latter

with a value. For parameters that represent large block of data memory, the former

is preferred for performance consideration.

For more details about binding parameters, see the relevant PHP documentation.

16.1.6 Binding Columns

When fetching query results, one can also bind columns with PHP variables so that

they are automatically populated with the latest data each time a row is fetched.

$sql="SELECT username, email FROM users";

$dataReader=$connection->createCommand($sql)->query();

// bind the 1st column (username) with the $username variable

$dataReader->bindColumn(1,$username);

// bind the 2nd column (email) with the $email variable

$dataReader->bindColumn(2,$email);

while($dataReader->read()!==false)

{

// $username and $email contain the username and email in the current row

167

http://www.php.net/manual/en/function.PDOStatement-bindParam.php

Chapter 16. Working with Databases

}

16.2 Active Record

Active Records are objects that wrap a row in a database table or view, encapsulate

the database access and add domain logic on that data. The basics of an Active

Record are business classes, e.g., a Products class, that match very closely the record

structure of an underlying database table. Each Active Record will be responsible for

saving and loading data to and from the database.

Info: The data structure of an Active Record should match that of a table in

the database. Each column of a table should have a corresponding member

variable or property in the Active Record class the represents the table.

16.2.1 When to Use It

Active Record is a good choice for domain logic that isn’t too complex, such as creates,

reads, updates, and deletes. Derivations and validations based on a single record work

well in this structure. Active Record has the primary advantage of simplicity. It’s

easy to build Active Records, and they are easy to understand.

However, as your business logic grows in complexity, you’ll soon want to use your

object’s direct relationships, collections, inheritance, and so forth. These don’t map

easily onto Active Record, and adding them piecemeal gets very messy. Another

argument against Active Record is the fact that it couples the object design to the

database design. This makes it more difficult to refactor as a project goes forward.

The alternative is to use a Data Mapper that separates the roles of the business object

and how these objects are stored. Prado provides a complimentary choice between

Active Record and SqlMap Data Mapper. A SqlMap Data Mapper can be used to load

Active Record objects, in turn; these Active Record objects can be used to update

the database. The “relationship” between Active Records and SqlMap is illustrated

in the following diagram. More details regarding the SqlMap Data Mapper can be

found in the SqlMap Manual.

The Active Record class has functionality to perform the following tasks.

168

http://www.pradosoft.com/demos/sqlmap/

16.2. Active Record

• Create, Retrieve, Update and Delete records.

• Finder methods to wrap commonly used SQL queries and return Active Record

objects.

• Fetch relationships (related foreign objects) such as “has many”, “has one”,

“belongs to” and “many to many” via association table.

• Lazy loading of relationships.

16.2.2 Design Implications

Prado’s implementation of Active Record does not maintain referential identity. Each

object obtained using Active Record is a copy of the data in the database. For

example, If you ask for a particular customer and get back a Customer object, the next

time you ask for that customer you get back another instance of a Customer object.

This implies that a strict comparison (i.e., using ===) will return false, while loose

comparison (i.e., using ==) will return true if the object values are equal by loose

169

Chapter 16. Working with Databases

comparison.

This is design implication related to the following question. ¡i¿”Do you think of the

customer as an object, of which there’s only one, or do you think of the objects you

operate on as copies of the database?”¡/i¿ Other O/R mappings will imply that there

is only one Customer object with custID 100, and it literally is that customer. If you

get the customer and change a field on it, then you have now changed that customer.

¡i¿”That constrasts with: you have changed this copy of the customer, but not that

copy. And if two people update the customer on two copies of the object, whoever

updates first, or maybe last, wins.”¡/i¿ [A. Hejlsberg 2003]

16.2.3 Database Supported

The Active Record implementation utilizes the Prado DAO classes for data access.

The current Active Record implementation supports the following database.

• MySQL 4.1 or later

• Postgres SQL 7.3 or later

• SQLite 2 and 3

• MS SQL 2000 or later

• Oracle Database (alpha)

Support for other databases can be provided when there are sufficient demands.

16.3 Defining an Active Record

Let us consider the following “users” table that contains two columns named “username”
and “email”, where “username” is also the primary key.

CREATE TABLE users

(

username VARCHAR(20) NOT NULL ,

email VARCHAR(200) ,

170

http://www.mysql.com
http://www.postgres.com
http://www.sqlite.org
http://www.oracle.com

16.3. Defining an Active Record

PRIMARY KEY (username)

);

Next we define our Active Record class that corresponds to the “users” table.

class UserRecord extends TActiveRecord

{

const TABLE=’users’; //table name

public $username; //the column named "username" in the "users" table

public $email;

/**

* @return TActiveRecord active record finder instance

*/

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

Each column of the “users” table must have corresponding property of the same name

as the column name in the UserRecord class. Of course, you also define additional

member variables or properties that does not exist in the table structure. The class

constant TABLE is optional when the class name is the same as the table name in

the database, otherwise TABLE must specify the table name that corresponds to your

Active Record class.

Tip: You may specify qualified table names. E.g. for MySQL, TABLE =

‘‘‘database1‘.‘table1‘".

171

Chapter 16. Working with Databases

Note: Since version 3.1.3 you can also use a method table() to define the table

name. This allows you to dynamically specify which table should be used by

the ActiveRecord.

class TeamRecord extends TActiveRecord

{

public function table() {

return ’Teams’;

}

}

Since TActiveRecord extends TComponent, setter and getter methods can be defined to

allow control over how variables are set and returned. For example, adding a $level

property to the UserRecord class:

class UserRecord extends TActiveRecord {

... //existing definitions as above

private $_level;

public function setLevel($value) {

$this->_level=TPropertyValue::ensureInteger($value,0);

}

public function getLevel($value){

return $this->_level;

}

}

More details regarding TComponent can be found in the Components documentation.

Later we shall use the getter/setters to allow for lazy loading of relationship objects.

Info: TActiveRecord can also work with database views by specifying the con-

stant TABLE corresponding to the view name. However, objects returned from

views are read-only, calling the save() or delete() method will raise an excep-

tion.

The static method finder() returns an UserRecord instance that can be used to load

records from the database. The loading of records using the finder methods is dis-

cussed a little later. The TActiveRecord::finder() static method takes the name of an

Active Record class as parameter.

172

16.3. Defining an Active Record

16.3.1 Setting up a database connection

A default database connection for Active Record can be set as follows. See Establish-

ing Database Connection for further details regarding creation of database connection

in general.

//create a connection and give it to the Active Record manager.

$dsn = ’pgsql:host=localhost;dbname=test’; //Postgres SQL

$conn = new TDbConnection($dsn, ’dbuser’,’dbpass’);

TActiveRecordManager::getInstance()->setDbConnection($conn);

Alternatively, you can create a base class and override the getDbConnection() method

to return a database connection. This is a simple way to permit multiple connec-

tions and multiple databases. The following code demonstrates defining the database

connection in a base class (not need to set the DB connection anywhere else).

class MyDb1Record extends TActiveRecord

{

public function getDbConnection()

{

static $conn;

if($conn===null)

$conn = new TDbConnection(’xxx’,’yyy’,’zzz’);

return $conn;

}

}

class MyDb2Record extends TActiveRecord

{

public function getDbConnection()

{

static $conn;

if($conn===null)

$conn = new TDbConnection(’aaa’,’bbb’,’ccc’);

return $conn;

}

}

¡h3 class=”prado-specific”¿Using application.xml within the Prado Framework¡/h3¿

¡div class=”prado-specific”¿

173

Chapter 16. Working with Databases

The default database connection can also be configured using a <module> tag in the
application.xml or config.xml as follows.

<modules>

<module class="System.Data.ActiveRecord.TActiveRecordConfig" EnableCache="true">

<database ConnectionString="pgsql:host=localhost;dbname=test"

Username="dbuser" Password="dbpass" />

</module>

</modules>

Tip: The EnableCache attribute when set to “true” will cache the table meta

data, that is, the table columns names, indexes and constraints are saved in

the cache and reused. You must clear or disable the cache if you wish to see

changes made to your table definitions. A cache module must also be defined

for the cache to function.

A ConnectionID property can be specified with value corresponding to another TDataSourceConfig
module configuration’s ID value. This allows the same database connection to be used
in other modules such as SqlMap.

<modules>

<module class="System.Data.TDataSourceConfig" id="db1">

<database ConnectionString="pgsql:host=localhost;dbname=test"

Username="dbuser" Password="dbpass" />

</module>

<module class="System.Data.ActiveRecord.TActiveRecordConfig"

ConnectionID="db1" EnableCache="true" />

<module class="System.Data.SqlMap.TSqlMapConfig"

ConnectionID="db1" ... />

</modules>

¡/div¿

174

16.3. Defining an Active Record

16.3.2 Loading data from the database

The TActiveRecord class provides many convenient methods to find records from

the database. The simplest is finding one record by matching a primary key or

a composite key (primary keys that consists of multiple columns). See the Sys-

tem.Data.ActiveRecord.TActiveRecord API Reference for more details.

Info: All finder methods that may return 1 record only will return null if no

matching data is found. All finder methods that return an array of records

will return an empty array if no matching data is found.

findByPk()

Finds one record using only a primary key or a composite key.

$finder = UserRecord::finder();

$user = $finder->findByPk($primaryKey);

//when the table uses a composite key

$record = $finder->findByPk($key1, $key2, ...);

$record = $finder->findByPk(array($key1, $key2,...));

findAllByPks()

Finds multiple records using a list of primary keys or composite keys. The following

are equivalent for primary keys (primary key consisting of only one column/field).

$finder = UserRecord::finder();

$users = $finder->findAllByPks($key1, $key2, ...);

$users = $finder->findAllByPks(array($key1, $key2, ...));

The following are equivalent for composite keys.

//when the table uses composite keys

$record = $finder->findAllByPks(array($key1, $key2), array($key3, $key4), ...);

175

http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord/TActiveRecord.html
http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord/TActiveRecord.html

Chapter 16. Working with Databases

$keys = array(array($key1, $key2), array($key3, $key4), ...);

$record = $finder->findAllByPks($keys);

find()

Finds one single record that matches the criteria. The criteria can be a partial SQL
string or a TActiveRecordCriteria object.

$finder = UserRecord::finder();

//:name and :pass are place holders for specific values of $name and $pass

$finder->find(’username = :name AND password = :pass’,

array(’:name’=>$name, ’:pass’=>$pass));

//using position place holders

$finder->find(’username = ? AND password = ?’, array($name, $pass));

//same as above

$finder->find(’username = ? AND password = ?’, $name, $pass);

//$criteria is of TActiveRecordCriteria

$finder->find($criteria); //the 2nd parameter for find() is ignored.

The TActiveRecordCriteria class has the following properties:

• Parameters – name value parameter pairs.

• OrdersBy – column name and ordering pairs.

• Condition – parts of the WHERE SQL conditions.

• Limit – maximum number of records to return.

• Offset – record offset in the table.

$criteria = new TActiveRecordCriteria;

$criteria->Condition = ’username = :name AND password = :pass’;

$criteria->Parameters[’:name’] = ’admin’;

$criteria->Parameters[’:pass’] = ’prado’;

$criteria->OrdersBy[’level’] = ’desc’;

176

16.3. Defining an Active Record

$criteria->OrdersBy[’name’] = ’asc’;

$criteria->Limit = 10;

$criteria->Offset = 20;

Note: For MSSQL and when Limit and Offset are positive integer values. The

actual query to be executed is modified by the TMssqlCommandBuilder class

according to http://troels.arvin.dk/db/rdbms/ to emulate the Limit and Offset

conditions.

findAll()

Same as find() but returns an array of objects.

findBy*() and findAllBy*()

Dynamic find method using parts of the method name as search criteria. Method

names starting with findBy return 1 record only and method names starting with

findAllBy return an array of records. The condition is taken as part of the method

name after findBy or findAllBy.

The following blocks of code are equivalent:

$finder->findByName($name)

$finder->find(’Name = ?’, $name);

$finder->findByUsernameAndPassword($name,$pass);

$finder->findBy_Username_And_Password($name,$pass);

$finder->find(’Username = ? AND Password = ?’, $name, $pass);

$finder->findAllByAge($age);

$finder->findAll(’Age = ?’, $age);

Tip: You may also use a combination of AND and OR as a condition in the

dynamic methods.

177

http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord.Common.Mssql/TMssqlCommandBuilder.html
http://troels.arvin.dk/db/rdbms/#select-limit-offset

Chapter 16. Working with Databases

findBySql() and findAllBySql()

Finds records using full SQL where findBySql() return an Active Record and findAllBySql()returns
an array of record objects. For each column returned, the corresponding Active
Record class must define a member variable or property for each corresponding col-
umn name.

class UserRecord2 extends UserRecord

{

public $another_value;

}

$sql = "SELECT users.*, ’hello’ as another_value FROM users";

$users = TActiveRecord::finder(’UserRecord2’)->findAllBySql($sql);

count()

Find the number of matchings records, accepts same parameters as the findAll()

method.

16.3.3 Inserting and updating records

Add a new record using TActiveRecord is very simple, just create a new Active Record

object and call the save() method. E.g.

$user1 = new UserRecord();

$user1->username = "admin";

$user1->email = "admin@example.com";

$user1->save(); //insert a new record

$data = array(’username’=>’admin’, ’email’=>’admin@example.com’);

$user2 = new UserRecord($data); //create by passing some existing data

$user2->save(); //insert a new record

Tip: If you insert a new record into a MySQL table that has columns defined

with “autoincrement”, the Active Record objects will be updated with the

new incremented value.

178

16.3. Defining an Active Record

To update a record in the database, just change one or more properties of the Ac-

tive Record object that has been loaded from the database and then call the save()

method.

$user = UserRecord::finder()->findByName(’admin’);

$user->email="test@example.com"; //change property

$user->save(); //update it.

Active Record objects have a simple life-cycle illustrated in the following diagram.

We see that new TActiveRecord objects are created by either using one of the find*()

methods or using creating a new instance by using PHP’s new keyword. Objects

created by a find*() method starts with clean state. New instance of TActiveRecord

created other than by a find*() method starts with new state. Whenever you call

the save() method on the TActiveRecord object, the object enters the clean state.

Objects in the clean becomes dirty whenever one of more of its internal states are

changed. Calling the delete() method on the object ends the object life-cycle, no

further actions can be performed on the object.

16.3.4 Deleting existing records

To delete an existing record that is already loaded, just call the delete() method. You

can also delete records in the database by primary keys without loading any records

179

Chapter 16. Working with Databases

using the deleteByPk() method (and equivalently the deleteAllByPks() method). For

example, to delete one or several records with tables using one or more primary keys.

$finder->deleteByPk($primaryKey); //delete 1 record

$finder->deleteAllByPks($key1,$key2,...); //delete multiple records

$finder->deleteAllByPks(array($key1,$key2,...)); //delete multiple records

For composite keys (determined automatically from the table definitions):

$finder->deleteByPk(array($key1,$key2)); //delete 1 record

//delete multiple records

$finder->deleteAllByPks(array($key1,$key2), array($key3,$key4),...);

//delete multiple records

$finder->deleteAllByPks(array(array($key1,$key2), array($key3,$key4), ..));

deleteAll() and deleteBy*()

To delete by a criteria, use deleteAll($criteria) and deleteBy*() with similar syntax

to findAll($criteria) and findAllBy*() as described above.

//delete all records with matching Name

$finder->deleteAll(’Name = ?’, $name);

$finder->deleteByName($name);

//delete by username and password

$finder->deleteBy_Username_And_Password($name,$pass);

16.3.5 Transactions

All Active Record objects contain the property DbConnection that can be used to
obtain a transaction object.

$finder = UserRecord::finder();

$finder->DbConnection->Active=true; //open if necessary

180

16.3. Defining an Active Record

$transaction = $finder->DbConnection->beginTransaction();

try

{

$user = $finder->findByPk(’admin’);

$user->email = ’test@example.com’; //alter the $user object

$user->save();

$transaction->commit();

}

catch(Exception $e) // an exception is raised if a query fails

{

$transaction->rollBack();

}

16.3.6 Events

The TActiveRecord offers two events, OnCreateCommand and OnExecuteCommand.

The OnCreateCommand event is raised when a command is prepared and parameter

binding is completed. The parameter object is TDataGatewayEventParameter of which

the Command property can be inspected to obtain the SQL query to be executed.

The OnExecuteCommand event is raised when a command is executed and the result from

the database was returned. The parameter object is TDataGatewayResultEventParameter

of which the Result property contains the data return from the database. The data

returned can be changed by setting the Result property.

Logging Example

Using the OnExecuteCommand we can attach an event handler to log the entire SQL

query executed for a given TActiveRecord class or instance. For example, we define

a base class and override either the getDbConnection() or the constructor.

class MyDb1Record extends TActiveRecord

{

public function getDbConnection()

{

static $conn;

181

Chapter 16. Working with Databases

if($conn===null)

{

$conn = new TDbConnection(’xxx’,’yyy’,’zzz’);

$this->OnExecuteCommand[] = array($this,’logger’);

}

return $conn;

}

public function logger($sender,$param)

{

var_dump($param->Command->Text);

}

}

//alternatively as per instance of per finder object

function logger($sender,$param)

{

var_dump($param->Command->Text);

}

TActiveRecord::finder(’MyRecord’)->OnExecuteCommand[] = ’logger’;

$obj->OnExecuteCommand[] = array($logger, ’log’); //any valid PHP callback.

16.4 Active Record Relationships

The Prado Active Record implementation supports the foreign key mappings for

database that supports foreign key constraints. For Active Record relationships to

function the underlying database must support foreign key constraints (e.g. MySQL

using InnoDB).

In the following sections we will consider the following table relationships between

Teams, Players, Skills and Profiles.

The goal is to obtain object models that represent to some degree the entity relation-

ships in the above figure.

There is a mismatch between relationships with objects and table relationships. First

there’s a difference in representation. Objects handle links by storing references that

are held by the runtime memory-managed environment. Relational databases handle

links by forming a key into another table. Second, objects can easily use collections

to handle multiple references from a single field, while normalization forces all entity

182

16.4. Active Record Relationships

relation links to be single valued. This leads to reversals of the data structure between

objects and tables. The approach taken in the Prado Active Record design is to use

the table foreign key constraints to derive object relationships. This implies that the

underlying database must support foreign key constraints.

183

Chapter 16. Working with Databases

Tip: For SQLite database, you may create tables that defines the foreign key

constraints such as the example below. However, these constraints are NOT

enforced by the SQLite database itself.

CREATE TABLE foo

(

id INTEGER NOT NULL PRIMARY KEY,

id2 CHAR(2)

);

CREATE TABLE bar

(

id INTEGER NOT NULL PRIMARY KEY,

foo_id INTEGER

CONSTRAINT fk_foo_id REFERENCES foo(id) ON DELETE CASCADE

);

16.4.1 Foreign Key Mapping

The entity relationship between the Teams and Players table is what is known as an

1-M relationship. That is, one Team may contain 0 or more Players. In terms of

object relationships, we say that a TeamRecord object has many PlayerRecord objects.

(Notice the reversal of the direction of relationships between tables and objects.)

Has Many Relationship

We model the Team object as the following Active Record classes.

class TeamRecord extends TActiveRecord

{

const TABLE=’Teams’;

public $name;

public $location;

public $players=array(); // this declaration is no longer needed since v3.1.2

//define the $player member having has many relationship with PlayerRecord

public static $RELATIONS=array

(

184

16.4. Active Record Relationships

’players’ => array(self::HAS_MANY, ’PlayerRecord’, ’team_name’),

);

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

The static $RELATIONS property of TeamRecord defines that the property $players has

many PlayerRecords. Multiple relationships is permitted by defining each relation-

ship with an entry in the $RELATIONS array where array key for the entry corre-

sponds to the property name. In array(self::HAS MANY, ‘PlayerRecord’), the first el-

ement defines the relationship type, the valid types are self::HAS MANY, self::HAS ONE,

self::BELONGS TO and self::MANY TO MANY. The second element is a string ’PlayerRecord’

that corresponds to the class name of the PlayerRecord class. And the third element

‘teamname′referstotheforeignkeycolumnintheP layerstablethatreferencestotheTeamstable.

Note: As described in the code comment above, since version 3.1.2, related

properties no longer need to be explicitly declared. By default, they will

be implicitly declared according to keys of the $RELATIONS array. A major

benefit of declared related properties implicitly is that related objects can be

automatically loaded in a lazy way. For example, assume we have a TeamRecord

instance $team. We can access the players via $team->players, even if we have

never issued fetch command for players. If $players is explicitly declared, we

will have to use the with approach described in the following to fetch the player

records.

The foreign key constraint of the Players table is used to determine the corresponding

Teams table’s corresponding key names. This is done automatically handled in Active

Record by inspecting the Players and Teams table definitions.

185

Chapter 16. Working with Databases

Info: Since version 3.1.2, Active Record supports multiple foreign key refer-

ences of the same table. Ambiguity between multiple foreign key references

to the same table is resolved by providing the foreign key column name as the

3rd parameter in the relationship array. For example, both of the following

foreign keys owner id and reporter id references to the same table defined in

UserRecord.

class TicketRecord extends TActiveRecord

{

public $owner_id;

public $reporter_id;

public $owner; // this declaration is no longer needed since v3.1.2

public $reporter; // this declaration is no longer needed since v3.1.2

public static $RELATION=array

(

’owner’ => array(self::BELONGS_TO, ’UserRecord’, ’owner_id’),

’reporter’ => array(self::BELONGS_TO, ’UserRecord’, ’reporter_id’),

);

}

This is applicable to relationships including BELONGS TO, HAS ONE and HAS MANY. See

section Self Referenced Association Tables for solving ambiguity of MANY TO MANY

relationships.

The “has many” relationship is not fetched automatically when you use any of the

Active Record finder methods. You will need to explicitly fetch the related objects

as follows. In the code below, both lines are equivalent and the method names are

case insensitive.

$team = TeamRecord::finder()->withPlayers()->findAll();

$team = TeamRecord::finder()->with_players()->findAll(); //equivalent

The method with xxx() (where xxx is the relationship property name, in this case,

players) fetches the corresponding PlayerRecords using a second query (not by us-

ing a join). The with xxx() accepts the same arguments as other finder methods of

TActiveRecord, e.g. with players(‘age = ?’, 35).

186

16.4. Active Record Relationships

Note: It is essential to understand that the related objects are fetched using

additional queries. The first query fetches the source object, e.g. the TeamRecord

in the above example code. A second query is used to fetch the corresponding

related PlayerRecord objects. The usage of the two query is similar to a single

query using Left-Outer join with the exception that null results on the right

table are not returned. The consequence of using two or more queries is that

the aggregates and other join conditions are not feasible using Active Records.

For queries outside the scope of Active Record the SqlMap Data Mapper may

be considered.

Info: The above with approach also works with implicitly declared related

properties (introduced in version 3.1.2). So what is the difference between the

with approach and the lazy loading approach? Lazy loading means we issue

an SQL query if a related object is initially accessed and not ready, while the

with approach queries for the related objects once for all, no matter the related

objects are accessed or not. The lazy loading approach is very convenient since

we do not need to explictly load the related objects, while the with approach is

more efficient if multiple records are returned, each with some related objects.

Has One Relationship

The entity relationship between Players and Profiles is one to one. That is, each

PlayerRecord object has one ProfileRecord object (may be none or null). A has one

relationship is nearly identical to a has many relationship with the exception that the

related object is only one object (not a collection of objects).

Belongs To Relationship

The “has many” relationship in the above section defines a collection of foreign ob-

jects. In particular, we have that a TeamRecord has many (zero or more) PlayerRecord

objects. We can also add a back pointer by adding a property in the PlayerRecord class

that links back to the TeamRecord object, effectively making the association bidirec-

tional. We say that the $team property in PlayerRecord class belongs to a TeamRecord

object. The following code defines the complete PlayerRecord class with 3 relation-

ships.

187

Chapter 16. Working with Databases

class PlayerRecord extends TActiveRecord

{

const TABLE=’Players’;

public $player_id;

public $age;

public $team_name;

public $team; // this declaration is no longer needed since v3.1.2

public $skills=array(); // this declaration is no longer needed since v3.1.2

public $profile; // this declaration is no longer needed since v3.1.2

public static $RELATIONS=array

(

’team’ => array(self::BELONGS_TO, ’TeamRecord’, ’team_name’),

’skills’ => array(self::MANY_TO_MANY, ’SkillRecord’, ’Player_Skills’),

’profile’ => array(self::HAS_ONE, ’ProfileRecord’, ’player_id’),

);

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

The static $RELATIONS property of PlayerRecord defines that the property $team be-

longs to a TeamRecord. The $RELATIONS array also defines two other relationships that

we shall examine in later sections below. In array(self::BELONGS TO, ‘TeamRecord’,

‘team name’), the first element defines the relationship type, in this case ¡strong¿self::BELONGS TO¡/strong¿;

the second element is a string ’TeamRecord’ that corresponds to the class name of the

TeamRecord class; and the third element ‘teamname′referstotheforeignkeyofP layersreferencingTeams.Aplayerobjectwiththecorrespondingteamobjectmaybefetchedasfollows.

$players = PlayerRecord::finder()->with_team()->findAll();

The method with xxx() (where xxx is the relationship property name, in this case,

team) fetches the corresponding TeamRecords using a second query (not by using a join).

The with xxx() accepts the same arguments as other finder methods of TActiveRecord,

e.g. with team(‘location = ?’, ‘Madrid’).

188

16.4. Active Record Relationships

Tip: Additional relationships may be fetched by chaining the with xxx() to-

gether as the following example demonstrates.

$players = PlayerRecord::finder()->with_team()->with_skills()->findAll();

Each with xxx() method will execute an additional SQL query. Every with xxx()

accepts arguments similar to those in the findAll() method and is only applied

to that particular relationship query.

The “belongs to” relationship of ProfileRecord class is defined similarly.

class ProfileRecord extends TActiveRecord

{

const TABLE=’Profiles’;

public $player_id;

public $salary;

public $player; // this declaration is no longer needed since v3.1.2

public static $RELATIONS=array

(

’player’ => array(self::BELONGS_TO, ’PlayerRecord’),

);

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

In essence, there exists a “belongs to” relationship for objects corresponding to enti-

ties that has column which are foreign keys. In particular, we see that the Profiles

table has a foreign key constraint on the column player id that relates to the Players

table’s player id column. Thus, the ProfileRecord object has a property ($player)

that belongs to a PlayerRecord object. Similarly, the Players table has a foreign key

constraint on the column team name that relates to the Teams table’s name column. Thus,

the PlayerRecord object has a property ($team) that belongs to a TeamRecord object.

189

Chapter 16. Working with Databases

Parent Child Relationships

A parent child relationship can be defined using a combination of has many and belongs

to relationship that refers to the same class. The following example shows a parent

children relationship between “categories” and a “parent category”.

class Category extends TActiveRecord

{

public $cat_id;

public $category_name;

public $parent_cat_id;

public $parent_category; // this declaration is no longer needed since v3.1.2

public $child_categories=array(); // this declaration is no longer needed since v3.1.2

public static $RELATIONS=array

(

’parent_category’ => array(self::BELONGS_TO, ’Category’, ’parent_cat_id’),

’child_categories’ => array(self::HAS_MANY, ’Category’, ’parent_cat_id’),

);

}

Query Criteria for Related Objects

In the above, we show that an Active Record object can reference to its related

objects by declaring a static class member $RELATIONS which specifies a list of

relations. Each relation is specified as an array consisting of three elements: re-

lation type, related AR class name, and the foreign key(s). For example, we use

array(self::HAS MANY, ‘PlayerRecord’, ‘team name’) to specify the players in a team.

There are two more optional elements that can be specified in this array: query condi-

tion (the fourth element) and parameters (the fifth element). They are used to control

how to query for the related objects. For example, if we want to obtain the players or-

dered by their age, we can specify array(self::HAS MANY, ‘PlayerRecord’, ‘team name’,

‘ORDER BY age’). If we want to obtain players whose age is smaller than 30, we could

use ¡tt¿array(self::HASMANY, ‘PlayerRecord′, ‘teamname′, ‘age <: age′, array(‘ : age′ =>

30)) < /tt > .Ingeneral, thesetwoadditionalelementsaresimilarastheparameterspassedtothefind()methodinAR.

190

16.4. Active Record Relationships

16.4.2 Association Table Mapping

Objects can handle multivalued fields quite easily by using collections as field values.

Relational databases don’t have this feature and are constrained to single-valued fields

only. When you’re mapping a one-to-many association you can handle this using has

many relationships, essentially using a foreign key for the single-valued end of the

association. But a many-to-many association can’t do this because there is no single-

valued end to hold the foreign key.

The answer is the classic resolution that’s been used by relational data people for

decades: create an extra table (an association table) to record the relationship. The

basic idea is using an association table to store the association. This table has only

the foreign key IDs for the two tables that are linked together, it has one row for each

pair of associated objects.

The association table has no corresponding in-memory object and its primary key is

the compound of the two primary keys of the tables that are associated. In simple

terms, to load data from the association table you perform two queries (in general,

it may also be achieved using one query consisting of joins). Consider loading the

SkillRecord collection for a list PlayerRecord objects. In this case, you do queries in

two stages. The first stage queries the Players table to find all the rows of the players

you want. The second stage finds the SkillRecord object for the related player ID for

each row in the Player Skills association table using an inner join.

The Prado Active Record design implements the two stage approach. For the Players-

Skills M-N (many-to-many) entity relationship, we define a many-to-many relation-

ship in the PlayerRecord class and in addition we may define a many-to-many re-

lationship in the SkillRecord class as well. The following sample code defines the

complete SkillRecord class with a many-to-many relationship with the PlayerRecord

class. (See the PlayerRecord class definition above to the corresponding many-to-many

relationship with the SkillRecord class.)

class SkillRecord extends TActiveRecord

{

const TABLE=’Skills’;

public $skill_id;

public $name;

191

Chapter 16. Working with Databases

public $players=array(); // this declaration is no longer needed since v3.1.2

public static $RELATIONS=array

(

’players’ => array(self::MANY_TO_MANY, ’PlayerRecord’, ’Player_Skills’),

);

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

The static $RELATIONS property of SkillRecord defines that the property $players has

many PlayerRecords via an association table ‘Player Skills’. In array(self::MANY TO MANY,

‘PlayerRecord’, ‘Player Skills’), the first element defines the relationship type, in

this case ¡strong¿self::MANY TO MANY¡/strong¿, the second element is a string ’PlayerRecord’

that corresponds to the class name of the PlayerRecord class, and the third element is

the name of the association table name.

Note: Prior to version 3.1.2 (versions up to 3.1.1), the many-to-many relation-

ship was defined using self::HAS MANY. For version 3.1.2 onwards, this must be

changed to self::MANY TO MANY. This can be done by searching for the HAS MANY

in your source code and carfully changing the appropriate definitions.

A list of player objects with the corresponding collection of skill objects may be

fetched as follows.

$players = PlayerRecord::finder()->withSkills()->findAll();

The method with xxx() (where xxx is the relationship property name, in this case,

Skill) fetches the corresponding SkillRecords using a second query (not by using

a join). The with xxx() accepts the same arguments as other finder methods of

TActiveRecord.

192

16.4. Active Record Relationships

Self Referenced Association Tables

For self referenced association tables, that is, the association points to the same table.
For example, consider the items table with M-N related item via the related items

association table. The syntax in the following example is valid for a PostgreSQL
database. For other database, consult their respective documentation for defining the
foreign key constraints.

CREATE TABLE items

(

"item_id" SERIAL,

"name" VARCHAR(128) NOT NULL,

PRIMARY KEY("item_id")

);

CREATE TABLE "related_items"

(

"item_id" INTEGER NOT NULL,

"related_item_id" INTEGER NOT NULL,

CONSTRAINT "related_items_pkey" PRIMARY KEY("item_id", "related_item_id"),

CONSTRAINT "related_items_item_id_fkey" FOREIGN KEY ("item_id")

REFERENCES "items"("item_id")

ON DELETE CASCADE

ON UPDATE NO ACTION

NOT DEFERRABLE,

CONSTRAINT "related_items_related_item_id_fkey" FOREIGN KEY ("related_item_id")

REFERENCES "items"("item_id")

ON DELETE CASCADE

ON UPDATE NO ACTION

NOT DEFERRABLE

);

The association table name in third element of the relationship array may contain the

foreign table column names. The columns defined in the association table must also

be defined in the record class (e.g. the $related item id property corresponds to the

related item id column in the related items table).

class Item extends TActiveRecord

{

const TABLE="items";

193

Chapter 16. Working with Databases

public $item_id;

public $details;

//additional foreign item id defined in the association table

public $related_item_id;

public $related_items=array(); // this declaration is no longer needed since v3.1.2

public static $RELATIONS=array

(

’related_items’ => array(self::MANY_TO_MANY,

’Item’, ’related_items.related_item_id’),

);

}

Tip: Compound keys in the foreign table can be specified as comma separated

values between brackets. E.g. ’related items.(id1,id2)’.

¡!—

16.4.3 Adding/Removing/Updating Related Objects

Related objects can be simply inserted/updated by first adding those related objects

to the current source object (i.e. the object currently been worked on) and then

call the save() method on the source object. The related object’s references and the

association reference (if required) will be added and/or updated. For example, to add

two new players to the team (assuming that ‘Team A’ exists), we can simply do the

following.

$team = TeamRecord::finder()->findByPk(’Team A’);

$team->players[] = new PlayerRecord(array(’age’=>20));

$team->players[] = new PlayerRecord(array(’age’=>25));

$team->save();

Since the TeamRecord class contains a has many relationship with the PlayerRecord,

then saving a TeamRecord object will also update the corresponding foreign objects in

$players array. That is, the objects in $players are inserted/updated in the database

194

16.4. Active Record Relationships

and the $team name property of those objects will contain the foreign key value that

corresponds to the $team object’s primary key value.

To delete a particular foreign object (or any Active Record object), simply call the

object’s delete() method. You may setup the database table’s foreign key constraints

such that when deleting a particular data in the database it will delete the referenced

data as well (it may also be achieved using database triggers). E.g. such as hav-

ing a “ON DELETE CASCADE” constraint. Deleting foreign objects by either setting the

property value to null or removing the object from an array will NOT remove the

corresponding data in the database.

To remove associations for the many-to-many relationships via an association table,

an Active Record that corresponds to the association table can be used. Then the

association can be removed by calling the deleteByPk() method, for example:

PlayerSkillAssocation::finder()->deleteByPk(array(’fk1’,’fk2’));

//where ’fk1’ is the primary key value of a player

// and ’fk2’ is the primary key value of a skill

—¿

16.4.4 Lazy Loading Related Objects

Note: Implicitly declared related properties introduced in version 3.1.2 au-

tomatically have lazy loading feature. Therefore, the lazy loading technique

described in the following is no longer needed in most of the cases, unless you

want to manipulate the related objects through getter/setter.

Using the with xxx() methods will load the relationship record on demand. Retrieving

the related record using lazy loading (that is, only when those related objects are

accessed) can be achieved by using a feature of the TComponent that provides accessor

methods. In particular, we define a pair of getter and setter methods where the getter

method will retrieve the relationship conditionally. The following example illustrates

that the PlayerRecord can retrieve its $skills foreign objects conditionally.

class PlayerRecord extends BaseFkRecord

195

Chapter 16. Working with Databases

{

//... other properties and methods as before

private $_skills; //change to private and default as null

public function getSkills()

{

if($this->_skills===null && $this->player_id !==null)

{

//lazy load the skill records

$this->setSkills($this->withSkills()->findByPk($this->player_id)->skills);

}

else if($this->_skills===null)

{

//create new TList;

$this->setSkills(new TList());

}

return $this->_skills;

}

public function setSkills($value)

{

$this->_skills = $value instanceof TList ? $value : new TList($value);

}

}

We first need to change the $skills=array() declaration to a private property $ skills

(notice the underscore) and set it to null instead. This allows us to define the skills

property using getter/setter methods (see Components for details). The getSkills()

getter method for the skills property will lazy load the corresponding skills foreign

record when it is used as follows. Notice that we only do a lazy load when its $player id

is not null (that is, when the record is already fetched from the database or player id

was already set).

$player = PlayerRecord::finder()->findByPk(1);

var_dump($player->skills); //lazy load it on first access

var_dump($player->skills[0]); //already loaded skills property

$player->skills[] = new SkillRecord(); //add skill

196

16.4. Active Record Relationships

The setSkills() ensures that the skills property will always be a TList. Using a

TList allows us to set the elements of the skills property as if they were arrays.

E.g. $player->skills[] = new SkillRecord(). If array was used, a PHP error will be

thrown.

16.4.5 Column Mapping

Since v3.1.1, Active Record starts to support column mapping. Column mapping

allows developers to address columns in Active Record using a more consistent naming

convention. In particular, using column mapping, one can access a column using

whatever name he likes, rather than limited by the name defined in the database

schema.

To use column mapping, declare a static array named COLUMN MAPPING in the Active

Record class. The keys of the array are column names (called ¡i¿physical column

names¡/i¿) as defined in the database schema, while the values are corresponding

property names (called ¡i¿logical column names¡/i¿) defined in the Active Record

class. The property names can be either public class member variable names or

component property names defined via getters/setters. If a physical column name

happens to be the same as the logical column name, they do not need to be listed in

COLUMN MAPPING.

class UserRecord extends TActiveRecord

{

const TABLE=’users’;

public static $COLUMN_MAPPING=array

(

’user_id’=>’id’,

’email_address’=>’email’,

’first_name’=>’firstName’,

’last_name’=>’lastName’,

);

public $id;

public $username; // the physical and logical column names are the same

public $email;

public $firstName;

public $lastName;

//....

197

Chapter 16. Working with Databases

}

With the above column mapping, we can address first name using $userRecord->firstName

instead of $userRecord->first name. This helps separation of logic and model.

16.4.6 References

• Fowler et. al. ¡i¿Patterns of Enterprise Application Architecture¡/i¿, Addison

Wesley, 2002.

• B. Venners with B. Eckel. ¡i¿Inappropriate Abstractions - A Conversation with

Anders Hejlsberg, Part VI.¡/i¿ Artima Developer, 2003.

16.5 Active Record Scaffold Views

Active Record classes can be used together with TScaffoldListView and TScaffoldEd-

itView (TScaffoldView links both TScaffoldListView and TScaffoldEditView) to create

¡i¿simple¡/i¿ Create/Read/Update/Delete (CRUD) web applications.

The scaffold views are intended to assist in prototyping web application, they are not

designed to be as customiziable as more complex components such as TDataGrid.

The scaffold views provide the following builtin functionality:

• Listing of all active record items.

• Searching records.

• Paging and sorting.

• Deleting an item.

• Inserting a new item.

• Updating an existing item.

• Validates required fields and basic data types.

• Presents specialized controls such as date pickers.

198

http://www.artima.com/intv/abstract3.html
http://www.artima.com/intv/abstract3.html
http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord.Scaffold/TScaffoldListView.html
http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord.Scaffold/TScaffoldEditView.html
http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord.Scaffold/TScaffoldEditView.html
http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord.Scaffold/TScaffoldView.html

16.5. Active Record Scaffold Views

Scaffold views are dependent on Active Records and currently supports the follow-

ing databases: Mysql, Sqlite and Postgres SQL. Support for other databases can be

considered when there are sufficient demand.

16.5.1 Setting up a Scaffold View

To use the scaffold view, we first define an Active Record class that represents a table

or view in the database. Consider the following Active Record class that corresponds

to the users table as defined in the Active Record quickstart page.

class UserRecord extends TActiveRecord

{

const TABLE=’users’;

public $username;

public $email;

}

The scaffold view classes are in the System.Data.ActiveRecord.Scaffold.* namespace.

This namespace can be “imported” in the Application Configuration using the application.xml

file or through the php code using the Prado::using() method. To start using the

TScaffoldView simply set the RecordClass property value equal to an Active Record

class name.

<com:TScaffoldView RecordClass="UserRecord" />

The above code will list the current records in the users table. Each record can be

edited by clicking on the “edit” button and deleted by clicking on the “delete” button.

A new record can be added by clicking on the “Add new record” button, enter some

data (notice the automatic validation of required fields and data types), and click

the “save” button. Specifying search terms in the search textbox to find particular

records. Finally, the record list can be sorted for each column by changing the sorting

column and order.

The TScaffoldView is a template control composed of other scaffold controls. The

following properties gives access to these composite controls.

199

http://www.pradosoft.com/docs/manual/System.Data.ActiveRecord.Scaffold/TScaffoldView.html

Chapter 16. Working with Databases

• ¡b¿ListView¡/b¿ – the TScaffoldListView displaying the record list.

• ¡b¿EditView¡/b¿ – the TScaffoldEditView that renders the inputs for editing and

adding records.

• ¡b¿SearchControl¡/b¿ – the TScaffoldSearch responsible to the search user inter-

face.

All these composite controls can be customized as we shall see below.

16.5.2 TScaffoldListView

A list of Active Records can be displayed using the TScaffoldListView with the fol-

lowing useful properties.

• ¡b¿Header¡/b¿ – a TRepeater displaying the Active Record property/field names.

• ¡b¿Sort¡/b¿ – a TDropDownList displaying the combination of properties and its

possible ordering.

• ¡b¿Pager¡/b¿ – a TPager control displaying the links and/or buttons that navigate

to different pages in the Active Record data.

• ¡b¿List¡/b¿ – a TRepeater that renders a row of Active Record data.

Custom rendering of the each Active Record can be achieved by specifying the

ItemTemplate and/or AlternatingItemTemplate property of the List repeater. The

TScaffoldListView will listen for two command events named “delete” and “edit”.

A “delete” command will delete a the record for the row where the “delete” com-

mand originates. An “edit” command will push the record data to be edited by a

TScaffoldEditView with ID specified by the EditViewID property. The following exam-

ple lists the usernames only with bold formatting.

<com:TScaffoldListView RecordClass="UserRecord" >

<prop:List.ItemTemplate>

<%# $this->Data->username %>

</prop:List.ItemTemplate>

</com:TScaffoldListView>

200

16.6. Data Mapper

Info: For the TScaffoldView the list view can be accessed throught the ListView

property of a TScaffoldView. Thus, the subproperty ListView.List.ItemTemplate

on TScaffoldView is equivalent to the List.ItemTemplate subproperty of

TScaffoldListView in the above example.

The SearchCondition property and SearchParameters property (takes array values) can

be specified to customize the records to be shown. The SearchCondition will be used

as the Condition property of TActiveRecordCriteria and the SearchParameters property

corresponds to Parameters property of TActiveRecordCriteria.

16.5.3 TScaffoldEditView

<com:TScaffoldEditView RecordPk="user1" RecordClass="UserRecord" />

16.5.4 Combining list + edit views

<com:TScaffoldEditView ID="edit_view" RecordClass="UserRecord" />

<com:TScaffoldListView EditViewID="edit_view" RecordClass="UserRecord" />

16.5.5 Customizing the TScaffoldView

<com:TScaffoldView RecordClass="UserRecord" >

<prop:ListView.List.ItemTemplate>

<%# $this->DataItem->username %>

<com:TLinkButton Text="Edit" CommandName="edit" />

</prop:ListView.List.ItemTemplate>

</com:TScaffoldView/>

16.6 Data Mapper

Data Mappers moves data between objects and a database while keeping them inde-

pendent of each other and the mapper itself. If you started with Active Records, you

may eventually faced with more complex business objects as your project progresses.

201

Chapter 16. Working with Databases

When you build an object model with a lot of business logic it’s valuable to use these

mechanisms to better organize the data and the behavior that goes with it. Doing so

leads to variant schemas; that is, the object schema and the relational schema don’t

match up.

The Data Mapper separates the in-memory objects from the database. Its responsi-

bility is to transfer data between the two and also to isolate them from each other.

With Data Mapper the in-memory objects needn’t know even that there’s a database

present; they need no SQL interface code, and certainly no knowledge of the database

schema. (The database schema is always ignorant of the objects that use it.)

16.6.1 When to Use It

The primary occasion for using Data Mapper is when you want the database schema

and the object model to evolve independently. Data Mapper’s primary benefit is that

when working on the business (or domain) objects you can ignore the database, both

in design and in the build and testing process. The domain objects have no idea what

the database structure is, because all the correspondence is done by the mappers.

This helps you in the code because you can understand and work with the domain

objects without having to understand how they’re stored in the database. You can

modify the business models or the database without having to alter either. With

complicated mappings, particularly those involving existing databases, this is very

valuable.

The price, of course, is the extra layer that you don’t get with Active Record, so the

test for using these patterns is the complexity of the business logic. If you have fairly

simple business logic, an Active Record will probably work. For more complicated

logic a Data Mapper may be more suitable.

16.6.2 SqlMap Data Mapper

The SqlMap DataMapper framework makes it easier to use a database with a PHP

application. SqlMap DataMapper couples objects with stored procedures or SQL

statements using a XML descriptor. Simplicity is the biggest advantage of the SqlMap

DataMapper over object relational mapping tools. To use SqlMap DataMapper you

202

16.6. Data Mapper

rely on your own objects, XML, and SQL. There is little to learn that you don’t

already know. With SqlMap DataMapper you have the full power of both SQL and

stored procedures at your fingertip

Here’s a high level description of the work flow illustrated in the figure above. Provide

a parameter, either as an object or a primitive type. The parameter can be used to

set runtime values in your SQL statement or stored procedure. If a runtime value is

not needed, the parameter can be omitted.

Execute the mapping by passing the parameter and the name you gave the statement

or procedure in your XML descriptor. This step is where the magic happens. The

framework will prepare the SQL statement or stored procedure, set any runtime values

using your parameter, execute the procedure or statement, and return the result.

In the case of an update, the number of rows affected is returned. In the case of a

query, a single object, or a collection of objects is returned. Like the parameter, the

result object, or collection of objects, can be a plain-old object or a primitive PHP

type.

203

Chapter 16. Working with Databases

16.6.3 Setting up a database connection and initializing the SqlMap

A database connection for SqlMap can be set as follows. See Establishing Database
Connection for futher details regarding creation of database connection in general.

//create a connection and give it to the SqlMap manager.

$dsn = ’pgsql:host=localhost;dbname=test’; //Postgres SQL

$conn = new TDbConnection($dsn, ’dbuser’,’dbpass’);

$manager = new TSqlMapManager($conn);

$manager->configureXml(’my-sqlmap.xml’);

$sqlmap = $manager->getSqlMapGateway();

The TSqlMapManager is responsible for setting up the database connection and con-

figuring the SqlMap with given XML file(s). The configureXml() method accepts a

string that points to a SqlMap XML configuration file. Once configured, call the

getSqlMapGateway() method to obtain an instance of the SqlMap gateway interface

(use this object to insert/delete/find records).

SqlMap database connection can also be configured using a <module> tag in the appli-
cation.xml or config.xml as follows.

<modules>

<module id="my-sqlmap" class="System.Data.SqlMap.TSqlMapConfig"

EnableCache="true" ConfigFile="my-sqlmap.xml" >

<database ConnectionString="pgsql:host=localhost;dbname=test"

Username="dbuser" Password="dbpass" />

</module>

</modules>

The ConfigFile attribute should point to a SqlMap configuration file (to be detailed

later) either using absolute path, relative path or the Prado’s namespace dot notation

path (must omit the “.xml” extension).

Tip: The EnableCache attribute when set to “true” will cache the parsed con-

figuration. You must clear or disable the cache if you make changes to your

configuration file. A cache module must also be defined for the cache to func-

tion.

204

16.6. Data Mapper

To obtain the SqlMap gateway interface from the ¡module¿ configuration, simply do,
for example,

class MyPage extends TPage

{

public function onLoad($param)

{

parent::onLoad($param);

$sqlmap = $this->Application->Modules[’my-sqlmap’]->Client;

$sqlmap->queryForObject(...); //query for some object

}

}

16.6.4 A quick example

Let us consider the following “users” table that contains two columns named “user-
name” and “email”, where “username” is also the primary key.

CREATE TABLE users

(

username VARCHAR(20) NOT NULL ,

email VARCHAR(200) ,

PRIMARY KEY (username)

);

Next we define our plain User class as follows. Notice that the User is very simple.

class User

{

public $username;

public $email;

}

Next, we need to define a SqlMap XMl configuration file, lets name the file as
my-sqlmap.xml

<?xml version="1.0" encoding="utf-8" ?>

<sqlMapConfig>

205

Chapter 16. Working with Databases

<select id="SelectUsers" resultClass="User">

SELECT username, email FROM users

</select>

</sqlMapConfig>

The ¡select¿ tag returns defines an SQL statement. The id attribute will be used as

the identifier for the query. The resultClass attribute value is the name of the class

the the objects to be returned. We can now query the objects as follows:

//assume that $sqlmap is an TSqlMapGateway instance

$userList = $sqlmap->queryForList("SelectUsers");

//Or just one, if that’s all you need:

$user = $sqlmap->queryForObject("SelectUsers");

The above example shows demonstrates only a fraction of the capabilities of the

SqlMap Data Mapper. Further details can be found in the SqlMap Manual.

16.6.5 Combining SqlMap with Active Records

The above example may seem trival and it also seems that there is alot work just

to retrieve some data. However, notice that the User class is totally unware of been

stored in the database, and the database is unware of the User class.

One of advantages of SqlMap is the ability to map complex object relationship, col-

lections from an existing database. On the other hand, Active Record provide a very

simple way to interact with the underlying database but unable to do more compli-

cated relationship or collections. A good compromise is to use SqlMap to retrieve

complicated relationships and collections as Active Record objects and then using

these Active Records to do the updates, inserts and deletes.

Continuing with the previous example, we change the definition of the User class to
become an Active Record.

class UserRecord extends TActiveRecord

{

const TABLE=’users’; //table name

206

http://www.pradosoft.com/demo/sqlamp/

16.6. Data Mapper

public $username; //the column named "username" in the "users" table

public $email;

/**

* @return TActiveRecord active record finder instance

*/

public static function finder($className=__CLASS__)

{

return parent::finder($className);

}

}

We also need to change the definition of the SqlMap XML configuration. We just
need to change the value of resultClass attribute to UserRecord.

<?xml version="1.0" encoding="utf-8" ?>

<sqlMapConfig>

<select id="SelectUsers" resultClass="UserRecord">

SELECT username, email FROM users

</select>

</sqlMapConfig>

The PHP code for retrieving the users remains the same, but SqlMap returns Active

Records instead, and we can take advantage of the Active Record methods.

//assume that $sqlmap is an TSqlMapGateway instance

$user = $sqlmap->queryForObject("SelectUsers");

$user->email = ’test@example.com’; //change data

$user->save(); //save it using Active Record

16.6.6 References

• Fowler et. al. ¡i¿Patterns of Enterprise Application Architecture¡/i¿, Addison

Wesley, 2002.

• iBatis Team. ¡i¿iBatis Data Mapper¡/i¿, http://ibatis.apache.org.

207

http://ibatis.apache.org

Chapter 16. Working with Databases

208

Chapter 17

Advanced Topics

17.1 Collections

Collection is a basic data structure in programming. In traditional PHP programming,

array is used widely to represent collection data structure. A PHP array is a mix of

cardinal-indexed array and hash table.

To enable object-oriented manipulation of collections, PRADO provides a set of pow-

erful collection classes. Among them, the TList and TMap are the most fundamental

and usually serve as the base classes for other collection classes. Since many PRADO

components have properties that are of collection type, it is very important for de-

velopers to master the usage of PRADO collection classes.

17.1.1 Using TList

A TList object represents a cardinal-indexed array, i.e., an array (object) with the

index 0, 1, 2, ...

TList may be used like a PHP array. For example,

$list=new TList; // create a list object

...

209

Chapter 17. Advanced Topics

$item=$list[$index]; // read the item at the specified index

$list[]=$item; // append the item at the end

$list[$index]=$item; // replace the item at the specified index

unset($list[$index]); // remove the item at $index

if(isset($list[$index])) // test if the list has an item at $index

foreach($list as $index=>$item) // traverse each item in the list

To obtain the number of items in the list, use the Count property. Note, do not use

count($list), as it always returns 1.

In addition, TList implements a few commonly used convenient methods for manipu-

lating the data in a list. These include

• clear(): removes all items in the list.

• contains(): tests if the list contains the specified item.

• indexOf(): obtains the zero-based index of the specified item in the list.

• toArray(): returns an array representation of the items in the list.

• copyFrom(): populates the list with data from an array or traversable object

(including TList). Existing items will be removed first.

• mergeWith(): appends the list with data from an array or traversable object

(including TList).

Using TList-based component properties

As aforementioned, many PRADO component properties are based on TList or TList-

derived collection classes. These properties all share the above usages.

For example, TControl (the base class for all PRADO controls) has a property called

Controls which represents the collection of child controls. The type of Controls is

TControlCollection which extends TList. Therefore, to append a new child control,

we can use the following,

$control->Controls[]=$newControl;

To traverse through the child controls, we can use,

210

17.1. Collections

foreach($control->Controls as $childControl) ...

Another example is the Items property, available in list controls, TRepeater, TDataList

and TDataGrid. In these controls, the ancestor class of Items is TList.

Extending TList

Often, we want to extend TList to perform additional operations for each addition

or removal of an item. The only methods that the child class needs to override are

insertAt() and removeAt(). For example, to ensure the list only contains items that

are of TControl type, we can override insertAt() as follows,

public function insertAt($index,$item)

{

if($item instanceof TControl)

parent::insertAt($index,$item)

else

throw new Exception(’TControl required.’);

}

17.1.2 Using TMap

A TMap object represents a hash table (or we say string-indexed array).

Similar to TList, TMap may be used like an array,

$map=new TMap; // create a map object

...

$map[$key]=$value; // add a key-value pair

unset($map[$key]); // remove the value with the specified key

if(isset($map[$key])) // if the map contains the key

foreach($map as $key=>$value) // traverse the items in the map

The Count property gives the number of items in the map while the Keys property

returns a list of keys used in the map.

The following methods are provided by TMap for convenience,

211

Chapter 17. Advanced Topics

• clear(): removes all items in the map.

• contains(): tests if the map contains the specified key.

• toArray(): returns an array representation of the items in the map.

• copyFrom(): populates the map with data from an array or traversable object

(including TMap). Existing items will be removed first.

• mergeWith(): appends the map with data from an array or traversable object

(including TMap).

Using of TAttributeCollection

TAttributeCollection is a special class extending from TMap. It is mainly used by the

Attributes property of TControl.

Besides the normal functionalities provided by TMap, TAttributeCollection allows you

to get and set collection items like getting and setting properties. For example,

$collection->Label=’value’; // equivalent to: $collection[’Label’]=’value’;

echo $collection->Label; // equivalent to: echo $collection[’Label’];

Note, in the above $collection does NOT have a Label property.

Unlike TMap, keys in TAttributeCollection are case-insensitive. Therefore, $collection->Label

is equivalent to $collection->LABEL.

Because of the above new features, when dealing with the Attributes property of

controls, we may take advantage of the subproperty concept and configure control

attribute values in a template as follows,

<com:TButton Attributes.onclick="if(!confirm(’Are you sure?’)) return false;" .../>

which adds an attribute named onclick to the TButton control.

212

17.2. Authentication and Authorization

17.2 Authentication and Authorization

Authentication is a process of verifying whether someone is who he claims he is. It

usually involves a username and a password, but may include any other methods of

demonstrating identity, such as a smart card, fingerprints, etc.

Authorization is finding out if the person, once identified, is permitted to manipulate

specific resources. This is usually determined by finding out if that person is of a

particular role that has access to the resources.

17.2.1 How PRADO Auth Framework Works

PRADO provides an extensible authentication/authorization framework. As de-

scribed in application lifecycles, TApplication reserves several lifecycles for modules

responsible for authentication and authorization. PRADO provides the TAuthManager

module for such purposes. Developers can plug in their own auth modules easily.

TAuthManager is designed to be used together with TUserManager module, which imple-

ments a read-only user database.

When a page request occurs, TAuthManager will try to restore user information from ses-

sion. If no user information is found, the user is considered as an anonymous or guest

user. To facilitate user identity verification, TAuthManager provides two commonly

used methods: login() and logout(). A user is logged in (verified) if his username

and password entries match a record in the user database managed by TUserManager.

A user is logged out if his user information is cleared from session and he needs to

re-login if he makes new page requests.

During Authorization application lifecycle, which occurs after Authentication lifecycle,

TAuthManager will verify if the current user has access to the requested page according

to a set of authorization rules. The authorization is role-based, i.e., a user has access

to a page if 1) the page explicitly states that the user has access; 2) or the user is of

a particular role that has access to the page. If the user does not have access to the

page, TAuthManager will redirect user browser to the login page which is specified by

LoginPage property.

213

Chapter 17. Advanced Topics

17.2.2 Using PRADO Auth Framework

To enable PRADO auth framework, add the TAuthManager module and TUserManager

module to application configuration,

<service id="page" class="TPageService">

<modules>

<module id="auth" class="System.Security.TAuthManager"

UserManager="users" LoginPage="UserLogin" />

<module id="users" class="System.Security.TUserManager"

PasswordMode="Clear">

<user name="demo" password="demo" />

<user name="admin" password="admin" />

</module>

</modules>

</service>

In the above, the UserManager property of TAuthManager is set to the users module

which is TUserManager. Developers may replace it with a different user management

module that is derived from TUserManager.

Authorization rules for pages are specified in page configurations as follows,

<authorization>

<allow pages="PageID1,PageID2"

users="User1,User2"

roles="Role1" />

<deny pages="PageID1,PageID2"

users="?"

verb="post" />

</authorization>

An authorization rule can be either an allow rule or a deny rule. Each rule consists

of four optional properties:

• pages - list of comma-separated page names that this rule applies to. If empty,

not set or wildcard ‘*’, this rule will apply to all pages under the current directory

and all its subdirectories recursively.

214

17.2. Authentication and Authorization

• users - list of comma-separated user names that this rule applies to. If empty, not

set or wildcard ‘*’, this rule will apply to all users including anonymous/guest

user. A character ? refers to anonymous/guest user. And a character @ refers

to authenticated users (available since v3.1).

• roles - list of comma-separated user roles that this rule applies to. If empty, not

set or wildcard ‘*’, this rule will apply to all user roles.

• verb - page access method that this rule applies to. It can be either get or post.

If empty, not set or wildcard ‘*’, the rule will apply to both methods.

When a page request is being processed, a list of authorization rules may be available.

However, only the ¡i¿first effective¡/i¿ rule ¡i¿matching¡/i¿ the current user will render

the authorization result.

• Rules are ordered bottom-up, i.e., the rules contained in the configuration of

current page folder go first. Rules in configurations of parent page folders go

after.

• A rule is effective if the current page is in the listed pages of the rule AND the

current user action (get or post) is in the listed actions.

• A rule matching occurs if the current user name is in the listed user names of

an ¡i¿effective¡/i¿ rule OR if the user’s role is in the listed roles of that rule.

• If no rule matches, the user is authorized.

In the above example, anonymous users will be denied from posting to PageID1 and

PageID2, while User1 and User2 and all users of role Role1 can access the two pages (in

both get and post methods).

Since version 3.1.1, the pages attribute in the authorization rules can take relative

page paths with wildcard ‘*’. For example, pages="admin.Home" refers to the Home page

under the admin directory, and pages="admin.*" would refer to all pages under the

admin directory and subdirectories.

Also introduced in version 3.1.1 are IP rules. They are specified by a new attribute

ips in authorization rules. The IP rules are used to determine if an authorization

rule aplies to an end-user according to his IP address. One can list a few IPs to-

gether, separated by comma ‘,’. Wildcard ‘*’ can be used in the rules. For example,

215

Chapter 17. Advanced Topics

ips="192.168.0.2, 192.168.1.*" means the rule applies to users whose IP address is

192.168.0.2 or 192.168.1.*. The latter matches any host in the subnet 192.168.1. If

the attribute ‘ips’ is empty, not set or wildcard ‘*’, the corresponding rule will apply

to requests coming from any host address.

17.2.3 Using TUserManager

As aforementioned, TUserManager implements a read-only user database. The user

information are specified in either application configuration or an external XML file.

We have seen in the above example that two users are specified in the application

configuration. Complete syntax of specifying the user and role information is as

follows,

<user name="demo" password="demo" roles="demo,admin" />

<role name="admin" users="demo,demo2" />

where the roles attribute in user element is optional. User roles can be specified in

either the user element or in a separate role element.

17.2.4 Using TDbUserManager

TDbUserManager is introduced in v3.1.0. Its main purpose is to simplify the task of

managing user accounts that are stored in a database. It requires developers to write

a user class that represents the necessary information for a user account. The user

class must extend from TDbUser.

To use TDbUserManager, configure it in the application configuration like following:

<module id="db"

class="System.Data.TDataSourceConfig"/>

<module id="users"

class="System.Security.TDbUserManager"

UserClass="Path.To.MyUserClass"

ConnectionID="db" />

<module id="auth"

216

17.2. Authentication and Authorization

class="System.Security.TAuthManager"

UserManager="users" LoginPage="Path.To.LoginPage" />

In the above, UserClass specifies what class will be used to create user instance. The

class must extend from TDbUser. ConnectionID refers to the ID of a TDataSourceConfig

module which specifies how to establish database connection to retrieve user infor-

mation.

The user class has to implement the two abstract methods in TDbUser: validateUser()

and createUser(). Since user account information is stored in a database, the user

class may make use of its DbConnection property to reach the database.

Since 3.1.1, TAuthManager provides support to allow remembering login by setting

AllowAutoLogin to true. Accordingly, TDbUser adds two methods to facilitate the

implementation of this feature. In particular, two new methods are introduced:

createUserFromCookie() and saveUserToCookie(). Developers should implement these

two methods if remembering login is needed. Below is a sample implementation:

public function createUserFromCookie($cookie)

{

if(($data=$cookie->Value)!==’’)

{

$application=Prado::getApplication();

if(($data=$application->SecurityManager->validateData($data))!==false)

{

$data=unserialize($data);

if(is_array($data) && count($data)===3)

{

list($username,$address,$token)=$data;

$sql=’SELECT passcode FROM user WHERE LOWER(username)=:username’;

$command=$this->DbConnection->createCommand($sql);

$command->bindValue(’:username’,strtolower($username));

if($token===$command->queryScalar() && $token!==false && $address=$application->Request->UserHostAddress)

return $this->createUser($username);

}

}

}

return null;

}

217

Chapter 17. Advanced Topics

public function saveUserToCookie($cookie)

{

$application=Prado::getApplication();

$username=strtolower($this->Name);

$address=$application->Request->UserHostAddress;

$sql=’SELECT passcode FROM user WHERE LOWER(username)=:username’;

$command=$this->DbConnection->createCommand($sql);

$command->bindValue(’:username’,strtolower($username));

$token=$command->queryScalar();

$data=array($username,$address,$token);

$data=serialize($data);

$data=$application->SecurityManager->hashData($data);

$cookie->setValue($data);

}

17.3 Security

17.3.1 Viewstate Protection

Viewstate lies at the heart of PRADO. Viewstate represents data that can be used

to restore pages to the state that is last seen by end users before making the current

request. By default, PRADO uses hidden fields to store viewstate information.

It is extremely important to ensure that viewstate is not tampered by end users.

Without protection, malicious users may inject harmful code into viewstate and un-

wanted instructions may be performed when page state is being restored on server

side.

To prevent viewstate from being tampered, PRADO enforces viewstate HMAC (Keyed-

Hashing for Message Authentication) check before restoring viewstate. Such a check

can detect if the viewstate has been tampered or not by end users. Should the

viewstate is modified, PRADO will stop restoring the viewstate and return an error

message.

HMAC check requires a private key that should be secret to end users. Developers can

either manually specify a key or let PRADO automatically generate a key. Manually

218

17.3. Security

specified key is useful when the application runs on a server farm. To do so, configure

TSecurityManager in application configuration,

<modules>

<module id="security"

class="TSecurityManager"

ValidationKey="my private key" />

</modules>

HMAC check does not prevent end users from reading the viewstate content. An

added security measure is to encrypt the viewstate information so that end users

cannot decipher it. To enable viewstate encryption, set the EnableStateEncryption

of pages to true. This can be done in page configurations or in page code. Note,

encrypting viewstate may degrade the application performance. A better strategy is

to store viewstate on the server side, rather than the default hidden field.

17.3.2 Cross Site Scripting Prevention

Cross site scripting (also known as XSS) occurs when a web application gathers ma-

licious data from a user. Often attackers will inject JavaScript, VBScript, ActiveX,

HTML, or Flash into a vulnerable application to fool other application users and

gather data from them. For example, a poorly design forum system may display user

input in forum posts without any checking. An attacker can then inject a piece of

malicious JavaScript code into a post so that when other users read this post, the

JavaScript runs unexpectedly on their computers.

One of the most important measures to prevent XSS attacks is to check user input be-

fore displaying them. One can do HTML-encoding with the user input to achieve this

goal. However, in some situations, HTML-encoding may not be preferable because it

disables all HTML tags.

PRADO incorporates the work of SafeHTML and provides developers with a useful

component called TSafeHtml. By enclosing content within a TSafeHtml component tag,

the enclosed content are ensured to be safe to end users. In addition, the commonly

used TTextBox has a SafeText property which contains user input that are ensured to

be safe if displayed directly to end users.

219

http://pixel-apes.com/safehtml/

Chapter 17. Advanced Topics

17.3.3 Cookie Attack Prevention

Protecting cookies from being attacked is of extreme important, as session IDs are

commonly stored in cookies. If one gets hold of a session ID, he essentially owns all

relevant session information.

There are several countermeasures to prevent cookies from being attacked.

• An application can use SSL to create a secure communication channel and only

pass the authentication cookie over an HTTPS connection. Attackers are thus

unable to decipher the contents in the transferred cookies.

• Expire sessions appropriately, including all cookies and session tokens, to reduce

the likelihood of being attacked.

• Prevent cross-site scripting (XSS) which causes arbitrary code to run in a user’s

browser and expose his cookies.

• Validate cookie data and detect if they are altered.

PRADO implements a cookie validation scheme that prevents cookies from being

modified. In particular, it does HMAC check for the cookie values if cookie validation

is enable.

Cookie validation is disabled by default. To enable it, configure the THttpRequest

module as follows,

<modules>

<module id="request" class="THttpRequest" EnableCookieValidation="true" />

</modules>

To make use of cookie validation scheme provided by PRADO, you also need to

retrieve cookies through the Cookies collection of THttpRequest by using the following

PHP statements,

foreach($this->Request->Cookies as $cookie)

// $cookie is of type THttpCookie

220

17.4. Assets

To send cookie data encoded with validation information, create new THttpCookie

objects and add them to the Cookies collection of THttpResponse,

$cookie=new THttpCookie($name,$value);

$this->Response->Cookies[]=$cookie;

17.4 Assets

Assets are resource files (such as images, sounds, videos, CSS stylesheets, javascripts,

etc.) that belong to specific component classes. Assets are meant to be provided

to Web users. For better reusability and easier deployment of the corresponding

component classes, assets should reside together with the component class files . For

example, a toggle button may use two images, stored in file down.gif and up.gif, to

show different toggle states. If we require the image files be stored under images

directory under the Web server document root, it would be inconvenient for the

users of the toggle button component, because each time they develop or deploy a

new application, they would have to manually copy the image files to that specific

directory. To eliminate this requirement, a directory relative to the component class

file should be used for storing the image files. A common strategy is to use the

directory containing the component class file to store the asset files.

Because directories containing component class files are normally inaccessible by Web

users, PRADO implements an asset publishing scheme to make available the assets

to Web users. An asset, after being published, will have a URL by which Web users

can retrieve the asset file.

17.4.1 Asset Publishing

PRADO provides several methods for publishing assets or directories containing as-

sets:

• In a template file, you can use asset tags to publish assets and obtain their URLs.

Note, the assets must be relative to the directory containing the template file.

• In PHP code, you can call $object->publishAsset($assetPath) to publish an asset

and obtain its URL. Here, $object refers to an instance of TApplicationComponent

221

Chapter 17. Advanced Topics

or derived class, and $assetPath is a file or directory relative to the directory

containing the class file.

• If you want to publish an arbitrary asset, you need to call TAssetManager::publishFilePath($path).

BE AWARE: Be very careful with assets publishing, because it gives Web users access

to files that were previously inaccessible to them. Make sure that you do not publish

files that do not want Web users to see.

17.4.2 Customization

Asset publishing is managed by the System.Web.TAssetManager module. By default,

all published asset files are stored under the [AppEntryPath]/assets directory, where

AppEntryPath refers to the directory containing the application entry script. Make

sure the assets directory is writable by the Web server process. You may change

this directory to another by configuring the BasePath and BaseUrl properties of the

TAssetManager module in application configuration,

<modules>

<module id="asset"

class="System.Web.TAssetManager"

BasePath="Web.images"

BaseUrl="images" />

</modules>

17.4.3 Performance

PRADO uses caching techniques to ensure the efficiency of asset publishing. Pub-

lishing an asset essentially requires file copy operation, which is expensive. To save

unnecessary file copy operations, System.Web.TAssetManager only publishes an asset

when it has a newer file modification time than the published file. When an applica-

tion runs under the Performance mode, such timestamp checking is also omitted.

ADVISORY: Do not overuse asset publishing. The asset concept is mainly used to

help better reuse and redistribute component classes. Normally, you should not use

asset publishing for resources that are not bound to any component in an application.

222

17.5. Master and Content

For example, you should not use asset publishing for images that are mainly used

as design elements (e.g. logos, background images, etc.) Let Web server to directly

serve these images will help improve the performance of your application.

17.4.4 A Toggle Button Example

We now use the toggle button example to explain the usage of assets. The control uses

two image files up.gif and down.gif, which are stored under the directory containing

the control class file. When the button is in Up state, we would like to show the up.gif

image. This can be done as follows,

class ToggleButton extends TWebControl {

...

protected function addAttributesToRender($writer) {

...

if($this->getState()===’Up’) {

$url=$this->getAsset(’up.gif’);

$writer->addAttribute(’src’,$url);

}

...

}

...

}

In the above, the call $this->getAsset(‘up.gif’) will publish the up.gif image file and

return a URL for the published image file. The URL is then rendered as the src

attribute of the HTML image tag.

To redistribute ToggleButton, simply pack together the class file and the image files.

Users of ToggleButton merely need to unpack the file, and they can use it right away,

without worrying about where to copy the image files to.

17.5 Master and Content

Pages in a Web application often share common portions. For example, all pages of

this tutorial application share the same header and footer portions. If we repeatedly

223

Chapter 17. Advanced Topics

put header and footer in every page source file, it will be a maintenance headache if in

future we want to something in the header or footer. To solve this problem, PRADO

introduces the concept of master and content. It is essentially a decorator pattern,

with content being decorated by master.

Master and content only apply to template controls (controls extending TTemplateControl

or its child classes). A template control can have at most one master control and one

or several contents (each represented by a TContent control). Contents will be in-

serted into the master control at places reserved by TContentPlaceHolder controls.

And the presentation of the template control is that of the master control with

TContentPlaceHolder replaced by TContent.

For example, assume a template control has the following template:

<%@ MasterClass="MasterControl" %>

<com:TContent ID="A" >

content A

</com:TContent >

<com:TContent ID="B" >

content B

</com:TContent >

<com:TContent ID="B" >

content B

</com:TContent >

which uses MasterControl as its master control. The master control has the following

template,

other stuff

<com:TContentPlaceHolder ID="A" />

other stuff

<com:TContentPlaceHolder ID="B" />

other stuff

<com:TContentPlaceHolder ID="C" />

other stuff

Then, the contents are inserted into the master control according to the following dia-

gram, while the resulting parent-child relationship can be shown in the next diagram.

224

17.5. Master and Content

Note, the template control discards everything in the template other than the con-

tents, while the master control keeps everything and replaces the content placeholders

with the contents according to ID matching.

17.5.1 Master vs. External Template

Master is very similar to external templates which are introduced since version 3.0.5.

A special include tag is used to include an external template file into a base template.

Both master and external template can be used to share common contents among

pages. A master is a template control whose template contains the common con-

tent and whose class file contains the logic associated with the master. An external

template, on the other hand, is a pure template file without any class files.

225

Chapter 17. Advanced Topics

Therefore, use master control if the common content has to be associated with some

logic, such as a page header with search box or login box. A master control allows

you to specify how the common content should interact with end users. If you use

external templates, you will have to put the needed logic in the page or control class

who owns the base template.

Performancewise, external template is lighter than master as the latter is a self-

contained control participating the page lifecycles, while the former is used only when

the template is being parsed.

17.6 Themes and Skins

17.6.1 Introduction

Themes in PRADO provide a way for developers to provide a consistent look-and-

feel across an entire web application. A theme contains a list of initial values for

properties of various control types. When applying a theme to a page, all controls on

that page will receive the corresponding initial property values from the theme. This

allows themes to interact with the rich property sets of the various PRADO controls,

meaning that themes can be used to specify a large range of presentational properties

that other theming methods (e.g. CSS) cannot. For example, themes could be used

to specify the default page size of all data grids across an application by specifying a

default value for the PageSize property of the TDataGrid control.

17.6.2 Understanding Themes

A theme is a directory consists of skin files, javascript files and CSS files. Any

javascript or CSS files contained in a theme will be registered with the page that

the theme is applied to. A skin is a set of initial property values for a particular con-

trol type. A control type may have one or several skins, each identified by a unique

SkinID. When applying a theme to a page, a skin is applied to a control if the control

type and the SkinID value both match to those of the skin. Note, if a skin has an

empty SkinID value, it will apply to all controls of the particular type whose SkinID is

not set or empty. A skin file consists of one or several skins, for one or several control

types. A theme is the union of skins defined in all skin files.

226

17.6. Themes and Skins

17.6.3 Using Themes

To use a theme, you need to set the Theme property of the page with the theme name,

which is the theme directory name. You may set it in either page configurations or

in the constructor or onPreInit() method of the page. You cannot set the property

after onPreInit() because by that time, child controls of the page are already created

(skins must be applied to controls right after they are created.)

To use a particular skin in the theme for a control, set SkinID property of the control

in template like following,

<com:TButton SkinID="Blue" ... />

This will apply the ‘Blue’ skin to the button. Note, the initial property values specified

by the ‘Blue’ skin will overwrite any existing property values of the button. Use

stylesheet theme if you do not want them to be overwritten. To use stylesheet theme,

set the StyleSheetTheme property of the page instead of Theme (you can have both

StyleSheetTheme and Theme).

To use the Javascript files and CSS files contained in a theme, a THead control must

be placed on the page template. This is because the theme will register those files

with the page and THead is the right place to load those files.

It is possible to specify media types of CSS files contained in a theme. By default, a

CSS file applies to all media types. If the CSS file is named like mystyle.print.css,

it will be applied only to print media type. As another example, mystyle.screen.css

applies to screen media only, and mystyle.css applies to all media types.

17.6.4 Theme Storage

All themes by default must be placed under the [AppEntryPath]/themes directory,

where AppEntryPath refers to the directory containing the application entry script. If

you want to use a different directory, configure the BasePath and BaseUrl properties

of the System.Web.UI.TThemeManager module in application configuration,

<service id="page" class="TPageService">

<modules>

227

Chapter 17. Advanced Topics

<module id="theme"

class="System.Web.UI.TThemeManager"

BasePath="mythemes"

BaseUrl="mythemes" />

</modules>

</service>

17.6.5 Creating Themes

Creating a theme involves creating the theme directory and writing skin files (and

possibly Javascript and CSS files). The name of skin files must be terminated with

.skin. The format of skin files are the same as that of control template files. Since skin

files do not define parent-child presentational relationship among controls, you cannot

place a component tag within another. And any static texts between component tags

are discarded. To define the aforementioned ‘Blue’ skin for TButton, write the following

in a skin file,

<com:TButton SkinID="Blue" BackColor="blue" />

As aforementioned, you can put several skins within a single skin file, or split them

into several files. A commonly used strategy is that each skin file only contains skins

for one type of controls. For example, Button.skin would contain skins only for the

TButton control type.

17.7 Persistent State

Web applications often need to remember what an end user has done in previous page

requests so that the new page request can be served accordingly. State persistence is to

address this problem. Traditionally, if a page needs to keep track of user interactions,

it will resort to session, cookie, or hidden fields. PRADO provides a new line of state

persistence schemes, including view state, control state, and application state.

228

17.7. Persistent State

17.7.1 View State

View state lies at the heart of PRADO. With view state, Web pages become stateful

and are capable of restoring pages to the state that end users interacted with before

the current page request. Web programming thus resembles to Windows GUI pro-

gramming, and developers can think continuously without worrying about the round

trips between end users and the Web server. For example, with view state, a textbox

control is able to detect if the user input changes the content in the textbox.

View state is only available to controls. View state of a control can be disabled by

setting its EnableViewState property to false. To store a variable in view state, call

the following,

$this->setViewState(’Caption’,$caption);

where $this refers to the control object, Caption is a unique key identifying the

$caption variable stored in viewstate. To retrieve the variable back from view state,

call the following,

$caption = $this->getViewState(’Caption’);

17.7.2 Control State

Control state is like view state in every aspect except that control state cannot be

disabled. Control state is intended to be used for storing crucial state information

without which a page or control may not work properly.

To store and retrieve a variable in control state, use the following commands,

$this->setControlState(’Caption’,$caption);

$caption = $this->getControlState(’Caption’);

17.7.3 Application State

Application state refers to data that is persistent across user sessions and page re-

quests. A typical example of application state is the user visit counter. The counter

229

Chapter 17. Advanced Topics

value is persistent even if the current user session terminates. Note, view state and

control state are lost if the user requests for a different page, while session state is

lost if the user session terminates.

To store and retrieve a variable in application state, use the following commands,

$application->setGlobalState(’Caption’,$caption);

$caption = $application->getGlobalState(’Caption’);

17.7.4 Session State

PRADO encapsulates the traditional session management in THttpSession module.

The module can be accessed from within any component by using $this->Session,

where $this refers to the component object.

17.8 Logging

PRADO provides a highly flexible and extensible logging functionality. Messages

logged can be classified according to log levels and message categories. Using level

and category filters, the messages can be further routed to different destinations,

such as files, emails, browser windows, etc. The following diagram shows the basic

architecture of PRADO logging mechanism,

230

17.8. Logging

17.8.1 Using Logging Functions

The following two methods are provided for logging messages in PRADO,

Prado::log($message, $logLevel, $category);

Prado::trace($message, $category);

The difference between Prado::log() and Prado::trace() is that the latter automati-

cally selects the log level according to the application mode. If the application is in

Debug mode, stack trace information is appended to the messages. Prado::trace() is

widely used in the core code of the PRADO framework.

17.8.2 Message Routing

Messages logged using the above two functions are kept in memory. To make use of the

messages, developers need to route them to specific destinations, such as files, emails,

or browser windows. The message routing is managed by System.Util.TLogRouter

module. When plugged into an application, it can route the messages to different

destination in parallel. Currently, PRADO provides four types of routes:

• TFileLogRoute - filtered messages are stored in a specified log file. By default,

this file is named prado.log under the runtime directory of the application. File

rotation is provided.

• TEmailLogRoute - filtered messages are sent to pre-specified email addresses.

• TBrowserLogRoute - filtered messages are appended to the end of the current page

output.

• TFirebugLogRoute - filtered messages are sent to the Firebug console

To enable message routing, plug in and configure the TLogRouter module in application

configuration,

<module id="log" class="System.Util.TLogRouter">

<route class="TBrowserLogRoute"

Levels="Info"

231

http://www.getfirebug.com

Chapter 17. Advanced Topics

Categories="System.Web.UI.TPage, System.Web.UI.WebControls" />

<route class="TFileLogRoute"

Levels="Warning, Error"

Categories="System.Web" />

</module>

In the above, the Levels and Categories specify the log and category filters to selec-

tively retrieve the messages to the corresponding destinations.

17.8.3 Message Filtering

Messages can be filtered according to their log levels and categories. Each log message

is associated with a log level and a category. With levels and categories, developers

can selectively retrieve messages that they are interested on.

Log levels defined in System.Util.TLogger include : DEBUG, INFO, NOTICE, WARNING, ERROR,

ALERT, FATAL. Messages can be filtered according log level criteria. For example, if a

filter specifies WARNING and ERROR levels, then only those messages that are of WARNING

and ERROR will be returned.

Message categories are hierarchical. A category whose name is the prefix of another is

said to be the ancestor category of the other category. For example, System.Web cate-

gory is the ancestor of System.Web.UI and System.Web.UI.WebControls categories. Mes-

sages can be selectively retrieved using such hierarchical category filters. For example,

if the category filter is System.Web, then all messages in the System.Web are returned.

In addition, messages in the child categories, such as System.Web.UI.WebControls, are

also returned.

By convention, the messages logged in the core code of PRADO are categorized

according to the namespace of the corresponding classes. For example, messages

logged in TPage will be of category System.Web.UI.TPage.

17.9 Internationalization (I18N) and Localization (L10N)

Many web application built with PHP will not have internationalization in mind when

it was first written. It may be that it was not intended for use in languages and cul-

232

17.9. Internationalization (I18N) and Localization (L10N)

tures. Internationalization is an important aspect due to the increase adoption of

the Internet in many non-English speaking countries. The process of international-

ization and localization will contain difficulties. Below are some general guidelines to

internationalize an existing application.

17.9.1 Separate culture/locale sensitive data

Identify and separate data that varies with culture. The most obvious are text/string/message.

Other type of data should also be considered. The following list categorize some ex-

amples of culture sensitive data

• Strings, Messages, Text, in relatively small units (e.g. phrases, sentences, para-

graphs, but not the full text of a book).

• Labels on buttons.

• Help files, large units of text, static text.

• Sounds.

• Colors.

• Graphics,Icons.

• Dates, Times.

• Numbers, Currency, Measurements.

• Phone numbers.

• Honorific and personal titles.

• Postal address.

• Page layout.

If possible all manner of text should be isolated and store in a persistence format.

These text include, application error messages, hard coded strings in PHP files, emails,

static HTML text, and text on form elements (e.g. buttons).

233

Chapter 17. Advanced Topics

17.9.2 Configuration

To enable the localization features in PRADO, you need to add a few configuration

options in your application configuration. First you need to include the System.I18N.*

namespace to your paths.

<paths>

<using namespace="System.I18N.*" />

</paths>

Then, if you wish to translate some text in your application, you need to add one
translation message data source.

<module id="globalization" class="TGlobalization">

<translation type="XLIFF"

source="MyApp.messages"

marker="@@"

autosave="true" cache="true" />

</module>

Where source in translation is the dot path to a directory where you are going to

store your translate message catalogue. The autosave attribute if enabled, saves un-

translated messages back into the message catalogue. With cache enabled, translated

messages are saved in the application runtime/i18n directory. The marker value is used

to surround any untranslated text.

With the configuration complete, we can now start to localize your application. If you

have autosave enabled, after running your application with some localization activity

(i.e. translating some text), you will see a directory and a messages.xml created within

your source directory.

17.9.3 What to do with messages.xml?

The translation message catalogue file, if using type="XLIFF", is a standardized trans-

lation message interchange XML format. You can edit the XML file using any UTF-8

aware editor. The format of the XML is something like the following.

234

17.9. Internationalization (I18N) and Localization (L10N)

<?xml version="1.0"?>

<xliff version="1.0">

<file original="I18N Example IndexPage"

source-language="EN"

datatype="plaintext"

date="2005-01-24T11:07:53Z">

<body>

<trans-unit id="1">

<source>Hello world.</source>

<target>Hi World!!!</target>

</trans-unit>

</body>

</file>

</xliff>

Each translation message is wrapped within a trans-unit tag, where source is the

original message, and target is the translated message. Editors such as Heartsome

XLIFF Translation Editor can help in editing these XML files.

17.9.4 Using a Database for translation

Since version 3.1.3 the messages can also be stored in a database using the connection

id from an existing TDataSourceConfig. You have to create two tables in your database:

catalogue and trans unit. The catalogue table needs an entry for each catalogue you

want to use. Example schemas for different databases can be found in the framework’s

I18N/schema directory. To configure translation with a database use:¡/¿

<module id="db1" class="System.Data.TDataSourceConfig">

<database ConnectionString="mysql:host=localhost;dbname=demodb" Username="demo" Password="demo" />

</module>

<module id="globalization" class="TGlobalization">

<translation

type="Database"

autosave="true"

cache="false"

235

http://www.heartsome.net/EN/xlfedit.html
http://www.heartsome.net/EN/xlfedit.html

Chapter 17. Advanced Topics

source="db1" />

</module>

The translation messages will be stored in the trans unit table. Add your translation

in the target field of that table. You should make sure that you are working on the

right catalogue by comparing the message’s cat id with that from the catalogue table.

17.9.5 Setting and Changing Culture

Once globalization is enabled, you can access the globalization settings, such as,
Culture, Charset, etc, using

$globalization = $this->getApplication()->getGlobalization();

echo $globalization->Culture;

$globalization->Charset= "GB-2312"; //change the charset

You also change the way the culture is determined by changing the class attribute
in the module configuration. For example, to set the culture that depends on the
browser settings, you can use the TGlobalizationAutoDetect class.

<module id="globalization" class="TGlobalizationAutoDetect">

...

</module>

You may also provide your own globalization class to change how the application
culture is set. Lastly, you can change the globalization settings on page by page basis
using template control tags. For example, changing the Culture to “zh”.

<%@ Application.Globalization.Culture="zh" %>

17.9.6 Localizing your PRADO application

There are two areas in your application that may need message or string localiza-

tion, in PHP code and in the templates. To localize strings within PHP, use the

localize function detailed below. To localize text in the template, use the TTranslate

component.

236

17.9. Internationalization (I18N) and Localization (L10N)

17.9.7 Using localize function to translate text within PHP

The localize function searches for a translated string that matches original from your
translation source. First, you need to locate all the hard coded text in PHP that are
displayed or sent to the end user. The following example localizes the text of the
$sender (assuming, say, the sender is a button). The original code before localization
is as follows.

function clickMe($sender,$param)

{

$sender->Text="Hello, world!";

}

The hard coded message “Hello, world!” is to be localized using the localize function.

function clickMe($sender,$param)

{

$sender->Text=Prado::localize("Hello, world!");

}

17.9.8 Compound Messages

Compound messages can contain variable data. For example, in the message “There
are 12 users online.”, the integer 12 may change depending on some data in your
application. This is difficult to translate because the position of the variable data
may be difference for different languages. In addition, different languages have their
own rules for plurals (if any) and/or quantifiers. The following example can not be
easily translated, because the sentence structure is fixed by hard coding the variable
data within message.

$num_users = 12;

$message = "There are " . $num_users . " users online.";

This problem can be solved using the localize function with string substitution. For
example, the $message string above can be constructed as follows.

$num_users = 12;

$message = Prado::localize("There are {num_users} users online.", array(’num_users’=>$num_users));

237

Chapter 17. Advanced Topics

Where the second parameter in localize takes an associative array with the key as

the substitution to find in the text and replaced it with the associated value. The

localize function does not solve the problem of localizing languages that have plural

forms, the solution is to use TChoiceFormat.

The following sample demonstrates the basics of localization in PRADO. Advanced.Samples.I18N.Home

Demo

17.10 I18N Components

17.10.1 TTranslate

Messages and strings can be localized in PHP or in templates. To translate a message

or string in the template, use TTranslate.

<com:TTranslate>Hello World</com:TTranslate>

<com:TTranslate Text="Goodbye" />

TTranslate can also perform string substitution. The Parameters property can be use
to add name values pairs for substitution. Substrings in the translation enclosed
with “{” and “}” are consider as the parameter names during substitution lookup.
The following example will substitute the substring “{time}” with the value of the
parameter attribute “Parameters.time=<%= time() %>”.

<com:TTranslate Parameters.time=<%= time() %> >

The time is {time}.

</com:TTranslate>

A short for TTranslate is also provided using the following syntax.

<%[string]%>

where string will be translated to different languages according to the end-user’s
language preference. This syntax can be used with attribute values as well.

<com:TLabel Text="<%[Hello World!]%>" />

238

http://www.pradosoft.com/demos/quickstart/index.php?page=Advanced.Samples.I18N.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Advanced.Samples.I18N.Home

17.10. I18N Components

17.10.2 TDateFormat

Formatting localized date and time is straight forward.

<com:TDateFormat Value="12/01/2005" />

The Pattern property accepts 4 predefined localized date patterns and 4 predefined

localized time patterns.

• fulldate

• longdate

• mediumdate

• shortdate

• fulltime

• longtime

• mediumtime

• shorttime

The predefined can be used in any combination. If using a combined predefined

pattern, the first pattern must be the date, followed by a space, and lastly the time

pattern. For example, full date pattern with short time pattern. The actual ordering

of the date-time and the actual pattern will be determine automatically from locale

data specified by the Culture property.

<com:TDateFormat Pattern="fulldate shorttime" />

You can also specify a custom pattern using the following sub-patterns. The date/time
format is specified by means of a string time pattern. In this pattern, all ASCII letters
are reserved as pattern letters, which are defined as the following:

Symbol Meaning Presentation Example

------ ------- ------------ -------

G era designator (Text) AD

239

Chapter 17. Advanced Topics

y year (Number) 1996

M month in year (Text & Number) July & 07

d day in month (Number) 10

h hour in am/pm (1~12) (Number) 12

H hour in day (0~23) (Number) 0

m minute in hour (Number) 30

s second in minute (Number) 55

E day of week (Text) Tuesday

D day in year (Number) 189

F day of week in month (Number) 2 (2nd Wed in July)

w week in year (Number) 27

W week in month (Number) 2

a am/pm marker (Text) PM

k hour in day (1~24) (Number) 24

K hour in am/pm (0~11) (Number) 0

z time zone (Time) Pacific Standard Time

’ escape for text (Delimiter) ’Date=’

’’ single quote (Literal) ’o’’clock’

The count of pattern letters determine the format.

(Text): 4 letters uses full form, less than 4, use short or abbreviated form if it exists.

(e.g., “EEEE” produces “Monday”, “EEE” produces “Mon”)

(Number): the minimum number of digits. Shorter numbers are zero-padded to this

amount (e.g. if “m” produces “6”, “mm” produces “06”). Year is handled specially;

that is, if the count of ‘y’ is 2, the Year will be truncated to 2 digits. (e.g., if “yyyy”

produces “1997”, “yy” produces “97”.) Unlike other fields, fractional seconds are

padded on the right with zero.

(Text and Number): 3 or over, use text, otherwise use number. (e.g., “M” produces

“1”, “MM” produces “01”, “MMM” produces “Jan”, and “MMMM” produces “Jan-

uary”.)

Any characters in the pattern that are not in the ranges of [‘a’..’z’] and [‘A’..’Z’] will

be treated as quoted text. For instance, characters like ‘:’, ‘.’, ‘ ‘, and ‘@’ will appear

in the resulting time text even they are not embraced within single quotes.

Examples using the US locale:

240

17.10. I18N Components

Format Pattern Result

-------------- -------

"yyyy.MM.dd G ’at’ HH:mm:ss" ->> 1996.07.10 AD at 15:08:56

"EEE, MMM d, ’’yy" ->> Wed, Jul 10, ’96

"h:mm a" ->> 12:08 PM

"hh ’o’’clock’ a, z" ->> 12 o’clock PM, Pacific Daylight Time

"K:mm a" ->> 0:00 PM

"yyyy.MMMM.dd G hh:mm a" ->> 1996.July.10 AD 12:08 PM

If the Value property is not specified, the current date and time is used.

17.10.3 TNumberFormat

PRADO’s Internationalization framework provide localized currency formatting and

number formatting. Please note that the TNumberFormat component provides format-

ting only, it does not perform current conversion or exchange.

Numbers can be formatted as currency, percentage, decimal or scientific numbers by

specifying the Type attribute. The valid types are:

• currency

• percentage

• decimal

• scientific

<com:TNumberFormat Type="currency" Value="100" />

Culture and Currency properties may be specified to format locale specific numbers.

If someone from US want to see sales figures from a store in Germany (say using the
EURO currency), formatted using the german currency, you would need to use the
attribute Culture="de DE" to get the currency right, e.g. 100,00$. The decimal and
grouping separator is then also from the de DE locale. This may lead to some confusion
because people from US uses the “,” (comma) as thousand separator. Therefore a
Currency attribute is available, so that the output from the following example results
in $100.00

241

Chapter 17. Advanced Topics

<com:TNumberFormat Type="currency"

Culture="en_US" Currency="EUR" Value="100" />

The Pattern property determines the number of digits, thousand grouping positions,

the number of decimal points and the decimal position. The actual characters that are

used to represent the decimal points and thousand points are culture specific and will

change automatically according to the Culture property. The valid Pattern characters

are:

• # (hash) - represents the optional digits

• 0 (zero) - represents the mandatory digits, zero left filled

• . (full stop) - the position of the decimal point (only 1 decimal point is al-

lowed)

• , (comma) - thousand point separation (up to 2 commas are allowed)

For example, consider the Value="1234567.12345" and with Culture="en US" (which uses

“,” for thousand point separator and “.” for decimal separators).

Pattern Output

------- ------

##,###.00 ->> 1,234,567.12

##,###.## ->> 1,234,567.12345

##,##.0000 ->> 1,23,45,67.1235

##,###,##.0 ->> 12,345,67.1

000,000,000.0 ->> 001,234,567.1

17.10.4 TTranslateParameter

Compound messages, i.e., string substitution, can be accomplished with TTranslateParameter.

In the following example, the strings “{greeting}” and “{name}” will be replace with

the values of “Hello” and “World”, respectively.The substitution string must be en-

close with “{” and “}”. The parameters can be further translated by using TTranslate.

<com:TTranslate>

{greeting} {name}!

242

17.10. I18N Components

<com:TTranslateParameter Key="name">World</com:TTranslateParameter>

<com:TTranslateParameter Key="greeting">Hello</com:TTranslateParameter>

</com:TTranslate>

17.10.5 TChoiceFormat

Using the localize function or TTranslate component to translate messages does not

inform the translator the cardinality of the data required to determine the correct

plural structure to use. It only informs them that there is a variable data, the data

could be anything. Thus, the translator will be unable to determine with respect to

the substitution data the correct plural, language structure or phrase to use . E.g.

in English, to translate the sentence, “There are number of apples.”, the resulting

translation should be different depending on the number of apples.

The TChoiceFormat component performs message/string choice translation. The fol-

lowing example demonstrated a simple 2 choice message translation.

<com:TChoiceFormat Value="1"/>[1] One Apple. |[2] Two Apples</com:TChoiceFormat>

In the above example, the Value “1” (one), thus the translated string is “One Apple”.

If the Value was “2”, then it will show “Two Apples”.

The message/string choices are separated by the pipe “—” followed by a set notation

of the form.

• [1,2] – accepts values between 1 and 2, inclusive.

• (1,2) – accepts values between 1 and 2, excluding 1 and 2.

• {1,2,3,4} – only values defined in the set are accepted.

• [-Inf,0) – accepts value greater or equal to negative infinity and strictly less

than 0

Any non-empty combinations of the delimiters of square and round brackets are ac-

ceptable. The string chosen for display depends on the Value property. The Value is

evaluated for each set until the Value is found to belong to a particular set.

243

Chapter 17. Advanced Topics

¡pi class=”block-content”¿ Since version 3.1.1 the following set notation is also pos-

sible.

• ¡tt¿{n: n % 10 ¿ 1 n % 10 ¡ 5}¡/tt¿ – matches numbers like 2, 3, 4, 22, 23, 24

Where set is defined by the expression after n:. In particular, the expression accepts

the following mathematical/logical operators to form a set of logical conditions on the

value given by n:

• < – less than.

• <= – less than equals.

• > – greater than.

• gt= – greater than equals.

• == – of equal value.

• % – modulo, e.g., 1 % 10 equals 1, 11 % 10 equals 1.

• - – minus, negative.

• + – addition.

• & – conditional AND.

• && – condition AND with short circuit.

• | – conditional OR.

• || – conditional OR with short circuit.

• ! – negation.

Additional round brackets can also be used to perform grouping. The following exam-

ple represents ordinal values in English such as: “0th”, “1st”, “2nd”, “3rd”, “4th”,

“11th”, “21st”, “22nd”, etc.

<com:TChoiceFormat Value="21">

{n: n > 0 && n % 10 == 1 && n % 100 != 11} {Value}st

|{n: n > 0 && n % 10 == 2 && n % 100 != 12} {Value}nd

244

17.11. Error Handling and Reporting

|{n: n > 0 && n % 10 == 3 && n % 100 != 13} {Value}rd

|{n: n > -1 } {Value}th

|(-Inf, 0) {Value}

</com:TChoiceFormat>

17.11 Error Handling and Reporting

PRADO provides a complete error handling and reporting framework based on the

PHP 5 exception mechanism.

17.11.1 Exception Classes

Errors occur in a PRADO application may be classified into three categories: those

caused by PHP script parsing, those caused by wrong code (such as calling an unde-

fined function, setting an unknown property), and those caused by improper use of

the Web application by client users (such as attempting to access restricted pages).

PRADO is unable to deal with the first category of errors because they cannot be

caught in PHP code. PRADO provides an exception hierarchy to deal with the second

and third categories.

All errors in PRADO applications are represented as exceptions. The base class for

all PRADO exceptions is TException. It provides the message internationalization

functionality to all system exceptions. An error message may be translated into

different languages according to the user browser’s language preference.

Exceptions raised due to improper usage of the PRADO framework inherit from

TSystemException, which can be one of the following exception classes:

• TConfigurationException - improper configuration, such as error in application

configuration, control templates, etc.

• TInvalidDataValueException - data value is incorrect or unexpected.

• TInvalidDataTypeException - data type is incorrect or unexpected.

• TInvalidDataFormatException - format of data is incorrect.

• TInvalidOperationException - invalid operation request.

245

Chapter 17. Advanced Topics

• TPhpErrorException - catchable PHP errors, warnings, notices, etc.

• TSecurityException - errors related with security.

• TIOException - IO operation error, such as file open failure.

• TDBException - errors related with database operations.

• TNotSupportedException - errors caused by requesting for unsupported feature.

• THttpException - errors to be displayed to Web client users.

Errors due to improper usage of the Web application by client users inherit from

TApplicationException.

17.11.2 Raising Exceptions

Raising exceptions in PRADO has no difference than raising a normal PHP exception.

The only thing matters is to raise the right exception. In general, exceptions meant

to be shown to application users should use THttpException, while exceptions shown

to developers should use other exception classes.

17.11.3 Error Capturing and Reporting

Exceptions raised during the runtime of PRADO applications are captured by System.Exceptions.TErrorHandler

module. Different output templates are used to display the captured exceptions.

THttpException is assumed to contain error messages that are meant for application

end users and thus uses a specific group of templates. For all other exceptions, a

common template shown as follows is used for presenting the exceptions.

17.11.4 Customizing Error Display

Developers can customize the presentation of exception messages. By default, all error

output templates are stored under framework/Exceptions/templates. The location can

be changed by configuring TErrorHandler in application configuration,

246

file:<%~ exception2.gif %>

17.11. Error Handling and Reporting

<module id="error"

class="TErrorHandler"

ErrorTemplatePath="Application.ErrorTemplates" />

THttpException uses a set of templates that are differentiated according to different

StatusCode property value of THttpException. StatusCode has the same meaning as the

status code in HTTP protocol. For example, a status code equal to 404 means the

requested URL is not found on the server. The StatusCode value is used to select

which output template to use. The output template files use the following naming

convention:

error<status code>-<language code>.html

where status code refers to the StatusCode property value of THttpException, and

language code must be a valid language such as en, zh, fr, etc. When a THttpException

is raised, PRADO will select an appropriate template for displaying the exception

message. PRADO will first locate a template file whose name contains the status code

and whose language is preferred by the client browser window. If such a template

is not present, it will look for a template that has the same status code but without

language code.

The naming convention for the template files used for all other exceptions is as follows,

exception-<language code>.html

Again, if the preferred language is not found, PRADO will try to use exception.html,

instead.

247

Chapter 17. Advanced Topics

CAUTION: When saving a template file, please make sure the file is saved

using UTF-8 encoding. On Windows, you may use Notepad.exe to accomplish

such saving.

17.12 Performance Tuning

Performance of Web applications is affected by many factors. Database access, file

system operations, network bandwidth are all potential affecting factors. PRADO

tries in every effort to reduce the performance impact caused by the framework.

17.12.1 Caching

PRADO provides a generic caching technique used by in several core parts of the

framework. For example, when caching is enabled, TTemplateManager will save parsed

templates in cache and reuse them in the following requests, which saves time for

parsing templates. The TThemeManager adopts the similar strategy to deal with theme

parsing.

Enabling caching is very easy. Simply add the cache module in the application con-

figuration, and PRADO takes care of the rest.

<modules>

<module id="cache" class="System.Caching.TSqliteCache" />

</modules>

Developers can also take advantage of the caching technique in their applications.

The Cache property of TApplication returns the plugged-in cache module when it is

available. To save and retrieve a data item in cache, use the following commands,

if($application->Cache) {

// saves data item in cache

$application->Cache->set($keyName,$dataItem);

// retrieves data item from cache

$dataItem=$application->Cache->get($keyName);

}

248

17.12. Performance Tuning

where $keyName should be a string that uniquely identifies the data item stored in

cache.

Since v3.1.0, a new control called TOutputCache has been introduced. This control

allows users to selectively cache parts of a page’s output. When used appropriately,

this technique can significant improve pages’ performance because the underlying

controls are not created at all if the cached versions are hit.

17.12.2 Using pradolite.php

Including many PHP script files may impact application performance significantly.

PRADO classes are stored in different files and when processing a page request, it

may require including tens of class files.To alleviate this problem, in each PRADO

release, a file named pradolite.php is also included. The file is a merge of all core

PRADO class files with comments being stripped off and message logging removed.

To use pradolite.php, in your application entry script, replace the inclusion of prado.php

with pradolite.php.

17.12.3 Changing Application Mode

Application mode also affects application performance. A PRADO application can

be in one of the following modes: Off, Debug, Normal and Performance. The Debug

mode should mainly be used during application development, while Normal mode is

usually used in early stage after an application is deployed to ensure everything works

correctly. After the application is proved to work stably for some period, the mode

can be switched to Performance to further improve the performance.

The difference between Debug, Normal and Performance modes is that under Debug mode,

application logs will contain debug information, and under Performance mode, times-

tamp checking is not performed for cached templates and published assets. Therefore,

under Performance mode, application may not run properly if templates or assets are

modified. Since Performance mode is mainly used when an application is stable, change

of templates or assets are not likely.

To switch application mode, configure it in application configuration:

249

Chapter 17. Advanced Topics

<application Mode="Performance" >

......

</application >

17.12.4 Reducing Page Size

By default, PRADO stores page state in hidden fields of the HTML output. The page

state could be very large in size if complex controls, such as TDataGrid, is used. To

reduce the size of the network transmitted page size, two strategies can be used.

First, you may disable viewstate by setting EnableViewState to false for the page or

some controls on the page if they do not need user interactions. Viewstate is mainly

used to keep track of page state when a user interacts with that page/control.

Second, you may use a different page state storage. For example, page state may be

stored in session, which essentially stores page state on the server side and thus saves

the network transmission time. The StatePersisterClass property of the page deter-

mines which state persistence class to use. By default, it uses System.Web.UI.TPageStatePersister

to store persistent state in hidden fields. You may modify this property to a persister

class of your own, as long as the new persister class implements the IPageStatePersister

interface. You may configure this property in several places, such as application con-

figuration or page configuration using ¡pages¿ or ¡page¿ tags,

<pages StatePersisterClass="MyPersister1" ... >

<page ID="SpecialPage" StatePersisterClass="MyPersister2" ... />

</pages>

Note, in the above the SpecialPage will use MyPersister2 as its persister class, while

the rest pages will use MyPersister1. Therefore, you can have different state persister

strategies for different pages.

17.12.5 Other Techniques

Server caching techniques are proven to be very effective in improving the perfor-

mance of PRADO applications. For example, we have observed that by using Zend

Optimizer, the RPS (request per second) of a PRADO application can be increased

250

17.12. Performance Tuning

by more than ten times. Of course, this is at the cost of stale output, while PRADO’s

caching techniques always ensure the correctness of the output.

251

Chapter 17. Advanced Topics

252

Chapter 18

Client-side Scripting

18.1 Introduction to Javascript

This guide is based on the Quick guide to somewhat advanced JavaScript tour of some

OO features by Sergio Pereira.

18.1.1 Hey, I didn’t know you could do that

If you are a web developer and come from the same place I do, you have probably

used quite a bit of Javascript in your web pages, mostly as UI glue.

Until recently, I knew that Javascript had more OO capabilities than I was employing,

but I did not feel like I needed to use it. As the browsers started to support a more

standardized featureset of Javascript and the DOM, it became viable to write more

complex and functional code to run on the client. That helped giving birth to the

AJAX phenomena.

As we all start to learn what it takes to write our cool, AJAX applications, we begin

to notice that the Javascript we used to know was really just the tip of the iceberg.

We now see Javascript being used beyond simple UI chores like input validation and

frivolous tasks. The client code now is far more advanced and layered, much like a

real desktop application or a client-server thick client. We see class libraries, object

253

http://www.sergiopereira.com/articles/advjs.html
http://www.sergiopereira.com/articles/advjs.html

Chapter 18. Client-side Scripting

models, hierarchies, patterns, and many other things we got used to seeing only in

our server side code.

In many ways we can say that suddenly the bar was put much higher than before. It

takes a heck lot more proficiency to write applications for the new Web and we need

to improve our Javascript skills to get there. If you try to use many of the existing

javascript libraries out there, like Prototype.js, Scriptaculous, moo.fx, Behaviour,

YUI, etc you’ll eventually find yourself reading the JS code. Maybe because you

want to learn how they do it, or because you’re curious, or more often because that’s

the only way to figure out how to use it, since documentation does not seem to be

highly regarded with most of these libraries. Whatever the case may be, you’ll face

some kung-fu techniques that will be foreign and scary if you haven’t seen anything

like that before.

The purpose of this article is precisely explaining the types of constructs that many

of us are not familiar with yet.

18.1.2 JSON (JavaScript Object Notation)

JavaScript Object Notation (JSON,) is one of the new buzzwords popping up around

the AJAX theme. JSON, simply put, is a way of declaring an object in Javascript.

Let’s see an example right away and note how simple it is.

var myPet = { color: ’black’, leg_count: 4, communicate: function(repeatCount){

for(i=0;i<repeatCount;i++) alert(’Woof!’);} };

Let’s just add little bit of formatting so it looks more like how we usually find out

there:

var myPet =

{

color: ’black’,

legCount: 4,

communicate: function(repeatCount)

{

for(i=0;i<repeatCount;i++)

alert(’Woof!’);

254

http://prototype.conio.net/
http://script.aculo.us/
http://moofx.mad4milk.net/
http://bennolan.com/behaviour/
http://developer.yahoo.net/yui/
http://www.json.org/

18.1. Introduction to Javascript

}

};

Here we created a reference to an object with two properties (color and legCount) and

a method (communicate.) It’s not hard to figure out that the object’s properties and

methods are defined as a comma delimited list. Each of the members is introduced

by name, followed by a colon and then the definition. In the case of the properties

it is easy, just the value of the property. The methods are created by assigning an

anonymous function, which we will explain better down the line. After the object is

created and assigned to the variable myPet, we can use it like this:

alert(’my pet is ’ + myPet.color);

alert(’my pet has ’ + myPet.legCount + ’ legs’);

//if you are a dog, bark three times:

myPet.communicate(3);

You’ll see JSON used pretty much everywhere in JS these days, as arguments to

functions, as return values, as server responses (in strings,) etc.

18.1.3 What do you mean? A function is an object too?

This might be unusual to developers that never thought about that, but in JS a

function is also an object. You can pass a function around as an argument to another

function just like you can pass a string, for example. This is extensively used and

very handy.

Take a look at this example. We will pass functions to another function that will use

them.

var myDog =

{

bark: function()

{

alert(’Woof!’);

}

};

255

Chapter 18. Client-side Scripting

var myCat =

{

meow: function()

{

alert(’I am a lazy cat. I will not meow for you.’);

}

};

function annoyThePet(petFunction)

{

//let’s see what the pet can do

petFunction();

}

//annoy the dog:

annoyThePet(myDog.bark);

//annoy the cat:

annoyThePet(myCat.meow);

Note that we pass myDog.bark and myCat.meow without appending parenthesis "()"

to them. If we did that we would not be passing the function, rather we would be

calling the method and passing the return value, undefined in both cases here.

If you want to make my lazy cat start barking, you can easily do this:

myCat.meow = myDog.bark;

myCat.meow(); //alerts ’Woof!’

18.1.4 Arrays, items, and object members

The following two lines in JS do the same thing.

var a = new Array();

var b = [];

As I’m sure you already know, you can access individual items in an array by using

the square brackets:

256

18.1. Introduction to Javascript

var a = [’first’, ’second’, ’third’];

var v1 = a[0];

var v2 = a[1];

var v3 = a[2];

But you are not limited to numeric indices. You can access any member of a JS object

by using its name, in a string. The following example creates an empty object, and

adds some members by name.

var obj = {}; //new, empty object

obj[’member_1’] = ’this is the member value’;

obj[’flag_2’] = false;

obj[’some_function’] = function(){ /* do something */};

The above code has identical effect as the following:

var obj =

{

member_1:’this is the member value’,

flag_2: false,

some_function: function(){ /* do something */}

};

In many ways, the idea of objects and associative arrays (hashes) in JS are not dis-

tiguishable. The following two lines do the same thing too.

obj.some_function();

obj[’some_function’]();

18.1.5 Enough about objects, may I have a class now?

The great power of object oriented programming languages derive from the use of

classes. I don’t think I would have guessed how classes are defined in JS using only

my previous experience with other languages. Judge for yourself.

//defining a new class called Pet

257

Chapter 18. Client-side Scripting

var Pet = function(petName, age)

{

this.name = petName;

this.age = age;

};

//let’s create an object of the Pet class

var famousDog = new Pet(’Santa\’s Little Helper’, 15);

alert(’This pet is called ’ + famousDog.name);

Let’s see how we add a method to our Pet class. We will be using the prototype

property that all classes have. The prototype property is an object that contains

all the members that any object of the class will have. Even the default JS classes,

like String, Number, and Date have a prototype object that we can add methods and

properties to and make any object of that class automatically gain this new member.

Pet.prototype.communicate = function()

{

alert(’I do not know what I should say, but my name is ’ + this.name);

};

That’s when a library like prototype.js comes in handy. If we are using prototype.js,

we can make our code look cleaner (at least in my opinion.)

var Pet = Class.create();

Pet.prototype =

{

//our ’constructor’

initialize: function(petName, age)

{

this.name = petName;

this.age = age;

},

communicate: function()

{

alert(’I do not know what I should say, but my name is ’ + this.name);

}

};

258

http://www.sergiopereira.com/articles/prototype.js.html

18.1. Introduction to Javascript

18.1.6 Functions as arguments, an interesting pattern

If you have never worked with languages that support closures you may find the

following idiom too funky.

var myArray = [’first’, ’second’, ’third’];

myArray.each(function(item, index)

{

alert(’The item in the position #’ + index + ’ is:’ + item);

});

Whoa! Let’s explain what is going on here before you decide I’ve gone too far and

navigate to a better article than this one.

First of all, in the above example we are using the prototype.js library, which adds

the each function to the Array class. The each function accepts one argument that

is a function object. This function, in turn, will be called once for each item in the

array, passing two arguments when called, the item and the index for the current

item. Let’s call this function our iterator function. We could have also written the

code like this.

function myIterator(item, index)

{

alert(’The item in the position #’ + index + ’ is:’ + item);

}

var myArray = [’first’, ’second’, ’third’];

myArray.each(myIterator);

But then we would not be doing like all the cool kids in school, right? More seriously,

though, this last format is simpler to understand but causes us to jump around in the

code looking for the myIterator function. It’s nice to have the logic of the iterator

function right there in the same place it’s called. Also, in this case, we will not

need the iterator function anywhere else in our code, so we can transform it into an

anonymous function without penalty.

259

Chapter 18. Client-side Scripting

18.1.7 This is this but sometimes this is also that

One of the most common troubles we have with JS when we start writing our code it

the use of the this keyword. It could be a real tripwire.

As we mentioned before, a function is also an object in JS, and sometimes we do not

notice that we are passing a function around.

Take this code snippet as an example.

function buttonClicked()

{

alert(’button ’ + this.id + ’ was clicked’);

}

var myButton = document.getElementById(’someButtonID’);

var myButton2 = document.getElementById(’someOtherButtonID’);

myButton.onclick = buttonClicked;

myButton2.onclick = buttonClicked;

Because the buttonClicked function is defined outside any object we may tend to think

the this keyword will contain a reference to the window or document object (assuming

this code is in the middle of an HTML page viewed in a browser.)

But when we run this code we see that it works as intended and displays the id

of the clicked button. What happened here is that we made the onclick method of

each button contain the buttonClicked object reference, replacing whatever was there

before. Now whenever the button is clicked, the browser will execute something

similar to the following line.

myButton.onclick();

That isn’t so confusing afterall, is it? But see what happens you start having other

objects to deal with and you want to act on these object upon events like the button’s

click.

var myHelper =

{

260

18.1. Introduction to Javascript

formFields: [],

emptyAllFields: function()

{

for(i=0; i < this.formFields.length; i++)

{

var elementID = this.formFields[i];

var field = document.getElementById(elementID);

field.value = ’’;

}

}

};

//tell which form fields we want to work with

myHelper.formFields.push(’txtName’);

myHelper.formFields.push(’txtEmail’);

myHelper.formFields.push(’txtAddress’);

//clearing the text boxes:

myHelper.emptyAllFields();

var clearButton = document.getElementById(’btnClear’);

clearButton.onclick = myHelper.emptyAllFields;

So you think, nice, now I can click the Clear button on my page and those three

text boxes will be emptied. Then you try clicking the button only to get a runtime

error. The error will be related to (guess what?) the this keyword. The problem is

that this.formFields is not defined if this contains a referece to the button, which is

precisely what’s happening. One quick solution would be to rewrite our last line of

code.

clearButton.onclick = function()

{

myHelper.emptyAllFields();

};

That way we create a brand new function that calls our helper method within the

helper object’s context.

261

Chapter 18. Client-side Scripting

18.2 Developer Notes for prototype.js

This guide is based on the Developer Notes for prototype.js by Sergio Pereira.

18.2.1 What is that?

In case you haven’t already used it, prototype.js is a JavaScript library written by

Sam Stephenson. This amazingly well thought and well written piece of standards-

compliant code takes a lot of the burden associated with creating rich, highly inter-

active web pages that characterize the Web 2.0 off your back.

If you tried to use this library recently, you probably noticed that documentation is

not one of its strongest points. As many other developers before me, I got my head

around prototype.js by reading the source code and experimenting with it. I thought

it would be nice to take notes while I learned and share with everybody else.

As you read the examples and the reference, developers familiar with the Ruby

programming language will notice an intentional similarity between Ruby’s built-in

classes and many of the extensions implemented by this library.

18.2.2 Using the $() function

The $() function is a handy shortcut to the all-too-frequent document.getElementById()

function of the DOM. Like the DOM function, this one returns the element that has

the id passed as an argument.

Unlike the DOM function, though, this one goes further. You can pass more than one

id and $() will return an Array object with all the requested elements. The example

below should illustrate this.

<com:TClientScript UsingClientScripts="prado" />

<div id="myDiv">

This is a paragraph

</div>

<div id="myOtherDiv">

262

http://www.sergiopereira.com/articles/prototype.js.html
http://prototype.conio.net
http://www.conio.net

18.2. Developer Notes for prototype.js

This is another paragraph

</div>

<input type="button" value=Test1 onclick="test1();" />

<input type="button" value=Test2 onclick="test2();" />

<script type="text/javascript">

/*<![CDATA[*/

function test1()

{

var d = $(’myDiv’);

alert(d.innerHTML);

}

function test2()

{

var divs = $(’myDiv’,’myOtherDiv’);

for(i=0; i<divs.length; i++)

{

alert(divs[i].innerHTML);

}

}

/*]]>*/

</script>

Another nice thing about this function is that you can pass either the id string or

the element object itself, which makes this function very useful when creating other

functions that can also take either form of argument.

18.2.3 Using the $F() function

The $F() function is a another welcome shortcut. It returns the value of any field

input control, like text boxes or drop-down lists. The function can take as argument

either the element id or the element object itself.

<input type="text" id="userName" value="Joe Doe" />

<input type="button" value=Test3 onclick="test3();" />

263

Chapter 18. Client-side Scripting

<script type="text/javascript">

/*<![CDATA[*/

function test3()

{

alert($F(’userName’));

}

/*]]>*/

</script>

18.3 DOM Events and Javascript

18.3.1 Basic event handling

The syntax for working with events looks like the code below.

Event.observe(element, name, observer, [useCapture]);

Assuming for a moment that we want to observe when a link was clicked, we could

do the following:

// Click me

Event.observe(’clicker’, ’click’, function(event)

{

alert(’clicked!’);

});

If we wanted to get the element that fired the event, we’d do this:

Event.observe(’clicker’, ’click’, function(event)

{

alert(Event.element(event));

});

18.3.2 Observing keystrokes

If we wanted to observe keystrokes for the entire document, we could do the following:

264

18.3. DOM Events and Javascript

Event.observe(document, ’keypress’, function(event)

{

if(Event.keyCode(event) == Event.KEY_TAB)

alert(’Tab Pressed’);

});

And lets say we wanted to keep track of what has been typed :

Event.observe(’search’, ’keypress’, function(event)

{

Element.update(’search-results’, $F(Event.element(event)));

});

Prototype defines properties inside the event object for some of the more common

keys, so feel free to dig around in Prototype to see which ones those are.

A final note on keypress events; If you’d like to detect a left click you can use

Event.isLeftClick(event).

18.3.3 Getting the coordinates of the mouse pointer

Drag and drop, dynamic element resizing, games, and much more all require the

ability to track the X and Y location of the mouse. Prototype makes this fairly

simple. The code below tracks the X and Y position of the mouse and spits out those

values into an input box named mouse.

Event.observe(document, ’mousemove’, function(event)

{

$(’mouse’).value = "X: " + Event.pointerX(event) +

"px Y: " + Event.pointerY(event) + "px";

});

If we wanted to observe the mouse location when it was hovering over a certain

element, we’d just change the document argument to the id or element that was

relevant.

265

Chapter 18. Client-side Scripting

18.3.4 Stopping Propagation

Event.stop(event) will stop the propagation of an event .

18.3.5 Events, Binding, and Objects

Everything has been fairly straight forward so far, but things start getting a little

trickier when you need to work with events in and object-oriented environment. You

have to deal with binding and funky looking syntax that might take a moment to get

your head around.

Lets look at some code so you can get a better understanding of what I’m talking
about.

EventDispenser = Class.create();

EventDispenser.prototype =

{

initialize: function(list)

{

this.list = list;

// Observe clicks on our list items

$$(this.list + " li").each(function(item)

{

Event.observe(item, ’click’, this.showTagName.bindEvent(this));

}.bind(this));

// Observe when a key on the keyboard is pressed.

// In the observer, we check for

// the tab key and alert a message if it is pressed.

Event.observe(document, ’keypress’, this.onKeyPress.bindEvent(this));

// Observe our fake live search box. When a user types

// something into the box, the observer will take that

// value(-1) and update our search-results div with it.

Event.observe(’search’, ’keypress’, this.onSearch.bindEvent(this));

Event.observe(document, ’mousemove’, this.onMouseMove.bindEvent(this));

},

266

18.3. DOM Events and Javascript

// Arbitrary functions to respond to events

showTagName: function(event)

{

alert(Event.element(event).tagName);

},

onKeyPress: function(event)

{

var code = event.keyCode;

if(code == Event.KEY_TAB)

alert(’Tab key was pressed’);

},

onSearch: function(event)

{

Element.update(’search-results’, $F(Event.element(event)));

},

onMouseMove: function(event)

{

$(’mouse’).value = "X: " + Event.pointerX(event) +

"px Y: " + Event.pointerY(event) + "px";

}

}

Whoa! What’s going on here? Well, we’ve defined our a custom class EventDispenser.

We’re going to be using this class to setup events for our document. Most of this

code is a rewrite of the code we looked at earlier except this time, we are working

from inside an object.

Looking at the initialize method, we can really see how things are different now.
Take a look at the code below:

// Observe clicks on our list items

$$(this.list + " li").each(function(item)

{

Event.observe(item, ’click’, this.showTagName.bindEvent(this));

}.bind(this));

267

Chapter 18. Client-side Scripting

We’ve got iterators, binding and all sorts of stuff going on. Lets break down what

this chunk of code is doing.

First we are hunting for a collection of elements based on it’s CSS selector. This uses

the Prototype selector function $$(). After we’ve found the list items we are dealing

with we send those into an each iteration where we will add our observers.

Event.observe(item, ’click’, this.showTagName.bindEvent(this));

Now looking at the code above, you’ll notice the bindEvent function. This takes the

method before it showTagName and treats it as the method that will be triggered when,

in this case, someone clicks one of our list items.

You’ll also notice we pass this as an argument to the bindEvent function. This sim-
ply allows us to reference the object in context EventDispenser inside our function
showTagName(event). If the showTagName function requires additional parameters, you
can attach them to the later parameters of bindEvent. For example

this.showTagName.bindEvent(this, param1, param2);

//where the showTagName function is defined as

showTime : function (event, param1, param2) { ... }

Moving on, you’ll see bind(this) attached to our iterator function. This really has

nothing to do with events, it is only here to allow me to use this inside the iterator.

If we did not use bind(this), I could not reference the method showTagName inside the

iterator.

Ok, so we’ll move on to looking at our methods that actually get called when an event

occurs. Since we’ve been dealing with showTagName, lets look at it.

showTagName: function(event)

{

alert(Event.element(event).tagName);

}

As you can see, this function accepts one argument–the event. In order for us to get

the element which fired the event we need to pass that argument to Event.element.

Now we can manipulate it at will.

268

18.3. DOM Events and Javascript

This covers the most confusing parts of our code. The text above is also relevant to

the remaining parts of our code. If there is anything about this you don’t understand,

feel free to ask questions in the forum.

18.3.6 Removing Event Listeners

This one threw me for a loop the first time I tried to use it. I tried something similar

to what I did in the Event.observe call with the exception of using stopObserving, but

nothing seemed to change. In other words, the code below does NOT work.

$$(this.list + " li").each(function(item)

{

Event.stopObserving(item, ’click’, this.showTagName);

}.bind(this));

What’s the deal here? The reason this does not work is because there is no pointer to

the observer. This means that when we passed this.showTagName in the Event.observe

method before hand, we passed it as an anonymous function. We can’t reference an

anonymous function because it simply does not have a pointer.

So how do we get the job done? All we need to do is give the observing function

a pointer, or the jargon free version: Set a variable that points to this.showTagName.

Ok, lets change our code a bit.

this.showTagObserver = this.showTagName.bindEvent(this);

// Observe clicks on our list items

$$(this.list + " li").each(function(item)

{

Event.observe(item, ’click’, this.showTagObserver);

}.bind(this));

Now we can remove the event listeners from our list like this:

$$(this.list + " li").each(function(item)

{

Event.stopObserving(item, ’click’, this.showTagObserver);

}.bind(this));

269

Chapter 18. Client-side Scripting

18.4 Javascript in PRADO, Questions and Answers

18.4.1 How do I include the Javascript libraries distributed with Prado?

The javascript libraries distributed with Prado can be found in the framework/Web/Javascripts/source

directory. The packages.php file in that directory defines a list of available package

names available to be loaded. They can be loaded as follows.

• Adding libraries in the template

<com:TClientScript PradoScripts="effects" />

• Adding libraries in PHP code

$this->getPage()->getClientScript()->registerPradoScript("effects");

The available packaged libraries included in Prado are

• prado : basic PRADO javascript framework based on Prototype

• effects : visual effects from script.aculo.us

• ajax : ajax and callback related based on Prototype

• validator : validation

• logger : javascript logger and object browser

• datepicker : datepicker

• colorpicker : colorpicker

The dependencies for each library are automatically resolved. Components that re-

quire a particular library will also automatically load the necessary libraries. For

example, if you add a TDatePicker component on the page, the datepicker and its

dependencies will be automatically included on the page.

See TClientScript for options of adding your custom Javascript code to the page.

270

18.4. Javascript in PRADO, Questions and Answers

18.4.2 Publishing Javascript Libraries as Assets

Use TClientScriptLoader to publish and combine multiple existing javascript files (e.g.

javascript libraries distributed with Prado or otherwise) as packages. For greater

control on what and when to publish, use the registerJavascriptPackages($base,

$packages, $debug=null, $gzip=true) method in the TClientScriptManager class, which

an instance can be obtained using $this->getPage()->getClientScript() or its equiv-

alents. For example, if multiple controls will use the same set of javascript libraries,

write a class to handle the registration of packages required by those controls.

class MyJavascriptLib extends TComponent

{

private $_packages=array(); //keep track of all registrations

private $_manager;

protected function __construct(TPage $owner)

{

$this->_manager = $owner->getClientScript();

$owner->onPreRenderComplete = array($this, ’registerScriptLoader’);

}

public static function registerPackage(TControl $control, $name)

{

static $instance;

if($instance===null)

$instance=new self($control->getPage());

$instance->_packages[$name]=true;

}

protected function registerScriptLoader()

{

$dir = dirname(__FILE__).’/myscripts’; //contains my javascript files

$scripts = array_keys($this->_packages);

$url = $this->_manager->registerJavascriptPackages($dir, $scripts);

$this->_manager->registerScriptFile($url,$url);

}

}

271

Chapter 18. Client-side Scripting

// example control class using the javascript packages

class TestComp extends TControl

{

public function onPreRender($param)

{

parent::onPreRender($param);

MyJavascriptLib::registerPackage($this,’package1’);

}

}

272

	Contents
	Preface
	License
	Getting Started
	Welcome to the PRADO Quickstart Tutorial
	How PRADO Works
	Examples and Demos
	Tutorials and Help

	What is PRADO?
	Why PRADO?
	What Is PRADO Best For?
	How Is PRADO Compared with Other Frameworks?
	Is PRADO Stable Enough?
	History of PRADO

	Installing PRADO
	New Features
	Version 3.1.3
	Version 3.1.2
	Version 3.1.1
	Version 3.1.0

	Upgrading from v2.x and v1.x
	Component Definition
	Application Controller
	Pages
	Control Relationship
	Template Syntax
	Theme Syntax

	Tutorials
	My First PRADO Application
	Sample: Hangman Game
	Command Line Tool
	Requirements
	Usage
	Creating a new Prado project skeleton
	Interactive Shell

	Tutorial: Currency Converter
	Building a Simple Currency Converter
	Downloading and Installing Prado
	Creating a new Prado web Application
	Creating the Currency Converter User Interface
	Implementing Currency Conversion
	Adding Validation
	Improve User Experience With Active Controls
	Adding Final Touches

	Tutorial: Building an AJAX Chat Application
	Building an AJAX Chat Application
	Download, Install and Create a New Application
	Authentication and Authorization
	Securing the Home page

	Active Record for chat_users table
	Custom User Manager class

	Authentication
	Default Values for ActiveRecord

	Main Chat Application
	Exploring the Active Controls

	Active Record for chat_buffer table
	Chat Application Logic
	Putting It Together
	Improving User Experience

	Tutorial: Addressbook
	A Simple Address Book

	Fundamentals
	Architecture
	Components
	Component Properties
	Component Events
	Namespaces
	Component Instantiation

	Controls
	Control Tree
	Control Identification
	Naming Containers
	ViewState and ControlState

	Pages
	PostBack
	Page Lifecycles

	Modules
	Request Module
	Response Module
	Session Module
	Error Handler Module
	Custom Modules

	Services
	Page Service

	Applications
	Directory Organization
	Application Deployment
	Application Lifecycles

	Configurations
	Configuration Overview
	Templates: Part I
	Component Tags
	Template Control Tags
	Comment Tags
	Include Tags

	Templates: Part II
	Dynamic Content Tags

	Templates: Part III
	Dynamic Property Tags

	Application Configurations
	Page Configurations
	URL Mapping (Friendly URLs)
	Specifying URL Patterns
	Constructing Customized URLs

	Control Reference : Standard Controls
	TButton
	TCheckBox
	TClientScript
	Including Bundled Javascript Libraries in Prado
	Including Custom Javascript Files
	Including Custom Javascript Code Blocks

	TColorPicker
	TDatePicker
	TExpression
	TFileUpload
	THead
	THiddenField
	THtmlArea
	THyperLink
	TImageButton
	TImageMap
	TImage
	TInlineFrame
	TJavascriptLogger
	TLabel
	TLinkButton
	TLiteral
	TMultiView
	TOutputCache
	TPager
	TPanel
	TPlaceHolder
	TRadioButton
	TSafeHtml
	TStatements
	TTabPanel
	TTable
	TTextBox
	TTextHighlighter
	TWizard
	Overview
	Using TWizard

	Control Reference : List Controls
	List Controls
	TListBox
	TDropDownList
	TCheckBoxList
	TRadioButtonList
	TBulletedList

	Control Reference : Validation Controls
	Validation Controls
	Prado Validation Controls
	TRequiredFieldValidator
	TRegularExpressionValidator
	TEmailAddressValidator
	TCompareValidator
	TDataTypeValidator
	TRangeValidator
	TCustomValidator
	TValidationSummary

	Interacting the Validators
	Resetting or Clearing of Validators
	Client and Server Side Conditional Validation

	Control Reference : Data Controls
	Data Controls
	TDataList
	TDataGrid
	Columns
	Item Styles
	Events
	Using TDataGrid
	Interacting with TDataGrid
	Sorting
	Paging
	Extending TDataGrid

	TRepeater

	Control Reference : Active Controls (AJAX)
	TActiveButton
	TActiveButton Class Diagram
	Adding Client Side Behaviour

	TActiveCheckBox
	TActiveCustomValidator

	Active Control Overview
	Active Controls (AJAX enabled Controls)
	Standard Active Controls
	Active List Controls
	Extended Active Controls
	Active Control Abilities
	Active Control Infrastructure Classes

	Overview of Active Controls

	Write New Controls
	Writing New Controls
	Composition of Existing Controls
	Extending Existing Controls

	Service References
	SOAP Service

	Working with Databases
	Data Access Objects (DAO)
	Establishing Database Connection
	Executing SQL Statements
	Fetching Query Results
	Using Transactions
	Binding Parameters
	Binding Columns

	Active Record
	When to Use It
	Design Implications
	Database Supported

	Defining an Active Record
	Setting up a database connection
	Loading data from the database
	Inserting and updating records
	Deleting existing records
	Transactions
	Events

	Active Record Relationships
	Foreign Key Mapping
	Association Table Mapping
	Adding/Removing/Updating Related Objects
	Lazy Loading Related Objects
	Column Mapping
	References

	Active Record Scaffold Views
	Setting up a Scaffold View
	TScaffoldListView
	TScaffoldEditView
	Combining list + edit views
	Customizing the TScaffoldView

	Data Mapper
	When to Use It
	SqlMap Data Mapper
	Setting up a database connection and initializing the SqlMap
	A quick example
	Combining SqlMap with Active Records
	References

	Advanced Topics
	Collections
	Using TList
	Using TMap

	Authentication and Authorization
	How PRADO Auth Framework Works
	Using PRADO Auth Framework
	Using TUserManager
	Using TDbUserManager

	Security
	Viewstate Protection
	Cross Site Scripting Prevention
	Cookie Attack Prevention

	Assets
	Asset Publishing
	Customization
	Performance
	A Toggle Button Example

	Master and Content
	Master vs. External Template

	Themes and Skins
	Introduction
	Understanding Themes
	Using Themes
	Theme Storage
	Creating Themes

	Persistent State
	View State
	Control State
	Application State
	Session State

	Logging
	Using Logging Functions
	Message Routing
	Message Filtering

	Internationalization (I18N) and Localization (L10N)
	Separate culture/locale sensitive data
	Configuration
	What to do with messages.xml?
	Using a Database for translation
	Setting and Changing Culture
	Localizing your PRADO application
	Using localize function to translate text within PHP
	Compound Messages

	I18N Components
	TTranslate
	TDateFormat
	TNumberFormat
	TTranslateParameter
	TChoiceFormat

	Error Handling and Reporting
	Exception Classes
	Raising Exceptions
	Error Capturing and Reporting
	Customizing Error Display

	Performance Tuning
	Caching
	Using pradolite.php
	Changing Application Mode
	Reducing Page Size
	Other Techniques

	Client-side Scripting
	Introduction to Javascript
	Hey, I didn't know you could do that
	JSON (JavaScript Object Notation)
	What do you mean? A function is an object too?
	Arrays, items, and object members
	Enough about objects, may I have a class now?
	Functions as arguments, an interesting pattern
	This is this but sometimes this is also that

	Developer Notes for prototype.js
	What is that?
	Using the $() function
	Using the $F() function

	DOM Events and Javascript
	Basic event handling
	Observing keystrokes
	Getting the coordinates of the mouse pointer
	Stopping Propagation
	Events, Binding, and Objects
	Removing Event Listeners

	Javascript in PRADO, Questions and Answers
	How do I include the Javascript libraries distributed with Prado?
	Publishing Javascript Libraries as Assets

