
Contents
NAME 2

HOW TO USE THIS DOCUMENT 2

REFERENCE 2

SYNOPSIS 2

SPECIFYING OPTIONS 3
OPTIONS . 3

TUTORIAL AND DESCRIPTION 13
Overview . 14
A Word About Program Defaults . 14
Getting Help . 15
Controlling Program Output . 15
Managing Complexity . 15
Renaming Basics . 17
Literal String Substitution . 17
Substitution Instances . 18
Limiting Renaming To Only Part Of Name 19
More About Slice Notation . 20
Multiple Substitutions . 21
More About Command Line Pitfalls . 22
Forcing Renaming . 24
Ignoring Case . 25
Case Transformation . 26
The Strange Case Of Mac OS X And Windows 26
Using Regular Expressions . 27
Changing The Renaming Separator & Escape Characters 28
Interactive Renaming . 28
An Overview Of Renaming Tokens . 29
Renaming Token Pitfalls . 31
Renaming Tokens: The Gory Details . 32
What’s The Difference Between An “Attribute” And A “Sequence”? 32
How tren Uses File Metadata . 33
General Attribute Renaming Tokens . 34
Time-Related Attribute Renaming Tokens 36
System Renaming Tokens . 37
Sequence Renaming Tokens . 40
General Format Of Sequence Renaming Tokens 41
Let’s Learn The Alphabet . 42
Counting Pattern Format . 44
Types Of Sequence Renaming Tokens . 48

COMMON TASKS AND IDIOMS 51

ODDS AND ENDS 52

1

BUGS, MISFEATURES, OTHER 53

HOW COME THERE’S NO GUI? 54

COPYRIGHT AND LICENSING 54

AUTHOR 54

DOCUMENT REVISION INFORMATION 54

NAME

tren - Advanced File Renaming

HOW TO USE THIS DOCUMENT

tren is a powerful command line file/directory renaming tool. It implements a variety
of sophisticated renaming features than can be a bit complex to learn. For this reason,
this document is split into two general sections: “REFERENCE” and “TUTORIAL
AND DESCRIPTION”. If you are new to tren, start by studying the latter section first.
It will take you from very simple- to highly complex tren renaming operations. Once
you’ve got a sense of what tren can do, the reference section will be handy to look up
options and their arguments.

!DANGER!
tren is very powerful and can easily and automatically rename things in ways
you didn’t intend. It is strongly recommended that you try out new tren oper-
ations with the -t option on the command line. This turns on the “test mode”
and will show you what the program would do without actually doing it. It
goes without saying that you should be even more careful when using this
program as the system root or administrator. It’s quite easy to accidentally
rename system files and thereby clobber your OS. You have been warned!!!

REFERENCE

SYNOPSIS

tren.py [-aCcdfhqtvXx] [-A alphabet] [-I file] [-i range] [-P esc] \
[-R sep] [-r old=new] [-S suffix] [-w width] file|dir ...

2

SPECIFYING OPTIONS

You may specify tren options in one of three ways:

1) On the command line

2) In an “include” file specified with -I filename on the com-
mand line

3) Via the $TREN environment variable

Options specified on the command line are evaluated from left to right and supercede
any options specified in the environment variable. Think of any options set in $TREN
as the “leftmost command line options”.

All options must precede the list of files and/or directories being renamed. If one of
your rename targets start with the - character, most command shells recognize the
double dash as an explicit “end of options” delimiter:

tren.py -opt -opt -- -this_file_starts_with_a_dash

The list of items targeted for renaming must name directories or files that exist or be
a wildcard that expands to existing directories or files. If you specify a non-existent
renaming target, tren will display an error and stop further processing.

Most shells aren’t too fussy about space between an option that takes an argument, and
that argument:

-i 1
-i1

Use whichever form you prefer. Just be aware that there are places where spaces matter.
For example, you can quote spaces on your command line to create renaming requests
that, say, replace spaces with dashes..

Some options below are “global” - they change the state of the entire program perma-
nently and cannot be undone by subsequent options. Some options are “toggles”, they
can be turned on- and off as you move from left- to right on the command line. In
this way, certain options (like case sensitivity, regular expression handling, and so on)
can be set differently for each individual renaming request (-r). (If you’re very brave,
you can select the -d option to do a debug dump. Among many other things, the tren
debugger dumps the state of each renaming request, and what options are in effect for
that request.)

OPTIONS

-A alphabet Install a user-defined “alphabet” to be
used by sequence renaming tokens.

(Default: Built-in alphabets only)

The alphabet is specified in the form:

name:characterset

3

Both the name and the characterset
are case- and whitespace-sensitive (if
your shell permits passing spaces on
the command line). The “0th” ele-
ment of the alphabet is the leftmost
character. The counting base is the
length of characterset. So, for
instance, the following alphabet is named
Foo, counts in base 5 in the sequence,
a, b, c, d, e, ba, bb, ...:

-A Foo:abcde

-a Ask interactively before renaming each
selected file or directory.

(Default: off)

If you invoke this option, tren will
prompt you before renaming each file.
The default (if you just hit Enter)
is to not rename the file. Otherwise,
you have the following options:

n - Don’t rename the current file

y - Rename the current file

! - Rename all the remaining files
without further prompting

q - Quit the program

These options are all insensitive to case.

If you’re doing forced renaming (-f),
this option will interactively ask you
first about making any necessary back-
ups and then renaming the original
target. If you decline to do the backup
renaming, but accept the renaming of
the original target, the file or direc-
tory that already exists with that name
will be lost!.

-b Turn off backups during forced re-
naming.

(Default: Do Backups)

Ordinarily, tren will refuse to do a
renaming if the new name for a file-
or directory already exists. You can

4

override this with the -f (forced re-
naming) option. By default, forced
renaming makes a backup copy of the
existing file (by appending .backup
to its name or some other suffix you
specify with the -S option) before do-
ing the renaming. This prevents ex-
isting files from being lost due to a
renaming. The -b option inhibits back-
ups and allows renaming over exist-
ing file- and directory names, thereby
losing the original file- or directory.

-C Do case sensitive renaming

(Default: This is the program
default)

This option is provided so you can
toggle the program back to its default
behavior after a previous -c on the
command line.

This option is observed both for lit-
eral and regular expression-based re-
naming (-x). .

-c Collapse case when doing string sub-
stitution.

(Default: Search for string
to replace is case sensitive)

When looking for a match on the old
string to replace, tren will ignore the
case of the characters found in the file
name. For example:

tren.py -cr Old=NEW Cold.txt fOlD.txt

This renames both files to CNEW.txt
and fNEW.txt respectively. Notice
that the new (replacement) string’s case
is preserved.

This option is observed both for lit-
eral and regular expression-based re-
naming (-x).

-d Dump debugging information

(Default: Off)

Dumps all manner of information about
tren internals - of interest only to pro-
gram developers and maintainers. This

5

option provides internal program state
at the time it is encountered on the
command line. For maximum debug
output, place this as the last (right-
most) option on the command line,
right before the list of files and direc-
tories to rename. You can also place
multiple -d options on the command
line to see how the internal tables of
the program change as various options
are parsed.

This option also shows each incre-
mental change to a file name as each
renaming request specified on the com-
mand line is applied. This can be hel-
ful when figuring out a new/complex
renaming operation. This is most eas-
ily used by invoking the “quiet” and
“test” modes:

tren.py -tqd -r... -r... file file...

-e casetype Force case change to casetype.

(Default: No forced case.)

This option supports a number of casetype
arguments to transform the case of
the file name:

c - Capitalize the file name
l - Force file name to lower-case
s - Swap case of file name characters
t - Force file name to title case
u - Force file name to upper-case

“Title case” just means that any al-
phabetic character following a non-
alphabetic character will be capital-
ized:

tren.py -et fee_fi_fo # -> Fee_Fi_Fo

Notice that these case transformations
are a kind of special built-in renam-
ing request with one important dif-
ference: The -i “instance” setting is
ignored. That’s because the -e op-
tion isn’t based on replacing an “old”
string like the -r renaming option,
but rather operates on the file name
as a whole.

6

There is, however, a way to limit the
effect of the case forcing options be-
cause the -T or “target” option is ob-
served. You can thus limit the which
portion of the file name should have
its case changed:

tren.py -T4:6 -eu fee_fi_fo # -> fee_FI_fo

-f Force renaming even if target file or
directory name already exists.

(Default: Skip renaming if a file or
directory already exists by the same
name as the target.)

By default, tren will not rename some-
thing to a name that is already in use
by another file or directory. This op-
tion forces the renaming to take place.
However, the old file or directory is
not lost. It is merely renamed itself
first, by appending a suffix to the orig-
inal file name. (Default: .backup, but
you can change it via the -S option.)
This way even forced renames don’t
clobber existing files or directories.

-h Print help information.

-I file “Include” command line arguments
from file

It is possible to perform multiple re-
naming operations in one step using
more than one -r option on the tren
command line. However, this can make
the command line very long and hard
to read. This is especially true if the
renaming strings are complex, con-
tain regular expressions or Renaming
Tokens, or if you make heavy use of
command line toggles.

The -I option allows you to place
any command line arguments in a sep-
arate file in place of- or in addition
to the tren command line and/or the
$TREN environment variable. This
file is read one line at a time and the
contents appended to any existing com-
mand line. You can even name the
files you want renamed in the file, but
they must appear as the last lines of

7

that file (because they must appear
last on the command line).

Whitespace is ignored as is anything
from a # to the end of a line:

Example replacement string file
Each line appended sequentially
to the command line

-xr t[ext]+=txt # Appended first
-X
-r =/MYEAR/ -r foo=bar
my.file
your.file # Appended last

You may “nest” includes. That is,
you can include file x, that includes
file y, that includes file z and so on.
However, its easy to introduce a “cir-
cular reference” when you do this. Sup-
pose file z tried to include file x in
this example? You’d be specifying an
infinite inclusion loop. To avoid this,
tren limits the total number of inclu-
sions to 1000. If you exceed this,
you’ll get an error message and the
program will terminate.

Note that wildcard metacharacters like
* and ? that are embedded in file
names included this way are expanded
as they would be from the command
shell.

You can define an environment vari-
able, TRENINCL, to specify a path
to search to find the named include
file(s). tren will use the first (left-
most) instance of the include file it
finds along this path. If none are found,
tren uses the file path as passed on
the command line. This allows relative-
and absolute include file paths to be
used along with files in an include
path:

export TRENINCL=$HOME/.tren:/some/where/else
cp file1 $HOME/.tren/
tren.py -I file1 -I foo/file2 -I /foo/bar/file3 *

8

’file1’ will be found in $HOME/.tren/
’file2’ will be found relative to current dir
’file3’ will be found on absolute path

Note that when defining TRENINCL,
you must use the path delimiter ap-
propriate for the operating system in
question. For Windows, this is ;, For
all other supported OSes, it is :.

-i instances Specifies which “instances” of match-
ing strings should be replaced.

(Default: 0 or leftmost)

A file may have multiple instances of
the old renaming string in it. The
-i option lets you specify which of
these (one, several, all) you’d like to
have replaced.

Suppose you have a file called foo1-foo2-foo3.foo4.
The leftmost foo is instance 0. The
rightmost foo is instance 3. You can
also refer to instances relative to the
right. So the -1 instance is the last
(rightmost), -2, second from the last,
and so forth.

Often, you just want to replace a spe-
cific instance:

-i :3 -r foo=boo
-i :-1 -r foo=boo

Both of these refer to the last instance
of old string foo (found at foo4 in
our example name).

Sometimes, you’d like to replace a
whole range of instances. An “in-
stance range” is specified using the :
separator in the form:

-i first-to-replace:stop-here

Notice that the “stop-here” instance
is NOT replaced. In our string above,
the option:

-i 1:-1 -r foo=boo

Would change the file name to:

foo1-boo2-boo3.foo4

You can also provide partial ranges:

9

-i 1: # Instance 1 to end of name

-i :-2 # Instances to (not including) next-to-last

-i : # All instances

If you provide an instance range that
makes no sense or is out of range,
tren will ignore the argument and
leave the instance specification unchanged.

-P char Use char as the escape symbol.

(Default: \)

-q Quiet mode, do not show progress.

(Default: Display progress)

Ordinarily, tren displays what it is
doing as it processes each file. If you
prefer to not see this “noisy” output,
use the -q option. Note that this does
not suppress warning and error mes-
sages.

It doesn’t make much sense to use
this option in test mode (-t), although
you can. The whole point of test mode
is to see what would happen. Using
the quiet mode suppresses that out-
put.

-R char Use char as the separator symbol in
renaming specifications.

(Default: =)

-r <old=new> Replace old with new in file or di-
rectory names.

Use this option to specify which strings
you want to replace in each file name.
These strings are treated literally un-
less you also invoke the -x option. In
that case, old is treated as a Python
style regular expression.

Both old and new may optionally
contain renaming tokens described later
in this document.

If you need to use the = symbol within
either the old or new string, simply
escape it: \=

10

If it is convenient, you can change
the separator character to something
other than = via the -R option. Simi-
larly, you can change the escape char-
acter via the -P option.

You can have multiple instances of
this option on your tren command line:

tren.py -r old=new -r txt:doc old-old.txt

This renames the file to:

new-old.doc

Remember that, by default, tren only
replaces the first (leftmost) instance
of the old string with the new.

Each rename specification on the com-
mand line “remembers” the current
state of all the program options and
acts accordingly. For example:

tren.py -cr A=bb -Cr B=cc ...

The A=bb replacement would be done
without regard to case (both A and a
would match), whereas the B=cc re-
quest would only replace B.

-S suffix Suffix to append when making backup
copies of existing targets.

(Default: .backup)

If you choose to force file renaming
when the new name already exists (-f),
tren simply renames the existing file
or directory by appending a suffix to
it. By default, this suffix is .backup,
but you can change it to any string
you like with the -S‘ option.

-T range Target the range of characters within
file name subject to renaming.

(Default: Entire file name
is subject to renaming.)

Ordinarily, tren applies re-
naming requests and forced
case conversions to the en-
tire file name. The -T op-
tion allows you to specify
some substring of the name
as the “target” for renaming.

11

The “range” argument is in
the same slice notation used
for the -i command. So,
for example:

tren.py -T1:3 -r=XYZ abcdefg # -> aXYZdefg

Similarly:

tren.py -T 1:4 -es aXYZdefg # -> axyzdefg

The -T option operates on
all subsequent renaming or
case forcing operations to the
right of it on the command
line. So, if you want to go
back to the default behavior
of applying renaming to the
entire file, you have to set
the “target” back to the en-
tire file name:

tren.py -T1:4 -es -T: -rg=-X axyzdeg # -> aXYZde-X

As with the -i option, range slices
that make no sense or are out of range,
are simply ignored, and the portion
of the file name targeted for renam-
ing is left unchanged.

-t Test mode, don’t rename, just show
what the program would do.

tren is very powerful and capable of
doing nasty things to your file and di-
rectory names. For this reason, it is
helpful to test your tren commands
before actually using them. With this
option enabled, tren will print out di-
agnostic information about what your
command would do, without actually
doing it.

If your renaming requests contain ran-
dom renaming tokens, test mode will
only show you an approximation of
the renaming to take place (because
new random name strings are gener-
ated each time the program runs).

-v Print detailed program version infor-
mation and keep running.

This is handy if you’re capturing tren
output into a log and you want a record

12

of what version of the program was
used.

-w length Set the length of diagnostic and error
output.

(Default: 80)

tren limits output to this length when
dumping debug information, errors,
warnings, and general information as
it runs. This option is especially use-
ful when you’re capturing tren out-
put into a log and don’t want lines
wrapped:

tren.py -w999 2>&1 > tren.log

tren makes sure you don’t set this to
some unreasonably small value such
that output formatting would be im-
possible.

-X Treat the renaming strings literally

(Default: This is the program
default)

This option is provided so you can
toggle the program back to its default
behavior after a previous -x on the
command line.

-x Treat the old string in a -r replace-
ment as a Python style regular expres-
sion for matching purposes.

(Default: Treat the old string
as literal text)

TUTORIAL AND DESCRIPTION

!DANGER!
ONE MORE TIME: tren is a powerful file and directory renaming tool. Be
sure you know what you’re about to do. If you’re not, run the program in test
mode (invoke with the -t option) to see what would happen. You have been
warned!

The following sections are designed for the new- or occasional tren user. They begin
with the simplest of tren operations and incrementally build more and more complex
examples, eventually describing all of tren’s capabilities.

13

Overview

tren is a general purpose file and directory renaming tool. Unlike commands like mv,
tren is particularly well suited for renaming batches of files and/or directories with a
single command line invocation. tren eliminates the tedium of having to script simpler
tools to provide higher-level renaming capabilities.

tren is also adept at renaming only part of an existing file or directory name either
based on a literal string or a regular expression pattern. You can replace any single,
group, or all instances of a given string in a file or directory name.

tren implements the idea of a “renaming token”. These are special names you can
embed in your renaming requests that represent things like the file’s original name, its
length, date of creation, and so on. There are even renaming tokens that will substitute
the content of any environment variable or the results of running a program from a shell
back into the new file name.

tren can automatically generate sequences of file names based on their dates, lengths,
times within a given date, and so on. In fact, sequences can be generated on the basis
of any of the file’s stat information. Sequence “numbers” can be ascending or de-
scending and the count can start at any initial value. Counting can take place in one
of several internally defined counting “alphabets” (decimal, hex, octal, alpha, etc.) OR
you can define your own counting alphabet. This allows you to create sequences in any
base (2 or higher please :) using any symbol set for the count.

A Word About Program Defaults

tren has many options, but its defaults are designed to do two things: a) Simplify
the most common operations by making them the default (no options required on the
command line), and 2) Reduce the risk of accidentally modifying more of the file name
than you intented. So, by default:

tren treats renaming requests literally. That is, the “old string” you specify
for replacement is treated as literal text. It requires a command line option
(-x) to treat it as a regular expression. However, any renaming tokens
found in either the old- or new strings of a renaming request are interpreted
before the renaming takes place.

tren renaming is case sensitive. If you want to ignore case, use the -c
option.

tren will only replace the first (leftmost) instance of “old string” with “new
string”. If you want more- or different instances replaced, use the -i
option.

tren will not allow you to rename a file or directory if one with the new
name already exists. Such attempts will cause no change to the file or
directory being processed and an error message will be displayed. This is
intentional to force you to manually rename or remove the file or directory
that would have been clobbered by a rename. You can override this default
and force a renaming via the -f option. This will cause the orginal file or

14

directory itself to be renamed with a .backup suffix. You can change
this suffix via the -S option.

Getting Help

There are three command line options that can give you some measure of help and
information about using tren:

-d Dumps debug information out to stderr.
You can insert multiple instances of
this option on the command line to
see how the program has parsed ev-
erything to the left of it. This is pri-
marily intended as a debugging tool
for people maintaining tren but it does
provide considerable information on
the internal state of the program that
advanced users may find useful.

-h Prints a summary of the program in-
vocation syntax and all the available
options and then exits.

-v Prints the program version number and
keeps running.

Controlling Program Output

As tren runs, it produces a variety of diagnostic and status information. There are a
number of options you can use to control how this works:

-q Sets “quiet” mode and suppresses ev-
erthing except error messages.

-w num Tells tren to wrap lines after num char-
acters have been printed. If you’re
capturing output to a log, set this to a
very high number like 999 to inhibit
line wrapping.

Error and debug messages are sent to stderr. Normal informational messages are
sent to stdout. If you want to capture them both in a log, try something like this
(depending on your OS and/or shell):

tren.py 2>&1 >tren.log

Managing Complexity

As you learn more of the program features, the tren command line can get long, com-
plex, and easy to goof up. It’s also hard to remember all the various options, how they

15

work exactly, and which specific one you need. For this reason, it is highly recom-
mended that - once you have a renaming request working the way you like - if you plan
to use it again, save it as an “include” file. That way you can reuse it easily without
having to keep track of the details over and over. Instead of this:

tren.pu -c -i -1 -r .jpeg=.jpg file ...

Do this:

tren.py -I jpeg-to-jpg.tren file...

What’s in the jpeg-to-jpg.tren file? Just this:

tren Command Line
Converts ’.jpeg’ (in any case mixture) file name suffix to ’.jpg’

Make the replacement case insensitive
-c # Reset this later on the command line with -C

Only replace the rightmost instance
-i -1

The actual replacement request
-r .jpeg=.jpg

Notice that you can stick comments in the file anywhere you like and that they begin
with #. Notice also that the various options can be entered on separate lines so it’s
simpler to read the include file. If you find it useful, you can even include other include
files in an include file:

Get the jpeg -> jpg suffix renaming

-I jpeg-to-jpg.tren

Let’s make it fancy

-i -1 -r .jpg=.fancy.jpg

If you do this, take care not to create a circular include. This can happen when an
include file tries to include itself, either directly, or via another include file. tren limits
the total number of includes to a very large number. If it sees that the number has been
exceeded, it suspects a circular include and will issue an error message to that effect
and exit.

You can insert include options anywhere you like on the command line and you can
have as many as you like (up to a large number you’ll never hit in practice). Each
include reference will be replaced with the contents of that file at the position it appears
on the command line.

If you find yourself using certain options most- or every time you use the program,
you can put them in the $TREN environment variable. tren picks this up every time it
starts. This minimizes errors and reduces typing tedium. Just keep in mind that some
options can be overriden later on a command line, and some cannot. For instance,
suppose you do this:

16

export TREN=-f -c

The -c option to ignore case can be undone on the command line with a -C option.
However, the -f option cannot be undone.

So ... choose the options you want to make permanent in the environment variable
wisely.

Renaming Basics

tren supports a variety of renaming mechanisms. The one thing they have in common
is that they’re built with one or more renaming requests that will be applied to one or
more file- or directory names. Renaming requests look like this on the tren command
line:

tren.py ... -r old=new ... -r old=new ... list of files/directories

No matter how complicated they look, the basic logic of the renaming request stays the
same: “When you find the string old in the file- or directory name, change it to the
string new.

The old and new renaming strings are built using a variety of building blocks:

Old Strings Are Built
With:

New Strings Are Built
With:

Literal Text Literal Text
Regular Expressions Renaming Tokens
Renaming Tokens

You can use any of these building blocks alone or combine them to create expressive
and powerful renaming schemes.

Literal String Substitution

Literal String Substitution is just that - it replaces one literal string with another to
rename the target file or directory. This is the most common, and simplest way to use
tren. This is handy when you have files and directories that have a common set of
characters in them you’d like to change. For instance:

tren.py -r .Jpeg=.jpg *.Jpeg

This would rename all files (or directories) whose names contained the string .Jpeg
and replace it with .jpg. Well ... that’s not quite right. Unless you specify otherwise
with the -i option, only the first (leftmost) instance of “old“ is replaced with “new“.
So, for example, if you started out with the file, My.Jpeg.Jpeg and ran the command
above, you’d end up with a new file name of My.jpg.Jpeg

You can omit either old or new strings in a renaming specification, but never both.

If you omit the old string, you’re telling tren to change the whole file name:

17

tren.py -r =MyNewFilename foo #New Name: MyNewFilename

Be careful with this one. If you apply it to a list of files or directories, it’s going to
try and name them all to the same name. By default, tren will refuse to overwrite an
existing file name, so it will stop you from doing this. If you absolutely insist on this
via the -f option, you’ll get a bunch of files ending with .backup. Say you have files
a, b, and c:

tren.py -fr =NewName a b c

When the command completes, the files will have been renamed in this fashion:

a -> NewName.backup.backup
b -> NewName.backup
c -> NewName

If you omit the new string, you’re telling tren to remove the leftmost instance of old
string (or other instances via the -i option described below) from the file- or directory
name. For example:

tren.py -rfoo= foo1-foo2-foo3.foo4 # New name: 1-foo2-foo3.foo4

If you try to omit both old and new strings, you’re effectively telling tren to change
the existing file name to ... nothing (a null string). This is impossible because file
names must be at least one character long. tren enforces both this minimum length
AND the maximum legal length of new file names. It will print an error and exit if
your renaming attempt would violate either of these limits. (As of this writing, the
maximum file- or directory name length allowed by the operating systems on which
tren runs is 255 characters.)

Substitution Instances

As we just saw above, sometimes the old string appears in several places in a file- or
directory name. By default, tren only replaces the first, or leftmost ”instance“ of an
old string. However, using the -i option you can specify any instance you’d like to
replace. In fact, you can even specify a range of instances to replace.

Instances are nothing more than numbers that tell tren just where in the name you’d
like the replacement to take place. Positive numbers means we’re counting instances
from the left end of the name. The leftmost instance is 0 (not 1!!!).

You can also count backwards from the right end of the string using negative numbers.
-1 means the last instance, -2 means next-to-last, and so on. In summary, counting from
the left starts at zero and counting from the right starts at -1.

Suppose you have a file called:

foo1-foo2-foo3.foo4

The leftmost foo1 is instance 0 of old string foo. It is also instance -4. The rightmost
foo4 is instance 3 of old string foo, and also instance -1.

You can specify a single instance to replace:

tren.py -i 1 -r f=b foo1-foo2-foo3.foo4 #New Name: foo1-boo2-foo3.foo4

18

tren.py -i -1 -r f=b foo1-foo2-foo3.foo4 #New Name: foo1-foo2-foo3.boo4

You can also specify a range of instances to replace using the notation:

-i first-to-replace:stop-here

All instances from the ”first-to-replace“ up to, but NOT including ”the stop-here“ are
replaced:

tren.py -i 1:3 -r f=b foo1-foo2-foo3.foo4 #New Name: foo1-boo2-boo3.foo4

tren.py -i -4:-2 -r f=b foo1-foo2-foo3.foo4 #New Name: boo1-boo2-foo3.foo4

-i : means ”replace all instances“:

tren.py -i: -r f=b foo1-foo2-foo3.foo4 #New Name: boo1-boo2-boo3.boo4

You can also use partial range specifications:

tren.py -i 1: -r f=b foo1-foo2-foo3.foo4 #New Name: foo1-boo2-boo3.boo4

tren.py -i :-2 -r f=b foo1-foo2-foo3.foo4 #New Name: boo1-boo2-foo3.foo4

Note that you cannot specify individual, non-adjacent instances. There is no way to use
a single tren command to replace, say, the only the 2nd and the 4th instance of an old
string. Doing that requires two renaming requests. As we’ll see in the section below,
the good news is that we can do them both on a single tren invocation.

Limiting Renaming To Only Part Of Name

Sometimes you just want to rename a part of a file- or directory name (aka a name
”substring“). As described below, you can use a Regular Expression to do this, but this
can be complicated and is often overkill for simple substitutions. tren gives you the
ability to limit the renaming action to a ”targeted“ portion of the name using the -T
option. You simply supply a ”slice“ describing the portion of the name to be renamed:

tren.py -i: -T :3 -r=x abcdef.text # -> xdef.text
tren.py -i: -T :-4 -re=E abcdef.text # -> abcdEf.text

It’s important to understand how -i and -T interact. Even though all instances of
a matching old string are specified via the -i: option, the -T option that follows
it limits the portion of the name being considered for renaming. For instance, in the
second example, removing the -T targeting gives us:

tren.py -i: -re=E abcdef.text # -> abcdEf.tExt

So, -T lets you specify what substring of the full name is a candidate for renaming.
All other renaming operations like -i, -r, and so on operate only upon the substring
specified by -T.

If you specify multiple renaming operations on the command line, any -T targeting
will remain in effect for each renaming request. For instance:

19

tren.py -T -1 -r=OO -r=x foo

This will yield incremental renamings of:

foo -> foOO
foOO -> foOx # Final name

In other words, each incremental renaming request honors the current state of the -T
option. To turn off targeted renaming - that is, make the whole file name the target
again - simply include -T : on the command line. All renaming requests to the right
of it will then target the whole name:

tren.py -T -1 -r=OO -T: -rO=x foo # Yields: foxO

More About Slice Notation

Both the -i and -T options use ”slice“ notation so it’s useful to understand a bit more
about how ”slices“ are constructed.

Note
Although both options use slice notation, they mean very different things. In
the case of -i, the slice specifies which instances of an old string are to be
replaced. In the case of -T, the slice defines which characters in the original
file name are ”targeted“ for renaming.

tren is written in the Python programing language. The slice notation is lifted directly
from that language. if you’re a Python programmer, you can skip this section :)

Imagine you have a file name like this:

abcdef.txt

Each character in the name has an ”index“ or number that tells you what position is
occupies in the name. You can count from the left end of the name starting with 0:

Character Index From Left
--------- ---------------
a 0
b 1
...
x 8
t 9

You can also count backwards relative to the right end of the name:

Character Index From Right
--------- ---------------=
a -10
b -9
...
x -2
t -1

Notice that left-relative indexes are positive numbers beginning with 0, but right-relative
indexes are are negative numbers beginning at -1.

20

So, what’s a slice? A slice is a way of specifying a range of one or more values. In
the case of the -T option, ”values“ means ”positions in the name string targeted for
renaming.“ In the case of the -i option, ”values“ means which instances of a given
string should be renamed.

In our example above, the bcd portion of the name could be defined several different
ways:

1:4
-9:-6

The general form of a slice is:

first character/instance:stop on this character/instance

This can be tricky to get used to. The number on the righthand side is not included in
he slice - it is where the slice ends.

There are other shortcut forms of slice notation:

:3 # Same as 0:3
3: # From 4th char/instance through/including end
: # All chars/instances are included in the slice

In short, slices are a compact way to specify a range of things. If you specify a slice
that makes no sense like -4:3, tren will just ignore it and not do any consequent
renaming.

Multiple Substitutions

You can put as many renaming requests on a tren command line as you like (.... well,
up to the length limit imposed by your operating system and shell, anyway). As we
just saw, this can be handy when a single renaming request can’t quite do everything
we want.

BUT ... there’s a catch. In designing your renaming requests, you have to keep in mind
that tren processes the command line from left to right, incrementally constructing the
new name as it goes. That is, the leftmost renaming request operates on the original
file- or directory name. The next renaming request to the right operates on that new
name, and so on. In other words, each renaming request modifies the name produced
thus far by all the renaming requests to the left of it on the command line.

For instance:

tren.py -r foo=bar -r foo=baz foo1-foo2-foo3.foo4

Produces ... wait a second ... why on earth are there two renaming requests with
identical old strings on the same command line? Shouldn’t this produce a final name
of baz1-foo2-foo3.foo4?

Nope. After the leftmost renaming request has been processed, the new name is
bar1-foo2-foo3.foo4. Remember that, by default, tren only replaces the left-
most or 0th instance of an old string. So, when the second renaming request is pro-
cessed, the instance 0 of foo is now found in the string foo2. So, the final name will
be, bar1-baz2-foo3.foo4.

21

The lesson to learn from this is that multiple renaming requests on the command line
will work fine, but you have to do one of two things (or both):

1) Make sure you’re tracking what the ”intermediate“ names will
look like as the new file name is being constructed, renaming
request, by renaming request.

2) Make sure the renaming requests operate on completely dis-
joint parts of the file name.

Tip
Similarly, tren remembers the last state of each option as you move from left
to right on the command line. For instance:

tren.py -i1 -r f=F -r o=O foo1-foo2-foo3.foo4
You might be tempted to believe that this would produce:

fOo1-Foo2-foo3.foo4
But it doesn’t. It produces:

foO1-Foo2-foo3.foo4
instead because the -i 1 appears prior to both renaming requests and thus
applies to each of them. If you want the first instance of ”o“ to be replaced,
you need a command line like this:

tren.py -i1 -rf=F -i0 -ro=O foo1-foo2-foo3.foo4
This sort of thing is generally true for all options, so be sure they’re set the
way you want them to the left of a renaming request.

As a practical matter, this can get really complicated to track. If in doubt, it’s always
better to run two separate tren commands in, say, a shell script to make the renaming
explicit, rather than to obscure things with clever command line trickery.

So, let’s go back to our example from the previous section. We want to replace the 2nd
and 4th instances of the string ”foo“ in our file name. We do this with two renaming
requests on the same command line, considering what each one does to the name as it
is encountered:

tren.py -i1 -r foo=bar -i2 -r foo=bar foo1-foo2-foo3.foo4

A good way to get an idea of how incremental renamings would take place is to run tren
is test and debug modes because debug will dump an incremental renaming sequence
description as it goes:

tren.py -tdq -rfi=fud -et fee_fi_fo

The (partial) debug output will show you this:

tren.py DEBUG: Renaming Sequence: fee_fi_fo--->fee_fud_fo--->Fee_Fud_Fo

More About Command Line Pitfalls

As we just saw, you can get surprising results as tren works its way through the com-
mand line from left to right. There are other potential pitfalls here, so it’s helpful to
understand just how tren processes your command line, step-by-step:

22

1) Prepend the contents of $TREN to the user-provided command
line.

This allows you to configure your own default set of
options so you don’t have to type them in every time.

2) Resolve all references to include files.

This has to be done before anything that follows, be-
cause include files add options to the command line.

3) Build a table of every file name to be renamed.

We’ll need this information if any of the renaming re-
quests use the file attribute- or sequence renaming to-
kens (discussed later in this document).

4) Build a table containing each renaming request storing the cur-
rent state of every program option at that point on the command
line.

This allows tren to apply options differently to dif-
ferent renaming requests on the same command line.
This came in handy in our example of the previous
section.

5) Resolve any renaming tokens found in either the old or new
portions of the renaming request.

At this point, both old and new are nothing more
than simple strings (although old may be interpreted
as a regular expression rather than literally if the op-
tion to do so is in effect).

6) Process each file found on the command line in left to right
order, applying each renaming request, in the order it appeared
from left to right on the command line.

Simple eh? Well, mostly it is ... until it isn’t. As we just saw, incrementally building up
a new name with multiple renaming requests can produce unexpected results and we
have to plan for them.

Similarly, you can inadvertently accidentally give a file the wrong name entirely ... this
is usually a Bad Thing.

Say you have two files, x and y. You want to rename x to y and y to z1. Well, order
matters here. Say you do this:

tren.py -fr x=y -r y=z1 x y

Let’s see what happens in order:

1) File x renaming:

x -> y
y -> z1

So, file x is renamed z1 (!)

23

2) File y renaming:

y -> z1 oops, x1 exists, we need a backup

z1 -> z1.backup

y -> z1

Um ... not quite what we wanted. However, if we shuffle around the order of renaming
arguments AND the order in which to process the files, we can get what we want:

tren.py -r y=z1 -r x=y y x

Notice that we can drop the -f option because there is no longer a naming conflict (see
the next section for more about forced renaming).

Tip
Always remember” The Rightmost Renaming Request “Wins”!

The point here, as we’ve said already, is that you have to be very careful when con-
structing command lines, keeping track of options, and what order you specify both
renaming requests and the files- and directories to be renamed. As always, the simple
way around this is to run multiple, separate tren commands, each with its own single
renaming request.

Forcing Renaming

By default, tren will not allow you to perform a renaming operation if the new name
already exists. For example, say you have three files, a, aa, and b, and you try this:

tren.py -r a=b a aa b

tren will skip the renaming of file a because a file named b already exists. It will,
however, continue to run and rename aa, to ba.

This is designed to prevent you from accidentally clobbering files that already exist.
You can, however, override this default behavior and force the renaming to take place
in such situations, using the -f option. Even then, the existing file isn’t lost, it is
simply renamed itself by appending the suffix .backup to its original name. That
way, if you made a mistake, you haven’t lost the original file. So, in our example
above, the command becomes:

tren.py -fr a=b a aa b

When it’s done, we end up with these files:

b # The original ’a’ file
b.backup # The original ’b’ file
ba # The original ’aa’ file

If you don’t like the suffix, .backup, you can change it to any string (of length 1 or
greater) via the -S option:

tren.py -S .bku -fr a=b a aa b

24

Now the backed up file will be named b.bku.

tren will even backup files that are themselves backups. This can be handy if your
renaming request ends up mapping more than one file- or directory name to the same
new name:

tren.py -fr =newname a b c

This produces files named:

newname # The original ’c’ file
newname.backup # The original ’b’ file
newname.backup.backup # The original ’a’ file

You can inhibit this behavior and prevent backups with the -b option. This effectively
erases the original file- or directory of that name. This is very dangerous and should
rarely be used. It’s better to do the backups and delete them later when you’re sure you
do not need them. The underlying operating system rules for renaming will still apply
in this case. For instance, most OSs will not allow you rename a file over the name of
an existing directory and vice versa.

Note
The Unix mv command will allow you to move a file into a directory:

mv file dir
However, this is an mv “move” semantic, and is not properly a renaming op-
eration. The underlying file system will not permit a file to be renamed over a
directory or vice versa. tren reflects this OS semantic ... it’s not intended to
be a reimplementation of mv.

Ignoring Case

“Literal” string substitution means just that - tren must find an exact instance of old
in the file name being renamed and replace it with new. So, the default is to do case
sensitive matching. There are times, however, when you want to ignore case when
doing this matching. For example, suppose you have file names with a variety of
suffixes in various case combinations like .jpeg, .Jpeg, and .JPEG. Suppose you’d
like these to all be changed to .jpg. Rather than having to do three separate renaming
operations it’s handy to just ignore case when matching the old string for replacement.
That’s what the -c option is for:

tren.py -i -1 -c -r.jpeg=.jpg *.jpeg *.Jpeg *.JPEG

Notice that the case insensitivity only applies to the matching of the old string. Once
tren has determined such a match exists, the new string is used literally with case
intact.

You can turn case sensitivity on- and off for various renaming requests on the same
command line. -C turns case sensitivity on, and - as we just saw - -c turns it off:

tren.py -cr X=y -Cr A=b ...

The X=y renaming request will be done in a case insensitive manner, whereas the A=b
will be done only on literal instances of upper case A in the target file names.

25

Case Transformation

Sometimes you want to actually force the case of the characters in a filename to change.
You do this with the -e option. This option takes one of several arguments:

c - Capitalize the file name
l - Force file name to lower-case
s - Swap case of file name characters
t - Force file name to title case
u - Force file name to upper-case

“Title case” just means that any alphabetic character following a non-alphabetic char-
acter will be capitalized:

tren.py -et fee_fi_fo # -> Fee_Fi_Fo

These case transformations are a kind of special built-in renaming request with one
important difference: The -i “instance” setting is ignored. That’s because the -e
option isn’t based on replacing an “old” string like the -r renaming option, but rather
operates on the file name as a whole.

You can, however, limit what portion of the filename is “targeted” for case conversion
via the -T option:

tren.py -T 4:6 -et fee_fi_fo # -> fee_Fi_fo

As with all renaming requests, -e is just another incremental renaming operation on
the command line:

tren.py -rfi=fud -et fee_fi_fo # -> fee_fud_fo -> Fee_Fud_Fo

You can actually see these incremental transformations by specifying the -d option on
the command line.

The Strange Case Of Mac OS X And Windows

Mac OS X and Windows have an “interesting” property that makes case renaming a bit
tricky. Both of these operating systems preserve case in file and directory names, but
they do not observe it. (It is possible to change this behavior in OS X when you first
prepare a drive, and make the filesystem case sensitive. This is rarely done in practice,
however.)

These OSs show upper- and lower- case in file names as you request, but they do not
distinguish names on the basis of case. For instance, the files Foo, foo, and FOO, are
all the same name in these operating systems, and only one of these can exist in a given
directory. This can cause tren to do the unexpected when your renaming command is
doing nothing more than changing case. Suppose you start with a file called Aa.txt
and run this command:

tren.py -rA=a Aa.txt

tren will immediately complain and tell you that the file aa.txt already exists and it
is skipping the renaming. Why? Because from the point-of-view of OS X or Windows,
aa.txt (your new file name) is the same as Aa.txt (your original file name). You
can attempt to force the renaming:

26

tren.py -frA=a Aa.txt

Guess what happens? Since tren thinks the new file name already exists, it backs it up
to aa.txt.backup. But now, when it goes to rename the original file ... the file is
gone (thanks to the backup renaming operation)! tren declares an error and terminates.

This is not a limitation of tren but a consequence of a silly design decision in these two
operating systems. As a practical matter, the way to avoid this issue is to never do a
renaming operation in OS X or Windows that only converts case. Try to include some
other change to the file name to keep the distinction between “old name” and “new
name” clear to the OS. In the worst case, you’ll have to resort to something like:

tren.py -rA=X Aa.txt
tren.py -rX=a Xa.txt

Using Regular Expressions

Ordinarily tren treats both the old string you specify with the -r option literally. How-
ever, it is sometimes handy to be able to write a regular expression to specify what you
want replaced. If you specify the -x option, tren will treat your old string as a regular
expresion, compile it (or try to anyway!) and use it to select which strings to replace.
This makes it much easier to rename files that have repeated characters or patterns, and
groups of files that have similar, but not idential strings in their names you’d like to
replace.

Say you have a set of files that are similar, but not identical in name, and you want to
rename them all:

sbbs-1.txt
sbbbs-2.txt
sbbbbbbbbs-3.txt

Suppose you want to rename them, replacing two or more instances of b with X. It
is tedious to have to write a separate literal -r old=new string substitution for each
instance above. This is where regular expressions can come in handy. When you invoke
the -x option, tren understands this to mean that the old portion of the replacement
option is to be treated as a Python style regular expression. That way, a single string
can be used to match many cases:

tren.py -x -r bb+=X *.txt

This renames the files to:

sXs-1.txt
sXs-2.txt
sXs-3.txt

Keep in mind that a literal string is a subset of a regular expression. This effectively
means that with -x processing enabled you can include both regular expressions and
literal text in your “old string” specification. The only requirement is that the string
taken as a whole must be a valid Python regular expression. If it is not, tren will
display an error message to that effect.

For more detail on the Python regular expression syntax, see:

27

http://docs.python.org/library/re.html

Because Python regular expressions can make use of the = symbol, you need a way
to distinguish between an = used in a regular exression and the same symbol used to
separate the old and new operands for the -r option. Where this symbol needs to
appear in a regular expression, it has to be escaped like this: \=. (You can also get
around this by changing the old/new separator character with the -R option.)

As with literal string renaming, regular expression renaming requests honor both the
case sensitivity options (-C and -c) as well as the instance option, -i. So, for exam-
ple:

tren.py -x -ci -1 -r Bb+=X sbbsbbbsbbbbsbbbbbs

You’ll rename the file to sbbsbbbsbbbbsXs

Changing The Renaming Separator & Escape Characters

There may be times when the default renaming separator (=) and/or escape character
(\) make it clumsy to construct a renaming request. This can happen if, say, either the
old- or new string in a literal renaming needs to use the = symbol many times. Another
case where this may be helpful is when constructing complex regular expressions that
need to make use of these characters.

The -R and -P options can be used to change the character used for renaming separa-
tor and escape character respectively. You can use any character you like (these must
be a single character each), but bear in mind that the underlying operating system un-
derstands certain characters as being special. Trying to use them here will undoubtedly
deeply confuse your command shell, and possibly your file system. For example, the
/ character is used as a path separator in Unix-derived systems. It’s therefore a Really
Bad Idea to try and use it as a renaming separator or escape character.

Interactive Renaming

By default, tren attempts to perform all the renaming requests on all the file- and
directory names given on the command line automatically. It is sometimes helpful
to work interactively wherein you’re asked what to do for each proposed renaming.
Interactive renaming is requested via the -a, “ask” option:

tren.py -a -rfoo=Bar foo1.txt foo2.txt foo3.txt

tren will compute each file’s proposed new name and ask you what you want to do.
You have 4 possible choices:

N, n, or Enter - No, don’t rename this file
Y, y - Yes, rename the file
! - Yes, rename everything further without asking
Q, q - Quit the program

There is one slight subtlety here to watch for when doing forced renaming. As we’ve
seen, if you select the -f option and the new file name already exists, tren will backup
the existing file name before doing the renaming. In interactive mode, you will be

28

http://docs.python.org/library/re.html

asked whether or not to proceed with the renaming both for the file in question and
for any consequenent backups. If you decline to do the backup but accept the primary
renaming, this will have the same effect as the -b option: The existing file- or directory
will be overwritten by the renaming operation.

If the -b option is selected in interactive mode, then you’ll only be prompted for the
primary file renamings (because -b suppresses the creation of backups).

An Overview Of Renaming Tokens

tren implements the notion of renaming tokens. These can be a bit complex to grasp
at first, so we’ll introduce them “gently” in the next few sections and then dive into the
detail thereafter.

It is sometimes useful to be able to take a group of files or rename them using some
property they possess like creation date, size, owner’s name, and so on. This is the
purpose of renaming tokens.

Renaming tokens are nothing more than special symbols that represent “canned” in-
formation tren knows about the file- or directory being renamed, information from the
OS itself, and information used to sequence or order the files being renamed.

For instance, if you insert the /MYEAR/ token into a old- or new string definition, tren
will replace it with the year the file or directory being renamed was last modified and
use that string in the renaming process:

tren.py -ryear=/MYEAR/ My-year.txt # New name: My-2010.txt

Renaming tokens can appear in either the old or new string components of a -r
renaming argument. Wherever they appear, they are “resolved” by tren before any re-
naming is attempted. By “resolved”, we mean that the renaming token will be replaced
with a string that represents its meaning. For example:

tren.py -i : -r boo=/SIZE/ boors-and-boots.txt

This replaces all the instances of the literal string boo with the length of the file
boors-and-boots.txt. When we’re done the file will be renamed something
like:

23rs-and-23ts.txt

This is a silly example but it serves to illustrate the point - all renaming tokens get
turned into strings before any renaming is attempted.

Note
Deep under the covers of it all, tren really only knows how to do string re-
placement. That is, it can replace some old string with some new string.
All the rest of the features you see are sort of syntactic sugar to make it easy
for you to express your renaming intent. When tren runs, it must resolve all
that fancy syntax and boil it down to creating a new file name the underling
operating system knows how to produce via its renaming services.

29

A really handy way to use renaming tokens is to name your files in a particular order.
For example, suppose you and your friends pool your vacation photos but each of your
cameras uses a slightly different naming scheme. You might want to just reorder them
by the date and time each picture was taken, for example. That way you end up with
one coherent set of named and numbered files. You might start with something like
this:

DSC002.jpg # Bob’s camera, taken 1-5-2010 at noon
dc0234.Jpg # Mary’s camera, taken 1-5-2010 at 8am
032344.jpeg # Sid’s camera, taken 1-3-2010 at 4pm

It would be nice to get these in order somehow. We can, by combining attribute re-
naming tokens (that know things about the file being renamed) and sequence renaming
tokens (that know how to order all the files being renamed by some key like date,
length, who owns it, and so on):

tren.py -r =/MYEAR//MMON//MDAY/-MyVacation-/+MDATE::0001/.jpeg *.jp*

Every place you see something in the form /.../, think, “That is a renaming token
whose value will be filled in by tren.” This syntax is the same whether you’re using an
attribute-, system-, or sequence renaming token.

This would rename all the files in the current directory ending with .jp*. The /MYEAR/...
would be replaced with the date the picture was taken (well, actually, the date the file
was last modified). The /+MDATE::0001/ refers to a starting sequence number to
uniquely identify files modified on the same date. The other strings, -MyVacation-
and .jpeg, are inserted literally in the final file names. After we ran this command,
the files above would end up with these names:

20100103-MyVacation-0001.jpeg # Sid’s
20100105-MyVacation-0001.jpeg # Mary’s
20100105-MyVacation-0002.jpeg # Bob’s

Notice that the files taken on the same date have been sequenced by the time-of-day
they were taken because we included the /+MDATE.../ sequence renaming token in
our pattern. The + here means to construct the sequence in ascending order. A - would
specify descending order.

Note
Notice that there is no old string in our example above. That is, there is nothing
to the left of the = symbol in the -r option. This effectively means “replace
everything” in the existing file or directory name with our newly concocted
naming scheme.

Of course, you don’t have to replace the entire file name when using tokens. It’s per-
fectly legitimate to replace only a portion of the existing name:

tren.py -r file=/MYEAR/MMON//MDAY/-file file-1 file.2

This would rename our files to: 20100101-file-1 and 20100101-file.2 No-
tice that we combined literal text and a renaming token to do this.

You can even use renaming tokens in your old string specification. For instance, sup-
pose you manage a number of different systems and you set their system name in an

30

environment variable called SYSNAME and this same name is used to identify backup
files. You might then do something like this:

tren.py -xr ’/$SYSNAME/.*bku$=/FNAME/.old’ *

If your system name was matrix, then the command above would only rename files
whose names began with matrix and ended with bku. If your system name were
morton, then the command above would only rename files whose names began with
morton and ended with bku.

Notice that we combined a reference to an environment variable within a regular ex-
pression. This was done to do the match on “names beginning with... and ending with
...”. Also notice that the renaming token /FNAME/ is just the original name of the file.

In order for this to work, we had to single quote the renaming request. This is because
Unix shells will themselves try to replace $SYSNAME which is not what we want. If
we don’t single quote (thereby turning off shell variable interpolation) and run this, say,
on a machine called “matrix”, the command will be handed to tren looking like this:

tren.py -xr /matrix/.*.bku=/FNAME/.old *

tren will then promptly error out and tell you that it doesn’t know about a renaming
token called /matrix/.

There are a several things to keep in mind when doing things like this:

1) The /$SYSNAME/ in the old string is used to find the text to
rename, whereas the same renaming token in the new string
means insert the contents of that environment variable here.

2) Renaming tokens are always evaluated before any regular ex-
pression processing takes place. It’s up to you to make sure
that when the two are combined (as we have in the example
above), that the final result is still a valid Python regular ex-
pression. This may involve explicit quoting of the renaming
tokens used in the old string specification.

tren has many other kinds of renaming tokens. Their structure and use is described in
some detail in the section below entitled “Renaming Tokens: The Gory Details”.

Renaming Token Pitfalls

As we saw in earlier sections, tren command line option and file name interaction
can be tricky. It can depend on order and on whether the various renaming requests
“collide” with each other as a new file name is computed. A similar potential collision
exists between renaming tokens and renaming requests. Recall from “More About
Command Line Pitfalls” that renaming tokens are resolved before a renaming request
is processed. This means that the string substitution (literal or regular expression) of
the renaming operation can conflict with the characters returned when the renaming
token was resolved. For example, suppose we do this:

tren.py -r =New-/FNAME/ -r My=Your MyFile.txt

The first renaming request computes the name New-MyFile.txt. However, the
second renaming request further modifies this to New-YourFile.txt. In effect, the

31

second renaming request is overwriting part of the string produced by the renaming
token reference. This is an intentional feature of tren to allow maximum renaming
flexibility. However, you need to understand how it works so you don’t get unexpected
and strange results. For example, look what happens when you reverse the order of the
renaming requests in this case:

tren.py -r My=Your -r =New-/FNAME/ MyFile.txt

My gets replaces with Your, but as soon as the second renaming request is processed,
the whole string is thrown away and replaced with the final name New-MyFile.txt.
This is yet another example of, “The Rightmost Renaming Request Wins”.

Renaming Tokens: The Gory Details

As we’ve just seen, a renaming token is nothing more than a string representing some-
thing tren knows about. These fit in one of three categories:

∙ An attribute of the file or directory being renamed

∙ An attribute of the underlying operating system environment

∙ A sequence that reflects some ordering principle

Renaming tokens are delimited by / characters, in the form:

/RentokenName/

tren replaces these tokens with the corresponding information (see descriptions below)
wherever you indicated in either the old or new strings of a -r rename command.

Currently, tren defines a number of renaming tokens. Future releases of tren may add
more of these, so it’s good to periodically reread this material.

What’s The Difference Between An “Attribute” And A “Sequence”?

Some renaming tokens return attributes (of either a file or the underling operating sys-
tem). Some return sequences. So, what’s the difference?

An “attribute” is a value associated with the file- or directory being renamed (or some-
thing about the underlying operating system). It could be the length of the file, the last
year it was modified, and so on. For example, /MYEAR/ returns the year the file be-
ing renamed was last modified, /SIZE/ returns the length of the file, and /FNAME/
returns the original name of the file before renaming. So, if we do this:

tren.py -r=/FNAME/-/MYEAR/-/SIZE/ file, file ...

Every file will be renamed in the form of:

original_name-YYYY-length # Example: myfile-2010-4099

So... attributes are string substitutions wherein the string tells you something about the
file or system on which you’re working.

32

“Sequences”, on the other hand, are just numbers that represent some ordering prin-
ciple. Say you use the sequence renaming token ordered by size, /+SIZE::001/ to
rename 10 files of different sizes:

tren.py -r=/+SIZE::01/-/FNAME/ file, file, ...

This will produce a new set of files named like this:

01-original_name
02-original_name
03-original_name
...
10-original_name

Where, 01-original_namewill be the shortest length file and 10-original_name
will be the longest length file.

So... sequences are strings of numbers used to put things in some order.

You can always tell the difference between an attribute- and sequence renaming token,
because sequence renaming tokens always start with either a + or - sign (to indicate
ascending or descending counting respectively). This distinction is important because
some attribute- and sequence renaming tokens share the same name. For instance,
/FNAME/ is an attribute token representing the original name of the file before it
was renamed. However, /+FNAME::003/ is a sequence renaming token that returns
the position (order) of the file name in alphabetic order starting counting from 003.
Although they are both based on the file name (hence the common renaming token
symbol), they do very different things.

How tren Uses File Metadata

To keep track of all these attributes and/or to compute sequences, tren needs the so-
called “metadata” associated with the files- and directories you’ve named on the com-
mand line. This metadata includes information like who owns them, how long they are,
what date they were modified, and so on. (This information is commonly described in
a data structure called stat. Even non-Unix systems like Windows have some version
of this data structure.)

The file attribute- and sequence renaming tokens are built on this metadata, so it’s worth
taking a moment to understand just how it is used. tren keeps track of the following
information for every file- or directory you’ve named on the command line:

∙ The order the file appears on the command line

∙ The order the file appears alphabetically

∙ The original name of the file before any renaming took place

∙ The date/time it was last accessed

∙ The date/time it was last modified

∙ The date/time its directory entry (inode) was last modified

∙ The inode number for the file

33

∙ The device number where the directory entry (inode) lives

∙ The numeric group ID the file belongs to

∙ The name of the group the file belongs to

∙ The numeric user ID of the file owner

∙ The name of the user that owns the file

∙ The mode or permissions for the file

∙ The number of links to the file

∙ The size of the file

tren then later uses this information to resolve file attribute renaming tokens, compute
the value of a particular sequence renaming token and so on as it finds them in your
renaming requests. For example, a sequence renaming token based on group name will
order the sequence alphabetically by group name whereas one based on group ID will
order it numerically.

It is likely that you’ll only be interested in a small subset of these. For completness,
though, tren keeps track of all the metadata available about the files- or directories
named on the command line and makes it available in the form of renaming tokens.

Most commonly, you’ll find yourself using the command line, alphabetic, original
name, length, and various time/date renaming tokens.

General Attribute Renaming Tokens

These tokens are derived from information about the file or directory being renamed.

Note
Windows Users Take Note!
tren is portable across many operating systems because it is written in the
Python programming language. Python mostly works the exact same way
everywhere. However, Windows presents some problems because it does
not quite work the same way as Unix-derived OSs do. In particular, if you
need to make use of the /GROUP/ or /USER/ renaming tokens on Win-
dows, consider installing the win32all extensions to your Windows Python
installation. If you don’t, tren will base its order on the generic names
WindowsUser and WindowsGroup which it will apply to every file- or
directory under consideration.
In any case, /DEV/, /GID/, /INODE/, /NLINK/, and /UID/ are not
meaningful under Windows and default to 0. Avoid using these tokens on
Windows systems, since these will return the same value for every file- or
directory.

∙ /DEV/ Returns File- Or Directory’s Device ID

This is the ID of the device containing the file being renamed. You
might want to rename files so that all the files on a given device start

34

with the same key. That way, their names group together in a sorted
directory listing:

tren.py -r=/DEV/-/FNAME/ file | dir, file | dir, ...

You end up with a sorted directory listing that looks something like:

93-...
93-...
97-...
98-...

The file names are still preserved in our renaming reqest above, now
they’re just preceded by the device ID of the where they live with a
trailing - separator.

∙ /FNAME/ Returns Original File- Or Directory Name

This is the name of the file- or directory you are renaming before you
apply any renaming requests. This allows you to create new names
based, in part, on the old name:

tren.py -r=/FNAME/-suffix ... # Adds "-suffix" to original name
tren.py -r=prefix-/FNAME/ ... # Adds "-prefix" to original name
tren.py -r /FNAME/=newname ... # Same as "-r=newname"
tren.py -r /FNAME/=/FNAME/ ... # Does nothing: old/new are same

∙ /GID/ Returns File- Or Directory’s Group ID

This is the number for the group to which the file- or directory be-
longs. One way to use this is to prepend it to every file name, thereby
having all files (and or directories) in the same group list together in
a sorted directory listing:

tren.py -r=/GID/-/FNAME/ *

∙ /GROUP/ Returns File- Or Directory’s Group Name

Essentially the same as /GID/ except it returns the name of the group
rather than the number. Again, this is useful when clustering names
together in a sorted directory listing:

tren.py -r=/GROUP/-/FNAME/ *

∙ /INODE/ Returns File- Or Directory’s Serial Number

This is typically an identifier to the directory entry for the file- or
directory being renamed. /DEV/ and /INODE/ taken together pro-
vide a unique systemwide identifier for the file- or directory being
renamed.

∙ /MODE/ Returns File- Or Directory’s Permissions

This is a numeric string that represents the permissions of the file- or
directory being renamed in standard Unix format.

∙ /NLINK/ Returns Number Of Links To File- Or Directory
Being Renamed

35

Most operating systems allow a single file to have multiple names.
These names are “linked” to the instance of the file. This replacement
token is a numeric string representing the number of such links.

∙ /SIZE/ Returns File- Or Directory’s Length In Bytes

This is handy if you want a sorted directory listing to list all the files
of the same size together. You simply prepend the file- or directory’s
length onto its name:

tren.py -r=/SIZE/-/FNAME/ *

Now all of the files of, say, length 23 will group together in a sorted
directory listing.

∙ /UID/ Returns File- Or Directory’s User ID

This is the number for the user that owns the file- or directory being
renamed. One way to use this is to prepend it to every file name,
thereby having all files (and or directories) owned by the same user
cluster together in a sorted directory listing:

tren.py -r=/UID/-/FNAME/ *

∙ /USER/ Returns File- Or Directory’s User Name

Essentially the same as /UID/ except it returns the name of the user
rather than the number. Again, this is useful when clustering names
together in a sorted directory listing:

tren.py -r=/USER/-/FNAME/ *

Time-Related Attribute Renaming Tokens

Modern operating system maintain three different kinds of timestamps for files and
directories, ATIME, CTIME, and MTIME:

ATIME refers to the last time the file- or directory was accessed.

This is updated every time the file is read.

CTIME refers to the last time the file- or directory’s inode (directory entry)
was modified.

This is updated whenever a file- or directory’s permissions or
ownership are changed. It will also be updated when the file-
or directory itself is modified.

MTIME refers to the last time the file- or directory itself was modified.

This is updated whenever the file- or directory is closed after
modification.

tren implements a set of time-related file attribute renaming tokens intended to provide
full access to these various timestamps. As a practical matter, you’re most likely to use
the MTIME-based tokens, but components for all three time values are available should
you need them. They are identically named, except that the first letter of each of the

36

time-related attribute tokens indicates which of the three timestamps above is used to
compute the value:

∙ /ADAY/, /CDAY/, /MDAY/ Returns Timestamp’s Day Of
The Month

Returns the day of the month of the timestamp in dd format.

∙ /AHOUR, /CHOUR/, /MHOUR/ Returns Timestamp’s Hour Of
The Day

Returns the hour of the day of the timestamp in hh format.

∙ /AMIN/, /CMIN/, /MMIN/ Returns Timestamp’s Minute
Of The Hour

Returns the minute of the hour of the timestamp in mm format.

∙ /AMON/, /CMON/, /MMON/ Returns Timestamp’s Month
Of The Year

Returns the month of the year of the timestamp in mm format

∙ /AMONTH, /CMONTH/, /MMONTH/ Returns Timestamp’s Name Of
The Month

Returns the name of the month of the timestamp in Nnn format.

∙ /ASEC/, /CSEC/, /MSEC/ Returns Timestamp’s Seconds
Of The Minute

Returns the seconds of the minute of the timestamp in ss format.

∙ /AWDAY, /CWDAY/, /MWDAY/ Returns Timestamp’s Name Of
The Weekday

Returns the name of the day of the timestamp in Ddd format.

∙ /AYEAR, /CYEAR/, /MYEAR/ Returns Timestamp’s Year

Returns the year of the timestamp in yyyy format.

So, for example:

tren.py -r=/FNAME/-/MYEAR/-/MMON/-/MDAY/-/MMONTH/-/MWDAY/-/MHOUR/:/MMIN/:/MSEC/ foo

Might rename the file to something like:

foo-2005-01-07-Jan-Fri-01:23:33

System Renaming Tokens

These tokens are derived from the underlying operating system and runtime environ-
ment. Notice that, because command interpreters (shells) on various systems work
differently, the first two of these have to be quoted in different ways.

∙ /NAMESOFAR/ Current state of new name

37

tren allows multiple renaming requests to be specified on the com-
mand line . Each of these operates serially on the renaming target
name: The leftmost request operates on the original name. The re-
sulting name is handed to the next request to the right and so on.

/NAMESOFAR/ allows the current state of a new name to be included
explicitly in a renaming request. i.e., You can insert the name a re-
naming request starts out with into its own renaming specification:

tren.py -rX=y -r=/NAMESOFAR/.text Xray.txt

The first renaming request transforms the name from Xray.txt to
yray.txt. This is thus the “name so far” with which the second
request begins. So, the second renaming request transforms the name
yray.txt into yray.txt.text.

∙ /$ENV/ Environment variable

This token is replaced with the value of the environment variable ENV.
If that variable does not exist, the token is replaced with an empty
string:

tren.py -r =’/$ORGANIZATION/’-/FNAME/ * # Unix shells
tren.py -r =/$ORGANIZATION/-/FNAME/ * # Windows shells

This prepends the organization’s name to everything in the current
directory.

∙ /‘cmd‘/ Arbitrary command execution

This token is replaced with the string returned by executing the cmd
command. Note that newlines are stripped from the results, since they
don’t belong in file names. Spaces, however, are preserved.

For instance, you might want to prepend the name of the system to all
your shell scripts:

tren.py -r =’/‘uname -n‘/’-/FNAME/ *.sh # Unix shells
tren.py -r ="/‘uname -n‘/"-/FNAME/ *.sh # Windows shells

This construct is more generally a way to synthesize renaming tokens
that are not built into tren. You can write a script to do most any-
thing you like, execute it within the /‘cmd‘/ construct, and plug
the results into your new file name. This effectively provides tren an
unlimited number of renaming tokens.

38

Warning
Be very careful using this. It’s possible to construct bizzarre, overly long, and
just plain chowder-headed strings that make no sense in a file name using this
token. Moreover, if you attempt to insert characters that don’t belong in a
file- or directory name (like a path separator), construct a file name that is too
long (or too short), or just generally violate something about the filesystem’s
naming rules, this will cause tren to abort and spit out an error. However, you
will not be prevented from creating file names that are legal but undesirable,
such as file names that begin with the - character. In other words, be careful
and be sure you know what you’re doing with this renaming token.

Tip
MORE ABOUT QUOTING /$ENV/AND /‘cmd‘/ SYSTEM RENAM-
ING TOKENS
Both of these constructs are supported directly from most Unix command
shells. That is, most Unix shells will themselves dereference constructs like
$ENV and ‘command‘. There’s no need to pass them as renaming tokens,
you can just use the shell’s capabilities:

tren.py -r =/FNAME/-‘uname -n‘-$LOGNAME
If you do want to use the renaming token form in a Unix shell, you must single
quote them to prevent the shell from “interpolating” the variables before tren
is called. If you don’t do this, tren will complain about encountering unknown
renaming tokens:

tren.py -r=’/‘uname -n‘/’-/FNAME/ *.sh # Right
tren.py -r=/‘uname -n‘/-/FNAME/ *.sh # Wrong

The real reason for providing these renaming tokens at all is because the Win-
dows command interpreter does not have an equivalent function. The only
way to achieve what these do on Windows is via renaming tokens. In Win-
dows, you also have to pay attention to quoting, particularly when there are
spaces in a ‘cmd‘ renaming token:

tren.py -r=/FNAME/-/‘command opts args‘/ ...
This causes tren to complain mightily because it thinks /‘command, opts,
args, are all separate (invalid) command line arguments. To avoid this prob-
lem, you need to pass the renaming token as a single command line entity via
quotes:

tren.py -r=/FNAME/-"/‘command opts args‘/" ...

∙ /RAND#/ Random Number Generator

This generates a (quasi) random number string, # digits wide.

This can be useful when you want to guarantee that no renaming op-
eration will generate a new name that conflicts with an existing name:

tren.py -r=/MYEAR//MMON//MDAY/-/RAND10/ *

This generates new file names with a 10 character random number
string suffix:

20100401-4708910871

39

In this case, just make sure the random number string is long enough
to make a name collision unlikely by picking a sufficiently large #.

must be a positive integer greater than 0. The random number gen-
erator is reinitialized each time the program runs, so test mode opera-
tions will only show you the “shape” of the names with the embedded
random number strings, not the actual strings you’ll end up with.

Another nice use of this feature is to “mask” the actual file names.
Say you have a bunch of encrypted files, but you don’t want a casual
viewer to even know what they are or what’s in them. You might do
this:

tren.py -r=/RAND25/ * 2>&1 >tren.log

Now you can encrypt tren.log and send it along with the files
themselves over a non-secure channel. The recipient can decrypt the
log, and figure out what the original file names were, decrypt them,
and store them accordingly.

Sequence Renaming Tokens

Sometimes it’s useful to rename files or directories based on some property they possess
like the date or time of creation, the size of the file, who owns it, and so on. That’s the
idea behind the attribute renaming tokens described in the previous sections.

But another really interesting use of renaming tokens is to order all the files being
renamed based on one of these parameters. For instance, instead of actually embedding
the date and time of creation in a file or directory name, you might want to order the
files from oldest to newest with a naming convention like:

file-1.txt
file-2.txt
file-3.txt

This guarantees uniqueness in the final name and also sees to it that a sorted directory
listing will show you the files or directories in the order you care about.

This is the purpose of sequence renaming tokens. They give you various ways to create
sequences that can be embedded in the final file or directory name.

Tip
Many sequence renaming tokens described below share the same name with
an attribute renaming token described in the previous sections. That’s because
they are based on the same property of the file- or directory being renamed.
However, it’s easy to tell which is which: Sequence renaming tokens always
begin with either + or - (to indicate ascending- and descending ordering re-
spectively).
So, /GROUP/ is an attribute renaming token that returns the group name for
the file. However, /+GROUP.../ is a sequence renaming token that returns
a number indicating what position the file is in when all the files named on the
command line are ordered by their group names.

40

General Format Of Sequence Renaming Tokens

Sequence renaming tokens consist of four descriptive components and have the follow-
ing general format:

/OrderingType:Counting Alphabet:Counting Pattern/

where,
Ordering (Required):

+ ascending
- descending

Type (Required):

The attribute used to create the ordering.

Counting Alphabet (Optional):

The name of the counting system to use.

Counting Pattern (Optional):

Establishes the first value in the counting
sequence and/or provides a string to format
the count.

Note that there is no space between the Ordering flag and Type.

An Ordering flag is mandatory. It will either be + to indicate an ascending count or -
to indicate a descending count.

The Type is mandatory. These are documented in the section below entitled, “Types Of
Sequence Renaming Tokens”.

The Counting Alphabet is optional. Counting alphabets are ways to count in different
bases and even to use something other than just numbers to represent the count. These
are described in the section below entitled, “Let’s Learn The Alphabet”.

If you omit naming a specific alphabet, tren will default to counting in Decimal. Note
that you cannot omit the alphabet delimiters, so the correct form of a sequence renam-
ing token then becomes:

/OrderingType::Counting Pattern/

A Counting Pattern is optional. Counting patterns are used to do two things: Set the
initial value for the count and Describe the layout of how the count should look. This
is described in the section below entitled, “Counting Pattern Format”.

If you omit a counting pattern, tren will start counting from the zero-th “number” in
your chosen alphabet, producing a counting pattern as “wide” as necessary to count
all the items being renamed. In that case, the format of a sequence renaming token
becomes:

41

/OrderingType:Alphabet:/ # With explicit alphabet
/OrderingType::/ # With default decimal alphabet

Let’s Learn The Alphabet

Sequence renaming tokens are essentially “counters” that return a number string rep-
resenting where the file- or directory being renamed sits in some order - say, by time,
alphabetically or on the command line.

To be as flexible as possible in creating renaming strings, it’s helpful to be able to
“count” in any base, and use any set of symbols when counting. For instance, you may
prefer sequences of letters instead of numbers. Such a sequence might look like this:

a
b
...
z
aa
ab
...
az
ba
bb

And so on.

tren has a number of standard such “counting alphabets” built in for the most common
counting situations. As described in the previous section, you specify which of these
you want to use in each sequence renaming token reference on the command line. (If
you omit naming a specific alphabet, the token will default to counting in Decimal.)

The built in alphabets are:

Binary - Counting in Base 2 using numbers
Octal - Counting in Base 8 using numbers
Decimal - Counting in Base 10 using numbers
HexLower - Counting in Base 16 using numbers and lower case letters
HexUpper - Counting in Base 16 using numbers and upper case letters
Lower - Counting in Base 26 using lower case letters
LowerUpper - Counting in Base 52 using lower- then upper case letters
Upper - Counting in Base 26 using upper case letters
UpperLower - Counting in Base 52 using upper- then lower case letters

42

Tip
The difference between a “base” and a “symbol set”.
In order to make such counting-based renamings as flexible as possible, tren is
built to be able to count in any base (2 or higher) and make use of any symbol
set. What’s the difference? The “base” tells you how many symbols there are
in your counting system. In Decimal, for example, there are 10. The “symbol”
set, assigns a character to represent each of those positions. In Decimal, we
customarily use, “0”, “1”, “2”, and so on. However, there is nothing magical
about the symbol set. It is the base that defines the counting system. The
symbol set is just an arbitarary representation. For instance, there’s no reason
we can count in base 10, using the symbols, “)”, “!”, “#”, “$”, ... and so on.

This ability to use any symbol set in any base makes it easy to construct counting
strings that suit your particular renaming needs. You do this by defining your own,
custom counting “alphabet” via the -A command line option:

-A AlphabetName:string-of-characters

Once defined, later renaming tokens on the command line can refer to it via the /...:AlphabetName:.../
syntax discussed previously.

Say we do this:

tren.py -A Foo:s2X -r=/+MTIME:Foo:/ *

This will rename all the files in the current directory in ascending mtime timestamp
order using the following counting scheme:

s
2
X
ss
s2
sX
2s
22
2X

And so on. You can use most any combination of characters you like to customize your
sequence renaming token output. There are a few things to keep in mind, however:

∙ The counting base is determined by the number of symbols in the symbol set
not what characters you use. In the example above, we’re counting in base 3
irrespective of what symbols are used to represent each “number”.

∙ You can define as many new alphabets as you like on the command line. (Well
... up to the maximum command line length limit imposed by the shell and/or
operating system you’re using.)

∙ The alphabet name is case sensitive. Foo, FOO, and foo are all different alpha-
bet names (assuming they are all defined).

∙ There is no requirement that the symbol set be built out of unique characters.
tren does no analysis of your symbol set at all, so this is permitted (if not rec-
ommended):

43

-A Foo:abcx123xj3,m2

∙ Similarly, you can populate your alphabet with any symbols you like, BUT re-
member they’re going to be embedded in some file- or directory name. It’s a
good idea to make sure you avoid illegal or undesirable characters like /, \, and
- in your alphabets so they don’t end up getting embedded in a name (or trying
to, anyway).

∙ If you use non-numerical counting schemes, your sorted directory list will not
reflect that order. For example, suppose you have a bunch of files in a directory,
and you do this:

tren.py -r=/-MTIME:LowerUpper:/ *

Your files will get renamed in descending mtime timestamp order as:

a
b
...
A
B
...
aa

And so on, where a is the oldest file- or directory. However, when you do a
sorted directory listing, the names beginning with upper case characters will be
listed first. Why? Because directory sorting is typically based on ASCII order
wherein A-Z appear before a-Z.

Counting Pattern Format

When using sequence renaming tokens, it’s nice to be able to layout the resulting count-
ing string in some consistent way. You can use an optional “counting pattern” in your
sequence renaming token to do this. The renaming pattern is used to specify two things:
The width of the sequence string, and, optionally, the starting value for the sequence.
For instance:

Pattern Results
------- -------

0001 -> 0001, 0002, 0003, ...
0000 -> 0000, 0001, 0002, ...
03 -> 03, 04, 05, ...

To understand counting patterns, you have to understand a few basic rules tren uses to
interpret them:

∙ The number of characters (of any kind) in the pattern fix the width of
the counting string. These characters need not even be in the count-
ing alphabet:

tren.py -r=/+CTIME::abcde/ *

44

This produces files renamed in ascending ctime timestamp order
like this:

abcd0
abcd1
...
abc10

And so on.

∙ When a count increments such that it would exceed the width of the
pattern, it “rolls over” and tren issues a warning message to that
effect. Using the example above, we’d get:

9998
9999
0000 # Count rolls over and warning issued!

Notice that the count rolls over in the selected counting alphabet, it
does not restart from the original counting pattern. In almost every
case, you should avoid roll over and make your counting pattern wide
enough to hold a full count for all the files- and directories you’ve
named on the command line. One issue here is that rolling over is
possibly going to create a name collision and the renaming will either
be skipped or have to be forced (with backup) using the -f option.

∙ As we’ve seen, tren treats each position of the counting pattern as a
placeholder and “eats” characters as the count goes up. This allows
you great flexibility in creating renaming patterns that embed both
a count and a literal string via a single sequence renaming token.
You just have to make the counting pattern wide enough so that the
highest count never consumes your literal string:

tren.py -r=/+MTIME:HexLower:InHexMtimeOrder-0x00000/ *

This yields new file names like this:

InHexMtimeOrder-0x00000
InHexMtimeOrder-0x00001
InHexMtimeOrder-0x00002
...

Notice that the 0x string may mean “this is a hex number” to the hu-
man reader, but it is completely insignificant to tren. If the count
were to get large enough - bigger than 5 digits, the 0x string it-
self would get overwritten. Larger still, and InHexMtimeOrder-
would start to get consumed.

Tip
We could avoid the possibility of having the count ever consume our literal
text, by taking it out of the sequence renaming token and putting it in as a
literal argument to the -r option, thereby separating the text from the count:

-r=InHexMtimeOrder-0x/+MTIME:HexLower:00000/

45

In short, tren treats every character in a counting pattern the same -
with complete indifference.

∙ Well ... almost “complete indifference”. When tren finds characters
that are in the selected counting alphabet, it adds them to the count.
In this way we start counting at some predermined initial value. Note
that tren always produces sequence number starting with 0 and, un-
less the pattern indicates otherwise:

tren.py -r=/+CMDLINE::/ a b c

Produces:

0 # Formerly a, the 1st command line argument
1 # Formerly b, the 2nd command line argument
2 # Formerly c, the 3nd command line argument

But say we wanted to start counting from 1 instead:

tren.py -r=/+CMDLINE::1/ a b c

Produces::

1 # Formerly a, the 1st command line argument
2 # Formerly b, the 2nd command line argument
3 # Formerly c, the 3nd command line argument

Similarly, /+CMDLINE::101/ would produce:

101 # Formerly a, the 1st command line argument
102 # Formerly b, the 2nd command line argument
103 # Formerly c, the 3nd command line argument

Because tren is insensitive to characters outside the counting
alphabet, you can produce really interesting counting patterns
like this:

tren.py -r=/+CMDLINE::1x0/ a b c

Produces::

1x0 # Formerly a, the 1st command line argument
1x1 # Formerly b, the 2nd command line argument
1x2 # Formerly c, the 3nd command line argument

If you had enough files named on the command line, the
count would eventually consume the out-of-alphabet
characters::

1x0
...
1x9
110

46

111
...

So, by mixing characters that are both in- and out of the count-
ing alphabet in a counting pattern, you “prime” the sequence
renaming token to start counting with a certain string. Notice
that you can do this in any position within the pattern. Say you
do this:

tren.py -r=/+CMDLINE::x1x4/ *

This will produce a counting sequence like this:

x1x4
x1x5
...
x110
...
x200

In other words, a character in any position of the pattern that is
in the counting alphabet will be added to the count.

This works for all alphabets, any base, and any symbol set:

tren.py -r=/+FNAME/:Upper:+0S/ *

Yields new file names:

+0S
+0T
...
+0Z
+BA
+BB
...

∙ There is no notion of starting the count from a “negative number” and
counting up. You can sort of synthesize this by sticking a - in front of
a sequence renaming token (or at the left end of its counting pattern).
Keep in mind, though, that tren only knows how to increment a count
so you will always get an “increasing negative number” when you do
this:

tren.py -r=-/+CMDLINE::5/-/FNAME/ a b c

Will produce new file names:

-5-a
-6-b
-7-c

If you want the reverse order, specify a descending sequence renam-
ing token:

tren.py -r=-/-CMDLINE::5/-/FNAME/ a b c

Will produce new file names:

47

-5-c
-6-b
-7-a

Types Of Sequence Renaming Tokens

Sequence renaming tokens are thus a way to generate an ordering based on some prop-
erty common to everything being renamed. That property is used to return a string
representing just where in that order a particular file- or directory appears. This string
is formatted according to the counting alphabet and counting pattern embedded in the
sequence renaming token as described in the previous sections.

Keep in mind that for purposes of sequencing, tren makes no distinction between a file
and directory. It merely sequences based on the property you requested.

Note
There is one very important detail to keep in mind here. When tren first starts
up, it examines the metadata of every file- and directory name on the com-
mand line. It uses this to pre-create the sequences for every possible ordering
(alphabetic, by date, within date, by length, and so on) whether or not every
file actually ends up being renamed later on. In other words, sequences are
built on the list of names passed on the command line NOT on the list of files-
or directories that actually get renamed. If your renaming requests only apply
to some of the file names you passed on the command line, you may find the
resulting sequence unexpected. Say you have three files, a, b, and c and you
do this:

tren.py -rb=/FNAME/-/+FNAME::001/ b c a
Only file b has a matching old string and thus is the only file renamed. How-
ever, because it is second alphabetically of all the files named on the command
line, it gets renamed to b-002. The way to avoid this surprise is to make sure
any renaming request with sequence renaming tokens in it is constructed so
that it applies to all the files- and directories named on the command line.

Sometimes, more than one file- or directory named on the command line maps to the
same sequencing key. For example, when using the /+GROUP.../ sequence renam-
ing token, dozens of files in a given directory may only map to a few group names. In
this situation, all the names that map to the same key will be sequenced alphabetically
within the key. So if a and b are in group foo and c and d are in group baz:

tren.py -r=/+GROUP/::/-/FNAME/ a b c d

Will create the new names:

0-c
1-d
2-a
3-b

tren currently supports a variety of sequence renaming tokens. Note that those associ-
ated with the various OS timestamps begin with the corresponding first letter:

48

∙ /+-ADATE:Alphabet:Pattern/ Sequence based on atime WITHIN
the same date

∙ /+-CDATE:Alphabet:Pattern/ Sequence based on ctime WITHIN
the same date

∙ /+-MDATE:Alphabet:Pattern/ Sequence based on mtime WITHIN
the same date

These return sequences within a given day. This enables renaming constructs
like:

tren.py -r=/MYEAR//MMON/MDAY/-/+MDATE::001/ *

Yielding files named:

20100305-001
20100305-002
20100305-003
20100316-001
20100316-002
20100316-003
...

∙ /+-ATIME:Alphabet:Pattern/ Sequence based on atime timestamp

∙ /+-CTIME:Alphabet:Pattern/ Sequence based on ctime timestamp

∙ /+-MTIME:Alphabet:Pattern/ Sequence based on mtime timestamp

These return sequences in absolute timestamp order. For example:

touch foo
touch bar
touch baz
tren.py -r =/+MTIME::/-/FNAME

Yields:

0-foo
1-bar
2-baz

∙ /+-CMDLINE:Alphabet:Pattern/ Sequence based on the order
of appearance on the command line

This is nothing more than the command line order:

tren.py -r=/+CMDLINE/-/FNAME::01/-/FNAME/ z b a

Yields:

01-z
02-b
03-a

∙ /+-DEV:Alphabet:Pattern/ Sequence based on the device
ID number on which the file- or directory resides

49

This is the a sequence ordered by which device ID contains the file- or directory
to be renamed.

This is not supported on Windows and defaults to an alphabetic sequence equiv-
alent to /+-FNAME.../.

∙ /+-FNAME:Alphabet:Pattern/ Sequence based on alphabetic
order of all targets on the command line

This returns a sequence based on the alphabetic order of everything you’ve named
for renaming. Note that this is done on the fully qualified path name for each ar-
gument, not just the file- or directory name itself:

tren.py -r=/+FNAME::/-/FNAME/ a/z b/b

Yields:

a/0-z
b/1-b

This is because the original file name a/z sorts alphabetically before b/b.

∙ /+-GID:Alphabet:Pattern/ Sequence based on the group
ID number

This returns a sequence ordered by the ID number of the group to which the file-
or directory belongs.

This is not supported on Windows and defaults to an alphabetic sequence equiv-
alent to /+-FNAME.../.

∙ /+-GROUP:Alphabet:Pattern/ Sequence based on the group
name

This returns a sequence ordered by the name of the group to which the file- or
directory belongs.

This is only supported on Windows if the win32all Python extensions are in-
stalled. Otherwise, this defaults to an alphabetic sequence equivalent to /+-FNAME.../.

∙ /+-INODE:Alphabet:Pattern/ Sequence based on the inode
number

This returns a sequence ordered by the file- or directory inode numbers.

This is not supported on Windows and defaults to an alphabetic sequence equiv-
alent to /+-FNAME.../.

∙ /+-MODE:Alphabet:Pattern/ Sequence based on permissions

This returns a sequence ordered by the file- or directories permissions value.

∙ /+-NLINK:Alphabet:Pattern/ Sequence based on the nlink
count

This returns a sequence ordered by the number of links associated with the file-
or directory.

This is not supported on Windows and defaults to an alphabetic sequence equiv-
alent to /+-FNAME.../.

50

∙ /+-SIZE:Alphabet:Pattern/ Sequence based on size

This returns a sequence ordered by the size of each file- or directory.

∙ /+-UID :Alphabet:Pattern/ Sequence based on the user
ID number

This returns a sequence ordered by the ID number of the user that owns the file-
or directory.

This is not supported on Windows and defaults to an alphabetic sequence equiv-
alent to /+-FNAME.../.

∙ /+-USER:Alphabet:Pattern/ Sequence based on user name

This returns a sequence ordered by the name of the user that owns the file- or
directory.

This is only supported on Windows if the win32all Python extensions are in-
stalled. Otherwise, this defaults to an alphabetic sequence equivalent to /+-FNAME.../.

COMMON TASKS AND IDIOMS

With a program as feature dense as tren, it’s not possible to document every possible
use case. The following examples cover many common applications of the program.

∙ Literal String Replacement

Sometimes, all you want to do is replace a single substring in a name:

tren.py -r Old=New OldHair-OldPeople # Yields: NewHair-OldPeople

∙ Replacing Or Removing All Instances Of A String

Sometimes you want to replace every instance of the string:

tren.py -i : -r Old=New OldHair-OldPeople # Yields: NewHair-NewPeople

∙ Changing A File’s “Extension” Suffix

Common where the suffix of a file is significant to an applications program:

tren.py -i -1 -r .jpeg=.jpg *.jpeg

∙ Replace Spaces In A File Name With Underbars

Even though spaces are allowed in file names in most OSs, they’re a pain:

tren.py -i : -r " "=_ *

∙ Appending- Or Prepending Strings To An Existing File Name

Often, you want to keep the existing name, but add to it:

tren.py -r =Prefix-/FNAME/
tren.pu -r =/FNAME/-Suffix

51

∙ Ordering File Names By Last Modification Time

It’s nice to be able to see files in the order they were last modified. Usually, we
preserve the old name when doing this:

tren.py -r =/+MTIME::001/-/FNAME/

∙ Ordering File Names By Modification Time Within Date

Sometimes, what we want is the order of modification within the date it was
changed:

tren.py -r =/MYEAR/-/MMON/-/MDAY/-/+MDATE::001/-/FNAME/ *

∙ Ordering File Names By Size

This is handy if we want a directory listing to list the files in size order:

tren.py -r =/SIZE/-/FNAME/ *

∙ Undoing A Previous Renaming

In complex renamings, sometimes the only way to get back to your original
names is to examine the renaming log. But in some cases it’s pretty automatic:

tren.py -r =’/$LOGNAME/’-/FNAME/ *

This can be undone by:

tren.py -r ’/$LOGNAME/’-= *

Generally, if you can isolate the text introduced by the previous renaming oper-
ation, and use it as the old string in another renaming request, this will work.

ODDS AND ENDS

∙ Quoting your command line arguments properly for the shell you use is critical.
Things like spaces, \, and - have to be properly quoted or either the shell or tren
itself are going to complain. Similarly, when using the /$ENV/ and /‘cmd‘/
renaming tokens, make sure to enclose them in single quotes if you’re using a
standard Unix shell like bash.

∙ Whitespace is almost always significant within a tren option. You’ll need to put
proper quoting around it to perserve if for tren to see, whether in a renaming
request, an alphabet definition, or some part of a sequence renaming token.

∙ Quoting can also be tricky in include files. Remember that the contents of the
include file are presented to tren as if they had been entered on the command
line. For example, to replace spaces in a filename with underscores, we have to
quote the space to preserve it as an argument to be passed to tren:

nospace: ’tren’ include to get rid of spaces in filenames
-i: -r’ ’=_ -r_-_=- -i0

52

∙ Watch out for situations where an include file changes default or desired behav-
ior. In the example above, the -i: is used to force replacement of all instances
of spaces. The -i0 at the end of the include resets tren to the default behav-
ior of only replacing the first instance of a matching old string. That’s fine if
the include statement appears on the command line in a place where the default
behavior was in force. But look what happens in a situation like this:

tren.py -i3 -rx=y -Inospace -ra=b

Prior to the include file being read, tren has been told to replace the 4th instance
of a matching string. After the nospace include file has been read, this gets
reset to replace the 1st instance of a matching old string. Make sure that’s what
you want for the -ra=b renaming request.

∙ Most shells don’t care if you leave a space between an option and its argument.
It’s a really good idea to do so as a matter of habit, especially when dealing with
a complex command line driven tool like tren.

∙ tren will attempt to do any requested renaming. However, if you manage to
embed some character in the new name that the operating system doesn’t like,
the renaming will fail and you’ll be notified of the fact. Notwithstanding the fact
that you can do all manner of clever things with tren, some restraint is called for
when constructing new file- or directory names.

∙ tren will prevent you from trying to rename something to a null string or a name
too long for the operating system. Mostly this is not an issue unless you managed
to concoct a renaming request that ends up requiring recursive backups. In that
case, the backup suffix can be tacked onto the file name enough times that the
file name becomes too long for the OS to catch. While tren can, and does catch
this, it cannot unwind what it has done thus far and you CAN LOSE FILES
THIS WAY!!!. The smart move here is to use test mode and make sure your
proposed renaming isn’t going to require deeply recursive backups.

∙ The argument -r= is always ignored because it means “change the empty string
into the empty string”. It might be tempting to try this to get rid of characters via
a target, but it won’t work:

tren.py -T -1 -r= foo- # Nope - have to do it explicitly

tren.py -T -1 -r-= foo- # Yup

∙ Save the output from your tren runs in logs. That way, if you have to unwind a
renaming gone bad, you’ll have a record of what was done.

∙ The use of -bf is STRONGLY DISCOURAGED and is provided only for the
most sophisticated and careful users.

BUGS, MISFEATURES, OTHER

You must be running Python 2.4.x or later. tren makes use of features not supported
in releases prior to this. (It may also work with Python 2.3.x but is untested on that

53

release.) tren has not been tested with Python 3.x and is presumed not to work with it
until/unless otherwise demonstrated.

As a general matter, tren should run on any POSIX-compliant OS that has this version
(or later) of Python on it. It will also run on many Microsoft Windows systems. If
the Windows system has the win32all Python extensions installed, tren will take
advantage of them for purposes of deriving the names of the user and group that own
the file or directory being renamed.

This program is EXPERIMENTAL (see the license). This means its had some testing
but is certainly not guaranteed to be perfect. As of this writing, it has been run on
FreeBSD, Linux, Windows XP, and Mac OS X. It has not, however, been run on 64-bit
versions of those OSs.

If you have experience, positive or negative, using tren on other OS/bitsize systems,
please contact us at the email address below.

HOW COME THERE’S NO GUI?

tren is primarily intented for use by power users, sys admins, and advanced users that
(mostly) find GUIs more of a nuisance than a help. There are times, however when it
would be handy to be able to select the files to be renamed graphically. TundraWare
has a freely available macro programmed file browser. It will work nicely in such
applications:

http://www.tundraware.com/Software/twander/

COPYRIGHT AND LICENSING

tren is Copyright (c) 2010-2011 TundraWare Inc.

For terms of use, see the tren-license.txt file in the program distribution. If
you install tren on a FreeBSD system using the ’ports’ mechanism, you will also find
this file in /usr/local/share/doc/tren.

AUTHOR

Tim Daneliuk
tren@tundraware.com

DOCUMENT REVISION INFORMATION

$Id: tren.rst,v 1.201 2011/08/01 18:06:26 tundra Exp $

You can find the latest version of this program at:

54

http://www.tundraware.com/Software/twander/

http://www.tundraware.com/Software/tren

This document was produced using reStructuredText:

http://docutils.sourceforge.net/rst.html

55

http://www.tundraware.com/Software/tren
http://docutils.sourceforge.net/rst.html

	Contents
	NAME
	HOW TO USE THIS DOCUMENT
	REFERENCE
	SYNOPSIS
	SPECIFYING OPTIONS
	OPTIONS

	TUTORIAL AND DESCRIPTION
	Overview
	A Word About Program Defaults
	Getting Help
	Controlling Program Output
	Managing Complexity
	Renaming Basics
	Literal String Substitution
	Substitution Instances
	Limiting Renaming To Only Part Of Name
	More About Slice Notation
	Multiple Substitutions
	More About Command Line Pitfalls
	Forcing Renaming
	Ignoring Case
	Case Transformation
	The Strange Case Of Mac OS X And Windows
	Using Regular Expressions
	Changing The Renaming Separator & Escape Characters
	Interactive Renaming
	An Overview Of Renaming Tokens
	Renaming Token Pitfalls
	Renaming Tokens: The Gory Details
	What's The Difference Between An ``Attribute'' And A ``Sequence''?
	How tren Uses File Metadata
	General Attribute Renaming Tokens
	Time-Related Attribute Renaming Tokens
	System Renaming Tokens
	Sequence Renaming Tokens
	General Format Of Sequence Renaming Tokens
	Let's Learn The Alphabet
	Counting Pattern Format
	Types Of Sequence Renaming Tokens

	COMMON TASKS AND IDIOMS
	ODDS AND ENDS
	BUGS, MISFEATURES, OTHER
	HOW COME THERE'S NO GUI?
	COPYRIGHT AND LICENSING
	AUTHOR
	DOCUMENT REVISION INFORMATION

