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Abstract: This is the Dafny reference manual; it describes the Dafny program-
ming language and how to use the Dafny verification system. Parts of this
manual are more tutorial in nature in order to help the user understand how to
do proofs with Dafny.
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updated HTML version, or to https://github.com/dafny-lang/dafny/releases
for updated PDFs attached to Dafny releases.
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Abstract: This is the Dafny reference manual; it describes the Dafny program-
ming language and how to use the Dafny verification system. Parts of this
manual are more tutorial in nature in order to help the user understand how to
do proofs with Dafny.

(Link to document as html)

1. Introduction
Dafny (Leino 2010) is a programming language with built-in specification con-
structs, so that verifying a program’s correctness with respect to those specifi-
cations is a natural part of writing software. The Dafny static program verifier
can be used to verify the functional correctness of programs. This document
is a reference manual for the programming language and a user guide for the
dafny tool that performs verification and compilation to an executable form.

The Dafny programming language is designed to support the static verification
of programs. It is imperative, sequential, supports generic classes, inheritance
and abstraction, methods and functions, dynamic allocation, inductive and co-
inductive datatypes, and specification constructs. The specifications include pre-
and postconditions, frame specifications (read and write sets), and termination
metrics. To further support specifications, the language also offers updatable
ghost variables, recursive functions, and types like sets and sequences. Speci-
fications and ghost constructs are used only during verification; the compiler
omits them from the executable code.

The dafny verifier is run as part of the compiler. As such, a programmer
interacts with it in much the same way as with the static type checker—when
the tool produces errors, the programmer responds by changing the program’s
type declarations, specifications, and statements.

(This document typically uses “Dafny” to refer to the programming language
and “dafny” to refer to the software tool that verifies and compiles programs in
the Dafny language.)

The easiest way to try out Dafny is to download it to run it on your machine as
you follow along with the Dafny tutorial. Dafny can be run from the command
line (on Linux, MacOS, Windows or other platforms) or from an IDE such
as emacs or an editor such as VSCode, which can provide syntax highlighting
without the built-in verification.

The verifier is powered by Boogie (Barnett et al. 2006; Leino 2008b; Leino and
Rümmer 2010) and Z3 (Moura and Bjørner 2008).

From verified programs, the dafny compiler can produce code for a number
of different backends: the .NET platform via intermediate C# files, Java,
Javascript, Go, and C++. Each language provides a basic Foreign Function
Interface (through uses of :extern) and a supporting runtime library. However,
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there is no automatic FFI generator, so :extern stubs must be written by
hand.

This reference manual for the Dafny verification system is based on the following
references: (Leino 2010), (Leino 2008a), (Leino and Polikarpova 2013), (Leino
and Moskal 2014a), Co-induction Simply.

The main part of the reference manual is in top down order except for an initial
section that deals with the lowest level constructs.

The details of using (and contributing to) the dafny tool are described in the
User Guide (Section 24).

1.1. Dafny Example
To give a flavor of Dafny, here is the solution to a competition problem.
// VSComp 2010, problem 3, find a 0 in a linked list and return
// how many nodes were skipped until the first 0 (or end-of-list)
// was found.
// Rustan Leino, 18 August 2010.
//
// The difficulty in this problem lies in specifying what the
// return value 'r' denotes and in proving that the program
// terminates. Both of these are addressed by declaring a ghost
// field 'List' in each linked-list node, abstractly representing
// the linked-list elements from the node to the end of the linked
// list. The specification can now talk about that sequence of
// elements and can use 'r' as an index into the sequence, and
// termination can be proved from the fact that all sequences in
// Dafny are finite.
//
// We only want to deal with linked lists whose 'List' field is
// properly filled in (which can only happen in an acyclic list,
// for example). To that end, the standard idiom in Dafny is to
// declare a predicate 'Valid()' that is true of an object when
// the data structure representing that object's abstract value
// is properly formed. The definition of 'Valid()' is what one
// intuitively would think of as the ''object invariant'', and
// it is mentioned explicitly in method pre- and postconditions.
//
// As part of this standard idiom, one also declares a ghost
// variable 'Repr' that is maintained as the set of objects that
// make up the representation of the aggregate object--in this
// case, the Node itself and all its successors.

class Node {
ghost var List: seq<int>
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ghost var Repr: set<Node>
var head: int
var next: Node? // Node? means a Node value or null

predicate Valid()
reads this, Repr

{
this in Repr &&
1 <= |List| && List[0] == head &&
(next == null ==> |List| == 1) &&
(next != null ==>
next in Repr && next.Repr <= Repr && this !in next.Repr &&
next.Valid() && next.List == List[1..])

}

static method Cons(x: int, tail: Node?) returns (n: Node)
requires tail == null || tail.Valid()
ensures n.Valid()
ensures if tail == null then n.List == [x]

else n.List == [x] + tail.List
{
n := new Node;
n.head, n.next := x, tail;
if (tail == null) {
n.List := [x];
n.Repr := {n};

} else {
n.List := [x] + tail.List;
n.Repr := {n} + tail.Repr;

}
}

}

method Search(ll: Node?) returns (r: int)
requires ll == null || ll.Valid()
ensures ll == null ==> r == 0
ensures ll != null ==>

0 <= r && r <= |ll.List| &&
(r < |ll.List| ==> ll.List[r] == 0 &&
0 !in ll.List[..r]) &&
(r == |ll.List| ==> 0 !in ll.List)

{
if (ll == null) {
r := 0;

} else {
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var jj,i := ll,0;
while (jj != null && jj.head != 0)
invariant jj != null ==> jj.Valid() &&

i + |jj.List| == |ll.List| &&
ll.List[i..] == jj.List

invariant jj == null ==> i == |ll.List|
invariant 0 !in ll.List[..i]
decreases |ll.List| - i

{
jj := jj.next;
i := i + 1;

}
r := i;

}
}

method Main()
{
var list: Node? := null;
list := list.Cons(0, list);
list := list.Cons(5, list);
list := list.Cons(0, list);
list := list.Cons(8, list);
var r := Search(list);
print "Search returns ", r, "\n";
assert r == 1;

}
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2. Lexical and Low Level Grammar
Dafny uses the Coco/R lexer and parser generator for its lexer and parser (http:
//www.ssw.uni-linz.ac.at/Research/Projects/Coco)(Mössenböck, Löberbauer,
and Wöß 2013). The Dafny input file to Coco/R is the Dafny.atg file in the
source tree. A Coco/R input file consists of code written in the target language
(C# for the dafny tool) intermixed with these special sections:

0. The Characters section which defines classes of characters that are used
in defining the lexer.

1. The Tokens section which defines the lexical tokens.
2. The Productions section which defines the grammar. The grammar pro-

ductions are distributed in the later parts of this document in the places
where those constructs are explained.

The grammar presented in this document was derived from the Dafny.atg file
but has been simplified by removing details that, though needed by the parser,
are not needed to understand the grammar. In particular, the following trans-
formations have been performed.

• The semantics actions, enclosed by “(.” and “.)”, were removed.
• There are some elements in the grammar used for error recovery (“SYNC”).

These were removed.
• There are some elements in the grammar for resolving conflicts (“IF(b)”).

These have been removed.
• Some comments related to Coco/R parsing details have been removed.
• A Coco/R grammar is an attributed grammar where the attributes enable

the productions to have input and output parameters. These attributes
were removed except that boolean input parameters that affect the parsing
are kept.

– In our representation we represent these in a definition by giving
the names of the parameters following the non-terminal name. For
example entity1(allowsX).

– In the case of uses of the parameter, the common case is that the
parameter is just passed to a lower-level non-terminal. In that case
we just give the name, e.g. entity2(allowsX).

– If we want to give an explicit value to a parameter, we specify it in
a keyword notation like this: entity2(allowsX: true).

– In some cases the value to be passed depends on the grammatical
context. In such cases we give a description of the conditions under
which the parameter is true, enclosed in parenthesis. For example:
FunctionSignatureOrEllipsis_(allowGhostKeyword: ("method"
present))
means that the allowGhostKeyword parameter is true if the “method”
keyword was given in the associated FunctionDecl.

– Where a parameter affects the parsing of a non-terminal we will ex-
plain the effect of the parameter.
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The names of character sets and tokens start with a lower case letter; the names
of grammar non-terminals start with an upper-case letter.

The grammar uses Extended BNF notation. See the Coco/R Referenced manual
for details. In summary:

• identifiers starting with a lower case letter denote terminal symbols
• identifiers starting with an upper case letter denote nonterminal symbols
• strings (a sequence of characters enclosed by double quote characters)

denote the sequence of enclosed characters
• = separates the sides of a production, e.g. A = a b c
• in the Coco grammars “.” terminates a production, but for readability in

this document a production starts with the defined identifier in the left
margin and may be continued on subsequent lines if they are indented

• | separates alternatives, e.g. a b | c | d e means a b or c or d e
• ( ) groups alternatives, e.g. (a | b) c means a c or b c
• [ ] option, e.g. [a] b means a b or b
• { } iteration (0 or more times), e.g. {a} b means b or a b or a a b or …
• We allow | inside [ ] and { }. So [a | b] is short for [(a | b)] and

{a | b} is short for {(a | b)}.
• The first production defines the name of the grammar, in this case Dafny.

In addition to the Coco rules, for the sake of readability we have adopted these
additional conventions.

• We allow - to be used. a - b means it matches if it matches a but not b.
• To aid in explaining the grammar we have added some additional produc-

tions that are not present in the original grammar. We name these with
a trailing underscore. If you inline these where they are referenced, the
result should let you reconstruct the original grammar.

2.1. Dafny Input
Dafny source code files are readable text encoded as UTF-8 Unicode (because
this is what the Coco/R-generated scanner and parser read). All program text
other than the contents of comments, character, string and verbatim string lit-
erals are printable and white-space ASCII characters, that is, ASCII characters
in the range ! to ~, plus space, tab, cr and nl (ASCII, 9, 10, 13, 32) characters.

However, a current limitation of the Coco/R tool used by dafny is that only
printable and white-space ASCII characters can be used. Use \u escapes in
string and character literals to insert unicode characters. Unicode in comments
will work fine unless the unicode is interpreted as an end-of-comment indica-
tion. Unicode in verbatim strings will likely not be interpreted as intended.
[Outstanding issue #818].
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2.2. Tokens and whitespace
The characters used in a Dafny program fall into four groups:

• White space characters
• alphanumerics: letters, digits, underscore (_), apostrophe ('), and ques-

tion mark (?)
• punctuation: (){}[],.`;
• operator characters (the other printable characters)

Each Dafny token consists of a sequence of consecutive characters from just one
of these groups, excluding white-space. White-space is ignored except that it
separates tokens.

A sequence of alphanumeric characters (with no preceding or following addi-
tional alphanumeric characters) is a single token. This is true even if the token
is syntactically or semantically invalid and the sequence could be separated into
more than one valid token. For example, assert56 is one identifier token, not a
keyword assert followed by a number; ifb!=0 begins with the token ifb and
not with the keyword if and token b; 0xFFFFZZ is an illegal token, not a valid
hex number 0xFFFF followed by an identifier ZZ. White-space must be used to
separate two such tokens in a program.

Somewhat differently, operator tokens need not be separated. Only specific
sequences of operator characters are recognized and these are somewhat context-
sensitive. For example, in seq<set<int>>, the grammar knows that >> is two
individual > tokens terminating the nested type parameter lists; the right shift
operator >> would never be valid here. Similarly, the sequence ==> is always one
token; even if it were invalid in its context, separating it into == and > would
always still be invalid.

In summary, except for required white space between alphanumeric tokens,
adding white space between tokens or removing white space can never result
in changing the meaning of a Dafny program. For the rest of this document, we
consider Dafny programs as sequences of tokens.

2.3. Character Classes
This section defines character classes used later in the token definitions. In this
section a backslash is used to start an escape sequence; so for example '\n'
denotes the single linefeed character. Also in this section, double quotes enclose
the set of characters constituting a character class; enclosing single quotes are
used when there is just one character in the class. + indicates the union of two
character classes; - is the set-difference between the two classes. ANY designates
all unicode characters.
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

At present, a letter is an ASCII upper or lowercase letter. Other Unicode letters
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are not supported.
digit = "0123456789"

A digit is just one of the base-10 digits.
posDigit = "123456789"
posDigitFrom2 = "23456789"

A posDigit is a digit, excluding 0. posDigitFrom2 excludes both 0 and 1.
hexdigit = "0123456789ABCDEFabcdef"

A hexdigit character is a digit or one of the letters from ‘A’ to ‘F’ in either
case.
special = "'_?"

The special characters are the characters in addition to alphanumeric characters
that are allowed to appear in a Dafny identifier. These are

• ' because mathematicians like to put primes on identifiers and some ML
programmers like to start names of type parameters with a ',

• _ because computer scientists expect to be able to have underscores in
identifiers, and

• ? because it is useful to have ? at the end of names of predicates, e.g.,
“Cons?”.

cr = '\r'

A carriage return character.
lf = '\n'

A line feed character.
tab = '\t'

A tab character.
space = ' '

A space character.
nondigitIdChar = letter + special

The characters that can be used in an identifier minus the digits.
idchar = nondigitIdChar + digit

The characters that can be used in an identifier.
nonidchar = ANY - idchar
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Any character except those that can be used in an identifier. Here the scanner
generator will interpret ANY as any unicode character. However, nonidchar
is used only to mark the end of the !in token; in this context any character
other than whitespace or printable ASCII will trigger a subsequent scanning or
parsing error.
charChar = ANY - '\'' - '\\' - cr - lf

Characters that can appear in a character constant. See the discussion on
unicode support.
stringChar = ANY - '"' - '\\' - cr - lf

Characters that can appear in a string constant. See the discussion on unicode
support.
verbatimStringChar = ANY - '"'

Characters that can appear in a verbatim string. See the discussion on unicode
support.

2.4. Comments
Comments are in two forms.

• They may go from /* to */ .
• They may go from // to the end of the line.

Comments may be nested, but note that the nesting of multi-line comments is
behavior that is different from most programming languages. In Dafny,
method m() {
/* comment

/* nested comment
*/
rest of outer comment

*/
}

is permitted; this feature is convenient for commenting out blocks of program
statements that already have multi-line comments within them. Other than
looking for end-of-comment delimiters, the contents of a comment are not inter-
preted. Comments may contain any unicode character, but see the discussion
on unicode support for more information.

Note that the nesting is not fool-proof. In
method m() {
/* var i: int;

// */ line comment
var j: int;
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*/
}

and
method m() {
/* var i: int;

var s: string := "a*/b";
var j: int;

*/
}

the */ inside the line comment and the string are seen as the end of the outer
comment, leaving trailing text that will provoke parsing errors.

2.5. Tokens
As with most languages, Dafny syntax is defined in two levels. First the stream
of input characters is broken up into tokens. Then these tokens are parsed using
the Dafny grammar. The Dafny tokens are defined in this section.

2.5.1. Reserved Words

The following reserved words appear in the Dafny grammar and may not be
used as identifiers of user-defined entities:
reservedword =

"abstract" | "allocated" | "as" | "assert" | "assume" |
"bool" | "break" | "by" |
"calc" | "case" | "char" | "class" | "codatatype" |
"colemma" | "const" | "constructor" | "copredicate" |
"datatype" | "decreases" |
"else" | "ensures" | "exists" | "export" | "extends" |
"false" | "forall" | "fresh" | "function" | "ghost" |
"if" | "imap" | "import" | "in" | "include" | "inductive" |
"int" | "invariant" | "is" | "iset" | "iterator" |
"label" | "lemma" | "map" | "match" | "method" |
"modifies" | "modify" | "module" | "multiset" |
"nameonly" | "nat" | "new" | "newtype" | "null" |
"object" | "object?" | "old" | "opened" | "ORDINAL"
"predicate" | "print" | "provides" |
"reads" | "real" | "refines" | "requires" | "return" |
"returns" | "reveal" | "reveals" |
"seq" | "set" | "static" | "string" |
"then" | "this" | "trait" | "true" | "twostate" | "type" |
"unchanged" | "var" | "while" | "witness" |
"yield" | "yields" |
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arrayToken | bvToken

arrayToken = "array" [ posDigitFrom2 | posDigit digit { digit }]["?"]

bvToken = "bv" ( 0 | posDigit { digit } )

An arrayToken is a reserved word that denotes an array type of given rank.
array is an array type of rank 1 (aka a vector). array2 is the type of two-
dimensional arrays, etc. array1 and array1? are not reserved words; they are
just ordinary identifiers. Similarly, bv0, bv1, and bv8 are reserved words, but
bv02 is an ordinary identifier.

2.5.2. Identifiers

ident = nondigitIdChar { idchar } - charToken - reservedword

In general Dafny identifiers are sequences of idchar characters where the first
character is a nondigitIdChar. However tokens that fit this pattern are not
identifiers if they look like a character literal or a reserved word (including
array or bit-vector type tokens). Also, ident tokens that begin with an _ are
not permitted as user identifiers.

2.5.3. Digits

digits = digit {['_'] digit}

A sequence of decimal digits, possibly interspersed with underscores for read-
ability (but not beginning or ending with an underscore). Example: 1_234_567.
hexdigits = "0x" hexdigit {['_'] hexdigit}

A hexadecimal constant, possibly interspersed with underscores for readability
(but not beginning or ending with an underscore). Example: 0xffff_ffff.
decimaldigits = digit {['_'] digit} '.' digit {['_'] digit}

A decimal fraction constant, possibly interspersed with underscores for
readability (but not beginning or ending with an underscore). Example:
123_456.789_123.

2.5.4. Escaped Character

In this section the “\” characters are literal.
escapedChar =

( "\'" | "\"" | "\\" | "\0" | "\n" | "\r" | "\t"
| " \u " hexdigit hexdigit hexdigit hexdigit

)
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In Dafny character or string literals, escaped characters may be used to specify
the presence of a single- or double-quote character, backslash, null, new line,
carriage return, tab, or a Unicode character with given hexadecimal representa-
tion.

2.5.5. Character Constant Token

charToken = "'" ( charChar | escapedChar ) "'"

A character constant is enclosed by ' and includes either a character from the
charChar set or an escaped character. Note that although Unicode letters are
not allowed in Dafny identifiers, Dafny does support Unicode in its character,
string, and verbatim strings constants and in its comments. A character con-
stant has type char.

2.5.6. String Constant Token

stringToken =
'"' { stringChar | escapedChar } '"'

| '@' '"' { verbatimStringChar | '"' '"' } '"'

A string constant is either a normal string constant or a verbatim string constant.
A normal string constant is enclosed by " and can contain characters from the
stringChar set and escapes.

A verbatim string constant is enclosed between @" and " and can consist of
any characters (including newline characters) except that two successive double
quotes represent one quote character inside the string. This is the mechanism for
escaping a double quote character, which is the only character needing escaping
in a verbatim string.

2.5.7. Ellipsis

ellipsis = "..."

The ellipsis symbol is typically used to designate something missing that will
later be inserted through refinement or is already present in a parent declara-
tion..

2.6. Low Level Grammar Productions
2.6.1. Identifier Variations

Ident = ident

The Ident non-terminal is just an ident token and represents an ordinary
identifier.
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DotSuffix =
( ident | digits | "requires" | "reads" )

When using the dot notation to denote a component of a compound entity, the
token following the “.” may be an identifier, a natural number, or one of the
keywords requires or reads.

• Digits can be used to name fields of classes and destructors of datatypes.
For example, the built-in tuple datatypes have destructors named 0, 1, 2,
etc. Note that as a field or destructor name a digit sequence is treated
as a string, not a number: internal underscores matter, so 10 is different
from 1_0 and from 010.

• m.requires is used to denote the precondition for method m.
• m.reads is used to denote the things that method m may read.

NoUSIdent = ident - "_" { idchar }

A NoUSIdent is an identifier except that identifiers with a leading under-
score are not allowed. The names of user-defined entities are required to be
NoUSIdents or, in some contexts, a digits. We introduce more mnemonic
names for these below (e.g. ClassName).
WildIdent = NoUSIdent | "_"

Identifier, disallowing leading underscores, except the “wildcard” identifier _.
When _ appears it is replaced by a unique generated identifier distinct from
user identifiers. This wildcard has several uses in the language, but it is not
used as part of expressions.

2.6.2. NoUSIdent Synonyms

In the productions for the declaration of user-defined entities the name of the
user-defined entity is required to be an identifier that does not start with an
underscore, i.e., a NoUSIdent. To make the productions more mnemonic, we
introduce the following synonyms for NoUSIdent and other identifier-related
symbols.
IdentOrDigits = Ident | digits
NoUSIdentOrDigits = NoUSIdent | digits
ModuleName = NoUSIdent
ClassName = NoUSIdent // also traits
DatatypeName = NoUSIdent
DatatypeMemberName = NoUSIdentOrDigits
NewtypeName = NoUSIdent
SynonymTypeName = NoUSIdent
IteratorName = NoUSIdent
TypeVariableName = NoUSIdent
MethodFunctionName = NoUSIdentOrDigits
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LabelName = NoUSIdentOrDigits
AttributeName = NoUSIdent
ExportId = NoUSIdentOrDigits
TypeNameOrCtorSuffix = NoUSIdentOrDigits

Some parsing contexts

2.6.3. Qualified Names

QualifiedModuleName = ModuleName { "." ModuleName }

A qualified name starts with the name of the top-level entity and then is followed
by zero or more DotSuffixs which denote a component. Examples:

• Module.MyType1
• MyTuple.1
• MyMethod.requires
• A.B.C.D

The grammar does not actually have a production for qualified names except in
the special case of a qualified name that is known to be a module name, i.e. a
QualifiedModuleName.

2.6.4. Identifier-Type Combinations

In this section, we describe some nonterminals that combine an identifier and a
type.
IdentType = WildIdent ":" Type

In Dafny, a variable or field is typically declared by giving its name followed by
a colon and its type. An IdentType is such a construct.
FIdentType = NoUSIdentOrDigits ":" Type

A FIdentType is used to declare a field. The Type is required because there is
no initializer.
CIdentType = NoUSIdentOrDigits [ ":" Type ]

A CIdentType is used for a const declaration. The Type is optional because it
may be inferred from the initializer.
GIdentType(allowGhostKeyword, allowNewKeyword, allowNameOnlyKeyword, allowDefault) =

{ "ghost" | "new" | "nameonly" } IdentType
[ ":=" Expression(allowLemma: true, allowLambda: true) ]

A GIdentType is a typed entity declaration optionally preceded by ghost or
new. The ghost qualifier means the entity is only used during verification
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and not in the generated code. Ghost variables are useful for abstractly rep-
resenting internal state in specifications. If allowGhostKeyword is false, then
ghost is not allowed. If allowNewKeyword is false, then new is not allowed. If
allowNameOnlyKeyword is false, then nameonly is not allowed. If allowDefault
is false, then := Expression is not allowed.
LocalIdentTypeOptional = WildIdent [ ":" Type ]

A LocalIdentTypeOptional is used when declaring local variables. If a value
is specified for the variable, the type may be omitted because it can be inferred
from the initial value. An initial value is not required.
IdentTypeOptional = WildIdent [ ":" Type ]

A IdentTypeOptional is typically used in a context where the type of the
identifier may be inferred from the context. Examples are in pattern matching
or quantifiers.
TypeIdentOptional =

{ "ghost" | "nameonly" } [ NoUSIdentOrDigits ":" ] Type
[ ":=" Expression(allowLemma: true, allowLambda: true) ]

TypeIdentOptionals are used in FormalsOptionalIds. This represents situa-
tions where a type is given but there may not be an identifier. The default-value
expression := Expression is allowed only if NoUSIdentOrDigits : is also pro-
vided. If modifier nameonly is given, then NoUSIdentOrDigits must also be
used.
FormalsOptionalIds = "(" [ TypeIdentOptional

{ "," TypeIdentOptional } ] ")"

A FormalsOptionalIds is a formal parameter list in which the types are re-
quired but the names of the parameters are optional. This is used in algebraic
datatype definitions.

2.6.5. Numeric Literals

Nat = ( digits | hexdigits )

A Nat represents a natural number expressed in either decimal or hexadecimal.
Dec = decimaldigits

A Dec represents a decimal fraction literal.
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3. Programs

Dafny = { IncludeDirective_ } { TopDecl } EOF

At the top level, a Dafny program (stored as files with extension .dfy) is a set
of declarations. The declarations introduce (module-level) constants, methods,
functions, lemmas, types (classes, traits, inductive and co-inductive datatypes,
newtypes, type synonyms, opaque types, and iterators) and modules, where the
order of introduction is irrelevant. A class also contains a set of declarations,
introducing fields, methods, and functions.

When asked to compile a program, Dafny looks for the existence of a Main()
method. If a legal Main() method is found, the compiler will emit an executable
appropriate to the target language; otherwise it will emit a library or individual
files. The conditions for a legal Main() method are described in the User Guide
(Section 24.9.1). If there is more than one Main(), Dafny will emit an error
message.

An invocation of Dafny may specify a number of source files. Each Dafny file
follows the grammar of the Dafny non-terminal.

A file consists of a sequence of optional include directives followed by top level
declarations followed by the end of the file.

3.1. Include Directives

IncludeDirective_ = "include" stringToken

Include directives have the form "include" stringToken where the string to-
ken is either a normal string token or a verbatim string token. The stringToken
is interpreted as the name of a file that will be included in the Dafny source.
These included files also obey the Dafny grammar. Dafny parses and processes
the transitive closure of the original source files and all the included files, but
will not invoke the verifier on the included files unless they have been listed
explicitly on the command line.

The file name may be a path using the customary /, ., and .. specifiers. The
interpretation of the name (e.g., case-sensitivity) will depend on the underlying
operating system. A path not beginning with / is looked up in the underlying
file system relative to the current working directory (the one in which the dafny
tool is invoked). Paths beginning with a device designator (e.g., C:) are only
permitted on Windows systems.

3.2. Top Level Declarations

TopDecl = {
{ DeclModifier }
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( SubModuleDecl
| ClassDecl
| DatatypeDecl
| NewtypeDecl
| SynonymTypeDecl // includes opaque types
| IteratorDecl
| TraitDecl
| ClassMemberDecl(moduleLevelDecl: true)
)
}

Top-level declarations may appear either at the top level of a Dafny file, or
within a SubModuleDecl. A top-level declaration is one of various kinds of
declarations described later. Top-level declarations are implicitly members of a
default (unnamed) top-level module.

The ClassDecl, DatatypeDecl, NewtypeDecl, SynonymTypeDecl, IteratorDecl,
and TraitDecl declarations are type declarations and are described in Section
6 and the following sections. Ordinarily ClassMemberDecls appear in class
declarations but they can also appear at the top level. In that case they are
included as part of an implicit top-level class and are implicitly static (but
cannot be declared as static). In addition a ClassMemberDecl that appears at
the top level cannot be a FieldDecl.

3.3. Declaration Modifiers

DeclModifier = ( "abstract" | "ghost" | "static" )

Top level declarations may be preceded by zero or more declaration modifiers.
Not all of these are allowed in all contexts.

The abstract modifiers may only be used for module declarations. An ab-
stract module can leave some entities underspecified. Abstract modules are not
compiled.

The ghost modifier is used to mark entities as being used for specification only,
not for compilation to code.

The static modifier is used for class members that that are associated with
the class as a whole rather than with an instance of the class.

The following table shows modifiers that are available for each of the kinds of
declaration. In the table we use already-ghost (already-non-ghost) to denote
that the item is not allowed to have the ghost modifier because it is already
implicitly ghost (non-ghost).
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Declaration allowed modifiers
module abstract
class -
trait -
datatype or codatatype -
field ghost
newtype -
synonym types -
iterators -
method ghost static
lemma, colemma, comethod already-ghost static
inductive lemma already-ghost static
constructor -
function (non-method) already-ghost static
function method already-non-ghost static
predicate (non-method) already-ghost static
predicate method already-non-ghost static
inductive predicate already-ghost static
copredicate already-ghost static
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4. Modules

SubModuleDecl = ( ModuleDefinition | ModuleImport | ModuleExport )

Structuring a program by breaking it into parts is an important part of creating
large programs. In Dafny, this is accomplished via modules. Modules provide
a way to group together related types, classes, methods, functions, and other
modules, as well as to control the scope of declarations. Modules may import
each other for code reuse, and it is possible to abstract over modules to separate
an implementation from an interface.

4.1. Declaring New Modules

ModuleDefinition = "module" { Attribute } ModuleQualifiedName
[ "refines" ModuleQualifiedName ]
"{" { TopDecl } "}"

ModuleQualifiedName = ModuleName { "." ModuleName }

A ModuleQualifiedName is a qualified name that is expected to refer to a mod-
ule; a qualified name is a sequence of .-separated identifiers, which designates
a program entity by representing increasingly-nested scopes.

A new module is declared with the module keyword, followed by the name of the
new module, and a pair of curly braces ({}) enclosing the body of the module:
module Mod {
...

}

A module body can consist of anything that you could put at the top level. This
includes classes, datatypes, types, methods, functions, etc.
module Mod {
class C {
var f: int
method m()

}
datatype Option = A(int) | B(int)
type T
method m()
function f(): int

}

You can also put a module inside another, in a nested fashion:
module Mod {
module Helpers {
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class C {
method doIt()
var f: int

}
}

}

Then you can refer to the members of the Helpers module within the Mod
module by prefixing them with “Helpers.”. For example:
module Mod {
module Helpers { ... }
method m() {
var x := new Helpers.C;
x.doIt();
x.f := 4;

}
}

Methods and functions defined at the module level are available like classes, with
just the module name prefixing them. They are also available in the methods
and functions of the classes in the same module.
module Mod {
module Helpers {
function method addOne(n: nat): nat {
n + 1

}
}
method m() {
var x := 5;
x := Helpers.addOne(x); // x is now 6

}
}

Note that everything declared at the top-level (in all the files constituting the
program) is implicitly part of a single implicit unnamed global module.

4.2. Declaring nested modules standalone
As described in the previous section, module declarations can be nested. It is
also permitted to declare a nested module outside of its “enclosing” module. So
instead of
module A {
module B {
}

}
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one can write
module A {
}
module A.B {
}

The second module is completely separate; for example, it can be in a different
file. This feature provides flexibility in writing and maintenance; for example, it
can reduce the size of module A by extracting module A.B into a separate body
of text.

However, it can also lead to confusion and program authors need to take care.
It may not be apparent to a reader of module A that module A.B exists; the
existence of A.B might cause names to be resolved differently and the semantics
of the program might be (silently) different if A.B is present or absent.

4.3. Importing Modules

ModuleImport =
"import"
[ "opened" ]
( QualifiedModuleExport
| ModuleName "=" QualifiedModuleExport
| ModuleName ":" QualifiedModuleExport
)

QualifiedModuleExport =
ModuleQualifiedName [ "`" ModuleExportSuffix ]

ModuleExportSuffix =
( ExportId
| "{" ExportId { "," ExportId } "}"
)

Sometimes you want to refer to things from an existing module, such as a
library. In this case, you can import one module into another. This is done
via the import keyword, which has two forms with different meanings. The
simplest form is the concrete import, which has the form import A = B. This
declaration creates a reference to the module B (which must already exist), and
binds it to the new name A. This form can also be used to create a reference to
a nested module, as in import A = B.C. The other form, using a :, is described
in Section 4.6.

As modules in the same scope must have different names, this ability to bind
a module to a new name allows disambiguating separately developed external
modules that have the same name. Note that the new name is only bound in
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the scope containing the import declaration; it does not create a global alias.
For example, if Helpers was defined outside of Mod, then we could import it:
module Helpers {
...

}
module Mod {
import A = Helpers
method m() {
assert A.addOne(5) == 6;

}
}

Note that inside m(), we have to use A instead of Helpers, as we bound it
to a different name. The name Helpers is not available inside m(), as only
names that have been bound inside Mod are available. In order to use the
members from another module, that other module either has to be declared
there with module or imported with import. (As described below, the resolution
of the ModuleQualifiedName that follows the = in the import statement or the
refines in a module declaration uses slightly different rules.)

We don’t have to give Helpers a new name, though, if we don’t want to. We can
write import Helpers = Helpers to import the module under its own name;
Dafny even provides the shorthand import Helpers for this behavior. You can’t
bind two modules with the same name at the same time, so sometimes you have
to use the = version to ensure the names do not clash. When importing nested
modules, import B.C means import C = B.C; the implicit name is always the
last name segment of the module designation.

The ModuleQualifiedName in the ModuleImport starts with a sibling module
of the importing module, or with a submodule of the importing module. There
is no way to refer to the parent module, only sibling modules (and their sub-
modules).

Import statements may occur at the top-level of a program (that is, in the
implicit top-level module of the program) as well. There they serve simply as a
way to give a new name, perhaps a shorthand name, to a module. For example,
module MyModule { ... } // declares module MyModule
import MyModule // error: cannot add a module named MyModule

// because there already is one
import M = MyModule // OK. M and MyModule are equivalent

4.4. Opening Modules
Sometimes, prefixing the members of the module you imported with the name
is tedious and ugly, even if you select a short name when importing it. In this
case, you can import the module as opened, which causes all of its members to
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be available without adding the module name. The opened keyword, if present,
must immediately follow import. For example, we could write the previous
example as:
module Mod {
import opened Helpers
method m() {
assert addOne(5) == 6;

}
}

When opening modules, the newly bound members have lower priority than
local definitions. This means if you define a local function called addOne, the
function from Helpers will no longer be available under that name. When
modules are opened, the original name binding is still present however, so you
can always use the name that was bound to get to anything that is hidden.
module Mod {
import opened Helpers
function addOne(n: nat): nat {
n - 1

}
method m() {
assert addOne(5) == 6; // this is now false,

// as this is the function just defined
assert Helpers.addOne(5) == 6; // this is still true

}
}

If you open two modules that both declare members with the same name, then
neither member can be referred to without a module prefix, as it would be
ambiguous which one was meant. Just opening the two modules is not an error,
however, as long as you don’t attempt to use members with common names.
However, if the ambiguous references actually refer to the same declaration,
then they are permitted. The opened keyword may be used with any kind of
import declaration, including the module abstraction form.

An import opened may occur at the top-level as well. For example,
module MyModule { ... } // declares MyModule
import opened MyModule // does not declare a new module, but does

// make all names in MyModule available in
// the current scope, without needing
// qualification

import opened M = MyModule // names in MyModule are available in
// the current scope without qualification
// or qualified with either M or MyModule
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The Dafny style guidelines suggest using opened imports sparingly. They are
best used when the names being imported have obvious and unambiguous mean-
ings and when using qualified names would be verbose enough to impede under-
standing.

4.5. Export Sets and Access Control

ModuleExport =
"export"
[ ExportId ]
[ "..." ]
{
"provides" ( ExportSignature { "," ExportSignature } | "*" )

| "reveals" ( ExportSignature { "," ExportSignature } | "*" )
| "extends" ExportId { "," ExportId }
}

ExportSignature = TypeNameOrCtorSuffix [ "." TypeNameOrCtorSuffix ]

In some programming languages, keywords such as public, private, and
protected are used to control access to (that is, visibility of) declared program
entities. In Dafny, modules and export sets provide that capability. Modules
combine declarations into logically related groups. Export sets then permit
selectively exposing subsets of declarations; another module can import the
export set appropriate to its needs. A user can define as many export sets as
are needed to provide different kinds of access to the module’s declarations.
Each export set designates a list of names, which must be names that are
declared in the module (or in a refinement parent).

By default all the names declared in a module are available outside the module
using the import mechanism. An export set enables a module to disallow the
use of some declarations outside the module.

Export sets have names; those names are used in import statements to designate
which export set of a module is being imported. If a module M has export sets E1
and E2, we can write import A = M`E1 to create a module alias A that contains
only the names in E1. Or we can write import A = M`{E1,E2} to import the
union of names in E1 and E2 as module alias A. As before, import M`E1 is an
abbreviation of import M = M`E1.

If no export set is given in an import statement, the default export set of the
module is used.

There are various defaults that apply differently in different cases. The following
description is with respect to an example module M:

M has no export sets declared. Then another module may simply import Z = M
to obtain access to all of M’s declarations.
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M has one or more named export sets (e.g., E, F). Then another module can
write import Z = M`E or import Z = M`{E,F} to obtain access to the names
that are listed in export set E or to the union of those in export sets E and F,
respectively. If no export set has the same name as the module, then an export
set designator must be used: in that case you cannot write simply import Z =
M.

M has an unnamed export set, along with other export sets (e.g., E). The unnamed
export set is the default export set and implicitly has the same name as the
module. Because there is a default export set, another module may write either
import Z = M or import Z = M`M to import the names in that default export
set. You can also still use the other export sets with the explicit designator:
import Z = M`E

M declares an export set with the same name as the module. This is equivalent
to declaring an export set without a name. import M and import M`M perform
the same function in either case; the export set with or without the name of the
module is the default export set for the module.

Note that names of module aliases (declared by import statements) are just like
other names in a module; they can be included or omitted from export sets.
Names brought into a module by refinement are treated the same as locally
declared names and can be listed in export set declarations. However, names
brought into a module by import opened (either into a module or a refinement
parent of a module) may not be further exported. For example,
module A {
const a := 10;
const z := 10;

}
module B {
import opened Z = A // includes a, declares Z
const b := Z.a; // OK

}
module C {
import opened B // includes b, Z, but not a
//assert b == a; // error: a is not known
//assert b == B.a; // error: B.a is not valid
//assert b == A.a; // error: A is not known
assert b == Z.a; // OK: module Z is known and includes a

}

However, in the above example,

• if A has one export set export Y reveals a then the import in module
B is invalid because A has no default export set;

• if A has one export set export Y reveals a and B has import Z = A`Y
then B’s import is OK. So is the use of Z.a in the assert because B declares
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Z and C brings in Z through the import opened and Z contains a by virtue
of its declaration. (The alias Z is not able to have export sets; all of its
names are visible.)

• if A has one export set export provides z then A does have a default
export set, so the import in B is OK, but neither the use of a in B nor as
Z.a in C would be valid, because a is not in Z.

The default export set is important in the resolution of qualified names, as
described in Section 4.8.

4.5.1. Provided and revealed names

Names can be exported from modules in two ways, designated by provides and
reveals in the export set declaration.

When a name is exported as provided, then inside a module that has imported
the name only the name is known, not the details of the name’s declaration.

For example, in the following code the constant a is exported as provided.
module A {
export provides a
const a := 10;
const b := 20;

}

module B {
import A
method m() {
assert A.a == 10; // a is known, but not its value
// assert A.b == 20; // b is not known through A`A

}
}

Since a is imported into module B through the default export set A`A, it can be
referenced in the assert statement. The constant b is not exported, so it is not
available. But the assert about a is not provable because the value of a is not
known in module B.

In contrast, if a is exported as revealed, as shown in the next example, its value
is known and the assertion can be proved.
module A {
export reveals a
const a := 10;
const b := 20;

}

module B {
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import A
method m() {
assert A.a == 10; // a and its value are known
// assert A.b == 20; // b is not known through A`A

}
}

The following list presents the difference between provides and reveals for each
kind of declaration.

• const: type always known, but value not known when only provided
• function, predicate: signature always known, but body not known when

not revealed
• method: TODO
• lemma: TODO
• iterator: TODO
• class, trait: TODO
• opaque type: TODO
• subset type, newtype: TODO
• datatype: TODO
• module: module names may only be provided
• export set: names of export sets are always visible and are not subject to

export set rules, that is, export set names may not be put in the provides
or reveals lists in export set declarations.

A few other notes:

• Using a * instead of a list of names means that all local names (except
export set names) in the module are exported.

• If no export sets are declared, then the implicit export set is export
reveals *

• A module acquires all the export sets from its refinement parent.
• Names acquired by a module from its refinement parent are also subject

to export lists. (These are local names just like those declared directly.)
• Names acquired by a module via an import opened declaration are not

re-exportable, though the new module alias name (such as the C in import
C = A.B) is a local name.

4.5.2. Extends list

An export set declaration may include an extends list, which is a list of one
or more export set names from the same module containing the declaration
(including export set names obtained from a refinement parent). The effect is
to include in the declaration the union of all the names in the export sets in the
extends list, along with any other names explicitly included in the declaration.
So for example in
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module M {
const a := 10;
const b := 10;
const c := 10;
export A reveals a
export B reveals b
export C reveals c extends A, B

}

export set C will contain the names a, b, and c.

4.6. Module Abstraction
Sometimes, using a specific implementation is unnecessary; instead, all that is
needed is a module that implements some interface. In that case, you can use
an abstract module import. In Dafny, this is written import A : B. This means
bind the name A as before, but instead of getting the exact module B, you get
any module which adheres to B. Typically, the module B may have abstract
type definitions, classes with bodiless methods, or otherwise be unsuitable to
use directly. Because of the way refinement is defined, any refinement of B can
be used safely. For example, if we start with:
module Interface {
function method addSome(n: nat): nat
ensures addSome(n) > n

}
abstract module Mod {
import A : Interface
method m() {
assert 6 <= A.addSome(5);

}
}

We can be more precise if we know that addSome actually adds exactly one. The
following module has this behavior. Further, the postcondition is stronger, so
this is actually a refinement of the Interface module.
module Implementation {
function method addSome(n: nat): nat
ensures addSome(n) == n + 1

{
n + 1

}
}

We can then substitute Implementation for A in a new module, by declaring a
refinement of Mod which defines A to be Implementation.
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module Mod2 refines Mod {
import A = Implementation
...

}

When you refine an abstract import into a concrete one Dafny checks that
the concrete module is a refinement of the abstract one. This means that the
methods must have compatible signatures, all the classes and datatypes with
their constructors and fields in the abstract one must be present in the concrete
one, the specifications must be compatible, etc.

A module that includes an abstract import must be declared abstract.

4.7. Module Ordering and Dependencies
Dafny isn’t particular about the textual order in which modules are declared,
but they must follow some rules to be well formed. In particular, there must be
a way to order the modules in a program such that each only refers to things
defined before it in the ordering. That doesn’t mean the modules have to be
given textually in that order in the source text. Dafny will figure out that order
for you, assuming you haven’t made any circular references. For example, this
is pretty clearly meaningless:
import A = B
import B = A // error: circular

You can have import statements at the toplevel and you can import modules
defined at the same level:
import A = B
method m() {
A.whatever();

}
module B { ... }

In this case, everything is well defined because we can put B first, followed by
the A import, and then finally m(). If there is no permitted ordering, then Dafny
will give an error, complaining about a cyclic dependency.

Note that when rearranging modules and imports, they have to be kept in the
same containing module, which disallows some pathological module structures.
Also, the imports and submodules are always considered to be before their
containing module, even at the toplevel. This means that the following is not
well formed:
method doIt() { }
module M {
method m() {
doIt(); // error: M precedes doIt
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}
}

because the module M must come before any other kind of members, such as
methods. To define global functions like this, you can put them in a module
(called Globals, say) and open it into any module that needs its functionality.
Finally, if you import via a path, such as import A = B.C, then this creates a
dependency of A on B, and B itself depends on its own nested module B.C.

4.8. Name Resolution
When Dafny sees something like A<T>.B<U>.C<V>, how does it know what each
part refers to? The process Dafny uses to determine what identifier sequences
like this refer to is name resolution. Though the rules may seem complex,
usually they do what you would expect. Dafny first looks up the initial identifier.
Depending on what the first identifier refers to, the rest of the identifier is looked
up in the appropriate context.

In terms of the grammar, sequences like the above are represented as a
NameSegment followed by 0 or more Suffixes. The form shown above contains
three instances of AugmentedDotSuffix_.

The resolution is different depending on whether it is in a module context, an
expression context or a type context.

4.8.1. Modules and name spaces

A module is a collection of declarations, each of which has a name. These names
are held in two namespaces.

• The names of export sets
• The names of all other declarations, including submodules and aliased

modules

In addition names can be classified as local or imported.

• Local declarations of a module are the declarations that are explicit in the
module and the local declarations of the refinement parent. This includes,
for example, the N of import N = in the refinement parent, recursively.

• Imported names of a module are those brought in by import opened plus
the imported names in the refinement parent.

Within each namespace, the local names are unique. Thus a module may not
reuse a name that a refinement parent has declared (unless it is a refining dec-
laration, which replaces both declarations, as described in Section 0).

Local names take precedence over imported names. If a name is used more
than once among imported names (coming from different imports), then it is
ambiguous to use the name without qualification.
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4.8.2. Module Id Context Name Resolution

A qualified name may be used to refer to a module in an import statement or
a refines clause of a module declaration. Such a qualified name is resolved as
follows, with respect to its syntactic location within a module Z:

0. The leading NameSegment is resolved as a local or imported module name
of Z, if there is one with a matching name. The target of a refines clause
does not consider local names, that is, in module Z refines A.B.C, any
contents of Z are not considered in finding A.

1. Otherwise, it is resolved as a local or imported module name of the most
enclosing module of Z, iterating outward to each successive enclosing mod-
ule until a match is found or the default toplevel module is reached without
a match. No consideration of export sets, default or otherwise, is used in
this step. However, if at any stage a matching name is found that is not
a module declaration, the resolution fails. See the examples below.

2a. Once the leading NameSegment is resolved as say module M, the next
NameSegment is resolved as a local or imported module name within M The
resolution is restricted to the default export set of M.

2b. If the resolved module name is a module alias (from an import statement)
then the target of the alias is resolved as a new qualified name with respect to
its syntactic context (independent of any resolutions or modules so far). Since
Z depends on M, any such alias target will already have been resolved, because
modules are resolved in order of dependency.

3. Step 2 is iterated for each NameSegment in the qualified module id, re-
sulting in a module that is the final resolution of the complete qualified
id.

Ordinarily a module must be imported in order for its constituent declarations
to be visible inside a given module M. However, for the resolution of qualified
names this is not the case.

This example shows that the resolution of the refinement parent does not use
any local names:
module A {
const a := 10

}

module B refines A { // the top-level A, not the submodule A
module A { const a := 30 }
method m() { assert a == 10; } // true

}

In the example, the A in refines A refers to the global A, not the submodule A.
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A module is a collection of declarations, each of which has a name. These names
are held in two namespaces.

• The names of export sets
• The names of all other declarations, including submodules and aliased

modules

In addition names can be classified as local or imported.

• Local declarations of a module are the declarations that are explicit in the
module and the local declarations of the refinement parent. This includes,
for example, the N of import N = in the refinement parent, recursively.

• Imported names of a module are those brought in by import opened plus
the imported names in the refinement parent.

Within each namespace, the local names are unique. Thus a module may not
reuse a name that a refinement parent has declared (unless it is a refining dec-
laration, which replaces both declarations, as described in Section 21).

Local names take precedence over imported names. If a name is used more
than once among imported names (coming from different imports), then it is
ambiguous to use the name without qualification, unless they refer to the same
entity or to equal types.

4.8.3. Module Id Context Name Resolution

A qualified name may be used to refer to a module in an import statement or
a refines clause of a module declaration. Such a qualified name is resolved as
follows, with respect to its syntactic location within a module Z:

0. The leading NameSegment is resolved as a local or imported module name
of Z, if there is one with a matching name. The target of a refines clause
does not consider local names, that is, in module Z refines A.B.C, any
contents of Z are not considered in finding A.

1. Otherwise, it is resolved as a local or imported module name of the most
enclosing module of Z, iterating outward to each successive enclosing mod-
ule until a match is found or the default toplevel module is reached without
a match. No consideration of export sets, default or otherwise, is used in
this step. However, if at any stage a matching name is found that is not
a module declaration, the resolution fails. See the examples below.

2a. Once the leading NameSegment is resolved as say module M, the next
NameSegment is resolved as a local or imported module name within M The
resolution is restricted to the default export set of M.

2b. If the resolved module name is a module alias (from an import statement)
then the target of the alias is resolved as a new qualified name with respect to
its syntactic context (independent of any resolutions or modules so far). Since
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Z depends on M, any such alias target will already have been resolved, because
modules are resolved in order of dependency.

3. Step 2 is iterated for each NameSegment in the qualified module id, re-
sulting in a module that is the final resolution of the complete qualified
id.

Ordinarily a module must be imported in order for its constituent declarations
to be visible inside a given module M. However, for the resolution of qualified
names this is not the case.

Ths example shows that the resolution of the refinement parent does not use
any local names:
module A {
const a := 10

}

module B refines A { // the top-level A, not the submodule A
module A { const a := 30 }
method m() { assert a == 10; } // true

}

The A in refines A refers to the submodule A, not the global A.

4.8.4. Expression Context Name Resolution

The leading NameSegment is resolved using the first following rule that succeeds.

0. Local variables, parameters and bound variables. These are things like
x, y, and i in var x;, ... returns (y: int), and forall i :: ....
The declaration chosen is the match from the innermost matching scope.

1. If in a class, try to match a member of the class. If the member that
is found is not static an implicit this is inserted. This works for fields,
functions, and methods of the current class (if in a static context, then
only static methods and functions are allowed). You can refer to fields of
the current class either as this.f or f, assuming of course that f is not
hidden by one of the above. You can always prefix this if needed, which
cannot be hidden. (Note, a field whose name is a string of digits must
always have some prefix.)

2. If there is no Suffix, then look for a datatype constructor, if unambigu-
ous. Any datatypes that don’t need qualification (so the datatype name
itself doesn’t need a prefix) and also have a uniquely named constructor
can be referred to just by name. So if datatype List = Cons(List) |
Nil is the only datatype that declares Cons and Nil constructors, then
you can write Cons(Cons(Nil)). If the constructor name is not unique,
then you need to prefix it with the name of the datatype (for example
List.Cons(List.Nil))). This is done per constructor, not per datatype.
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3. Look for a member of the enclosing module.

4. Module-level (static) functions and methods

TODO: Not sure about the following paragraph. In each module, names from
opened modules are also potential matches, but only after names declared in
the module. If a ambiguous name is found or name of the wrong kind (e.g. a
module instead of an expression identifier), an error is generated, rather than
continuing down the list.

After the first identifier, the rules are basically the same, except in the new
context. For example, if the first identifier is a module, then the next identi-
fier looks into that module. Opened modules only apply within the module it
is opened into. When looking up into another module, only things explicitly
declared in that module are considered.

To resolve expression E.id:

First resolve expression E and any type arguments.

• If E resolved to a module M:
0. If E.id<T> is not followed by any further suffixes, look for unambigu-

ous datatype constructor.
1. Member of module M: a sub-module (including submodules of im-

ports), class, datatype, etc.
2. Static function or method.

• If E denotes a type:
3. Look up id as a member of that type

• If E denotes an expression:
4. Let T be the type of E. Look up id in T.

4.8.5. Type Context Name Resolution

In a type context the priority of NameSegment resolution is:

1. Type parameters.

2. Member of enclosing module (type name or the name of a module).

To resolve expression E.id:

• If E resolved to a module M:
0. Member of module M: a sub-module (including submodules of im-

ports), class, datatype, etc.
• If E denotes a type:

1. If allowDanglingDotName: Return the type of E and the given E.id,
letting the caller try to make sense of the final dot-name. TODO: I
don’t under this sentence. What is allowDanglingDotName?
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5. Specifications
Specifications describe logical properties of Dafny methods, functions, lambdas,
iterators and loops. They specify preconditions, postconditions, invariants, what
memory locations may be read or modified, and termination information by
means of specification clauses. For each kind of specification, zero or more
specification clauses (of the type accepted for that type of specification) may be
given, in any order.

We document specifications at these levels:

• At the lowest level are the various kinds of specification clauses, e.g., a
RequiresClause.

• Next are the specifications for entities that need them, e.g., a MethodSpec,
which typically consist of a sequence of specification clauses.

• At the top level are the entity declarations that include the specifications,
e.g., MethodDecl.

This section documents the first two of these in a bottom-up manner. We first
document the clauses and then the specifications that use them.

5.1. Specification Clauses
5.1.1. Requires Clause

RequiresClause(allowLabel) =
"requires" { Attribute }
[ LabelName ":" ] // Label allowed only if allowLabel is true
Expression(allowLemma: false, allowLambda: false)

The requires clauses specify preconditions for methods, functions, lambda ex-
pressions and iterators. Dafny checks that the preconditions are met at all call
sites. The callee may then assume the preconditions hold on entry.

If no requires clause is specified it is taken to be true.

If more than one requires clause is given, then the precondition is the conjunc-
tion of all of the expressions from all of the requires clauses, with a collected
list of all the given Attributes. The order of conjunctions (and hence the or-
der of requires clauses with respect to each other) can be important: earlier
conjuncts can set conditions that establish that later conjuncts are well-defined.

5.1.2. Ensures Clause

EnsuresClause(allowLambda) =
"ensures" { Attribute } Expression(allowLemma: false,

allowLambda)

An ensures clause specifies the post condition for a method, function or iterator.
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If no ensures clause is specified it is taken to be true.

If more than one ensures clause is given, then the postcondition is the conjunc-
tion of all of the expressions from all of the ensures clauses, with a collected list
of all the given Attributes. The order of conjunctions (and hence the order of
ensures clauses with respect to each other) can be important: earlier conjuncts
can set conditions that establish that later conjuncts are well-defined.

5.1.3. Decreases Clause

DecreasesClause(allowWildcard, allowLambda) =
"decreases" { Attribute } DecreasesList(allowWildcard,

allowLambda)

DecreasesList(allowWildcard, allowLambda) =
PossiblyWildExpression(allowLambda, allowWildcard)
{ "," PossiblyWildExpression(allowLambda, allowWildcard) }

PossiblyWildExpression(allowLambda, allowWild) =
( "*" // if allowWild is false, using '*' provokes an error
| Expression(allowLemma: false, allowLambda)
)

If allowWildcard is false but one of the PossiblyWildExpressions is a wild-
card, an error is reported.

Decreases clauses are used to prove termination in the presence of recursion. If
more than one decreases clause is given it is as if a single decreases clause had
been given with the collected list of arguments and a collected list of Attributes.
That is,
decreases A, B
decreases C, D

is equivalent to
decreases A, B, C, D

Note that changing the order of multiple decreases clauses will change the
order of the expressions within the equivalent single decreases clause, and will
therefore have different semantics.

Loops and compiled methods (but not functions and not ghost methods, in-
cluding lemmas) can be specified to be possibly non-terminating. This is done
by declaring the method or loop with decreases *, which causes the proof of
termination to be skipped. If a * is present in a decreases clause, no other
expressions are allowed in the decreases clause. A method that contains a
possibly non-terminating loop or a call to a possibly non-terminating method
must itself be declared as possibly non-terminating.
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Termination metrics in Dafny, which are declared by decreases clauses, are
lexicographic tuples of expressions. At each recursive (or mutually recursive)
call to a function or method, Dafny checks that the effective decreases clause
of the callee is strictly smaller than the effective decreases clause of the caller.

What does “strictly smaller” mean? Dafny provides a built-in well-founded order
for every type and, in some cases, between types. For example, the Boolean
“false” is strictly smaller than “true”, the integer 78 is strictly smaller than
102, the set {2,5} is strictly smaller than the set {2,3,5}, and for “s” of type
seq<Color> where Color is some inductive datatype, the color s[0] is strictly
less than s (provided s is nonempty).

What does “effective decreases clause” mean? Dafny always appends a “top”
element to the lexicographic tuple given by the user. This top element cannot
be syntactically denoted in a Dafny program and it never occurs as a run-time
value either. Rather, it is a fictitious value, which here we will denote ⊤, such
that each value that can ever occur in a Dafny program is strictly less than
⊤. Dafny sometimes also prepends expressions to the lexicographic tuple given
by the user. The effective decreases clause is any such prefix, followed by the
user-provided decreases clause, followed by ⊤. We said “user-provided decreases
clause”, but if the user completely omits a decreases clause, then Dafny will
usually make a guess at one, in which case the effective decreases clause is any
prefix followed by the guess followed by ⊤.

Here is a simple but interesting example: the Fibonacci function.
function Fib(n: nat) : nat
{
if n < 2 then n else Fib(n-2) + Fib(n-1)

}

In this example, Dafny supplies a decreases n clause.

Let’s take a look at the kind of example where a mysterious-looking decreases
clause like “Rank, 0” is useful.

Consider two mutually recursive methods, A and B:
method A(x: nat)
{
B(x);

}

method B(x: nat)
{
if x != 0 { A(x-1); }

}

To prove termination of A and B, Dafny needs to have effective decreases clauses
for A and B such that:
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• the measure for the callee B(x) is strictly smaller than the measure for
the caller A(x), and

• the measure for the callee A(x-1) is strictly smaller than the measure for
the caller B(x).

Satisfying the second of these conditions is easy, but what about the first? Note,
for example, that declaring both A and B with “decreases x” does not work,
because that won’t prove a strict decrease for the call from A(x) to B(x).

Here’s one possibility (for brevity, we will omit the method bodies):
method A(x: nat)
decreases x, 1

method B(x: nat)
decreases x, 0

For the call from A(x) to B(x), the lexicographic tuple "x, 0" is strictly smaller
than "x, 1", and for the call from B(x) to A(x-1), the lexicographic tuple "x-1,
1" is strictly smaller than "x, 0".

Two things to note: First, the choice of “0” and “1” as the second components
of these lexicographic tuples is rather arbitrary. It could just as well have
been “false” and “true”, respectively, or the sets {2,5} and {2,3,5}. Second,
the keyword decreases often gives rise to an intuitive English reading of the
declaration. For example, you might say that the recursive calls in the defi-
nition of the familiar Fibonacci function Fib(n) “decreases n”. But when the
lexicographic tuple contains constants, the English reading of the declaration
becomes mysterious and may give rise to questions like “how can you decrease
the constant 0?”. The keyword is just that—a keyword. It says “here comes a
list of expressions that make up the lexicographic tuple we want to use for the
termination measure”. What is important is that one effective decreases clause
is compared against another one, and it certainly makes sense to compare some-
thing to a constant (and to compare one constant to another).

We can simplify things a little bit by remembering that Dafny appends ⊤ to
the user-supplied decreases clause. For the A-and-B example, this lets us drop
the constant from the decreases clause of A:
method A(x: nat)

decreases x

method B(x: nat)
decreases x, 0

The effective decreases clause of A is (𝑥, ⊤) and the effective decreases clause of
B is (𝑥, 0, ⊤). These tuples still satisfy the two conditions (𝑥, 0, ⊤) < (𝑥, ⊤) and
(𝑥 − 1, ⊤) < (𝑥, 0, ⊤). And as before, the constant “0” is arbitrary; anything
less than ⊤ (which is any Dafny expression) would work.
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Let’s take a look at one more example that better illustrates the utility of ⊤.
Consider again two mutually recursive methods, call them Outer and Inner,
representing the recursive counterparts of what iteratively might be two nested
loops:
method Outer(x: nat)
{
// set y to an arbitrary non-negative integer
var y :| 0 <= y;
Inner(x, y);

}

method Inner(x: nat, y: nat)
{
if y != 0 {
Inner(x, y-1);

} else if x != 0 {
Outer(x-1);

}
}

The body of Outer uses an assign-such-that statement to represent some com-
putation that takes place before Inner is called. It sets “y” to some arbitrary
non-negative value. In a more concrete example, Inner would do some work for
each “y” and then continue as Outer on the next smaller “x”.

Using a decreases clause (𝑥, 𝑦) for Inner seems natural, but if we don’t have
any bound on the size of the 𝑦 computed by Outer, there is no expression we can
write in the decreases clause of Outer that is sure to lead to a strictly smaller
value for 𝑦 when Inner is called. ⊤ to the rescue. If we arrange for the effective
decreases clause of Outer to be (𝑥, ⊤) and the effective decreases clause for
Inner to be (𝑥, 𝑦, ⊤), then we can show the strict decreases as required. Since
⊤ is implicitly appended, the two decreases clauses declared in the program text
can be:
method Outer(x: nat)
decreases x

method Inner(x: nat, y: nat)
decreases x, y

Moreover, remember that if a function or method has no user-declared
decreases clause, Dafny will make a guess. The guess is (usually) the list
of arguments of the function/method, in the order given. This is exactly the
decreases clauses needed here. Thus, Dafny successfully verifies the program
without any explicit decreases clauses:
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method Outer(x: nat)
{
var y :| 0 <= y;
Inner(x, y);

}

method Inner(x: nat, y: nat)
{
if y != 0 {
Inner(x, y-1);

} else if x != 0 {
Outer(x-1);

}
}

The ingredients are simple, but the end result may seem like magic. For many
users, however, there may be no magic at all – the end result may be so natural
that the user never even has to be bothered to think about that there was a
need to prove termination in the first place.

TODO: Should there be user-level syntax to invoke this termination ordering

5.1.4. Framing

FrameExpression(allowLemma, allowLambda) =
( Expression(allowLemma, allowLambda) [ FrameField ]
| FrameField
)

FrameField = "`" IdentOrDigits

PossiblyWildFrameExpression(allowLemma, allowLambda, allowWild) =
( "*" // error if !allowWild and '*'
| FrameExpression(allowLemma, allowLambda)
)

Frame expressions are used to denote the set of memory locations that a Dafny
program element may read or write. A frame expression is a set expression.
The form {} (that is, the empty set) says that no memory locations may be
modified, which is also the default if no modifies clause is given explicitly.

Note that framing only applies to the heap, or memory accessed through refer-
ences. Local variables are not stored on the heap, so they cannot be mentioned
(well, they are not in scope in the declaration) in reads annotations. Note also
that types like sets, sequences, and multisets are value types, and are treated
like integers or local variables. Arrays and objects are reference types, and they
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are stored on the heap (though as always there is a subtle distinction between
the reference itself and the value it points to.)

The FrameField construct is used to specify a field of a class object. The iden-
tifier following the back-quote is the name of the field being referenced. If the
FrameField is preceded by an expression the expression must be a reference to
an object having that field. If the FrameField is not preceded by an expression
then the frame expression is referring to that field of the current object. This
form is only used within a method of a class or trait.

The use of FrameField is discouraged as in practice it has not been shown to
either be more concise or to perform better. Also, there’s (unfortunately) no
form of it for array elements—one could imagine

modifies a`[j]

Also, FrameField is not taken into consideration for lambda expressions.

5.1.5. Reads Clause

ReadsClause(allowLemma, allowLambda, allowWild) =
"reads"
{ Attribute }
PossiblyWildFrameExpression(allowLemma, allowLambda, allowWild)
{ "," PossiblyWildFrameExpression(allowLemma, allowLambda, allowWild) }

Functions are not allowed to have side effects; they may also be restricted in
what they can read. The reading frame of a function (or predicate) is all the
memory locations that the function is allowed to read. The reason we might
limit what a function can read is so that when we write to memory, we can
be sure that functions that did not read that part of memory have the same
value they did before. For example, we might have two arrays, one of which we
know is sorted. If we did not put a reads annotation on the sorted predicate,
then when we modify the unsorted array, we cannot determine whether the
other array stopped being sorted. While we might be able to give invariants
to preserve it in this case, it gets even more complex when manipulating data
structures. In this case, framing is essential to making the verification process
feasible.

It is not just the body of a function that is subject to reads checks, but also its
precondition and the reads clause itself.

A reads clause can list a wildcard *, which allows the enclosing function to
read anything. In many cases, and in particular in all cases where the function
is defined recursively, this makes it next to impossible to make any use of the
function. Nevertheless, as an experimental feature, the language allows it (and
it is sound). If a reads clause uses *, then the reads clause is not allowed to
mention anything else (since anything else would be irrelevant, anyhow).
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A reads clause specifies the set of memory locations that a function, lambda,
or iterator may read. If more than one reads clause is given in a specification
the effective read set is the union of the sets specified. If there are no reads
clauses the effective read set is empty. If * is given in a reads clause it means
any memory may be read.

TO BE WRITTEN: multiset of objects allowed in reads clauses

5.1.6. Modifies Clause

ModifiesClause(allowLambda) =
"modifies" { Attribute }
FrameExpression(allowLemma: false, allowLambda)
{ "," FrameExpression(allowLemma: false, allowLambda) }

Frames also affect methods. Methods are not required to list the things they
read. Methods are allowed to read whatever memory they like, but they are
required to list which parts of memory they modify, with a modifies annotation.
These are almost identical to their reads cousins, except they say what can be
changed, rather than what the value of the function depends on. In combination
with reads, modification restrictions allow Dafny to prove properties of code that
would otherwise be very difficult or impossible. Reads and modifies are one of
the tools that allow Dafny to work on one method at a time, because they restrict
what would otherwise be arbitrary modifications of memory to something that
Dafny can reason about.

If an object is newly allocated within the body of a method or within the scope
of a modifies statement or a loop’s modifies clause, then the fields of that
object may always be modified.

It is also possible to frame what can be modified by a block statement by means
of the block form of the modify statement (cf. Section 19.22).

A modifies clause specifies the set of memory locations that a method, iterator
or loop body may modify. If more than one modifies clause is given in a
specification, the effective modifies set is the union of the sets specified. If no
modifies clause is given the effective modifies set is empty. A loop can also
have a modifies clause. If none is given, the loop may modify anything the
enclosing context is allowed to modify.

Note that modifies here is used in the sense of writes. That is, a field that may
not be modified may not be written to, even with the same value it already
has or even if the value is restored later. The terminology and semantics varies
among specification languages. Some define frame conditions in this sense (a)
of writes and others in the sense (b) that allows writing a field with the same
value or changing the value so long as the original value is restored by the end of
the scope. For example, JML defines assignable and modifies as synonyms
in the sense (a), though KeY interprets JML’s assigns/modifies in sense (b).
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ACSL and ACSL++ use the assigns keyword, but with modify (b) semantics.
Ada/SPARK’s dataflow contracts encode write (a) semantics.

5.1.7. Invariant Clause

InvariantClause_ =
"invariant" { Attribute }
Expression(allowLemma: false, allowLambda: true)

An invariant clause is used to specify an invariant for a loop. If more than one
invariant clause is given for a loop the effective invariant is the conjunction of
the conditions specified.

The invariant must hold on entry to the loop. And assuming it is valid on entry,
Dafny must be able to prove that it then holds at the end of the loop.

5.2. Method Specification

MethodSpec =
{ ModifiesClause(allowLambda: false)
| RequiresClause(allowLabel: true)
| EnsuresClause(allowLambda: false)
| DecreasesClause(allowWildcard: true, allowLambda: false)
}

A method specification is zero or more modifies requires ensures or
decreases clauses, in any order. A method does not have reads clauses
because methods are allowed to read any memory.

5.3. Function Specification

FunctionSpec =
{ RequiresClause(allowLabel: true)
| ReadsClause(allowLemma: false, allowLambda: false,

allowWild: true)
| EnsuresClause(allowLambda: false)
| DecreasesClause(allowWildcard: false, allowLambda: false)
}

A function specification is zero or more reads requires ensures or decreases
clauses, in any order. A function specification does not have modifies clauses
because functions are not allowed to modify any memory.
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5.4. Lambda Specification

LambdaSpec =
{ ReadsClause(allowLemma: true, allowLambda: false,

allowWild: true)
| RequiresClause(allowLabel: false)
}

// TODO - the above grammar is not quite right for Requires

A lambda specification is zero or more reads or requires clauses. Lambda
specifications do not have ensures clauses because the body is never opaque.
Lambda specifications do not have decreases clauses because they do not have
names and thus cannot be recursive. A lambda specification does not have
modifies clauses because lambdas are not allowed to modify any memory.

5.5. Iterator Specification

IteratorSpec =
{ ReadsClause(allowLemma: false, allowLambda: false,

allowWild: false)
| ModifiesClause(allowLambda: false)
| [ "yield" ] RequiresClause(allowLabel: !isYield)
| [ "yield" ] EnsuresClause(allowLambda: false)
| DecreasesClause(allowWildcard: false, allowLambda: false)
}

An iterator specification applies both to the iterator’s constructor method and
to its MoveNext method. The reads and modifies clauses apply to both of
them. For the requires and ensures clauses, if yield is not present they
apply to the constructor, but if yield is present they apply to the MoveNext
method.

TODO: What is the meaning of a decreases clause on an iterator? Does it
apply to MoveNext? Make sure our description of iterators explains these.

TODO: What is the relationship between the post condition and the Valid()
predicate?

5.6. Loop Specification

LoopSpec =
{ InvariantClause_
| DecreasesClause(allowWildcard: true, allowLambda: true)
| ModifiesClause(allowLambda: true)
}
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A loop specification provides the information Dafny needs to prove properties of
a loop. The InvariantClause_ clause is effectively a precondition and it along
with the negation of the loop test condition provides the postcondition. The
DecreasesClause clause is used to prove termination.

5.7. Auto-generated boilerplate specifications
TO BE WRITTEN - {:autocontracts}
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6. Types

Type = DomainType_ | ArrowType_

A Dafny type is a domain type (i.e., a type that can be the domain of an arrow
type) optionally followed by an arrow and a range type.
DomainType_ =
( BoolType_ | CharType_ | IntType_ | RealType_
| OrdinalType_ | BitVectorType_ | ObjectType_
| FiniteSetType_ | InfiniteSetType_
| MultisetType_
| FiniteMapType_ | InfiniteMapType_
| SequenceType_
| NatType_
| StringType_
| ArrayType_
| TupleType
| NamedType
)

The domain types comprise the builtin scalar types, the builtin collection types,
tuple types (including as a special case a parenthesized type) and reference
types.

Dafny types may be categorized as either value types or reference types.

6.1. Value Types
The value types are those whose values do not lie in the program heap. These
are:

• The basic scalar types: bool, char, int, real, ORDINAL, bitvector types
• The built-in collection types: set, iset, multiset, seq, string, map,

imap
• Tuple Types
• Inductive and co-inductive types
• Function (arrow) types
• Subset and newtypes that are based on value types

Data items having value types are passed by value. Since they are not considered
to occupy memory, framing expressions do not reference them.

The nat type is a pre-defined subset type of int.

Dafny does not include types themselves as values, nor is there a type of types.
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6.2. Reference Types
Dafny offers a host of reference types. These represent references to objects allo-
cated dynamically in the program heap. To access the members of an object, a
reference to (that is, a pointer to or object identity of) the object is dereferenced.

The reference types are class types, traits and array types. Dafny supports both
reference types that contain the special null value (nullable types) and reference
types that do not (non-null types).

6.3. Named Types

NamedType = NameSegmentForTypeName { "." NameSegmentForTypeName }

A NamedType is used to specify a user-defined type by name (possibly module-
qualified). Named types are introduced by class, trait, inductive, co-inductive,
synonym and opaque type declarations. They are also used to refer to type
variables.
NameSegmentForTypeName = Ident [ GenericInstantiation ]

A NameSegmentForTypeName is a type name optionally followed by a
GenericInstantiation, which supplies type parameters to a generic type, if
needed. It is a special case of a NameSegment (Section 20.40) that does not
allow a HashCall.

The following sections describe each of these kinds of types in more detail.
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7. Basic types
Dafny offers these basic types: bool for booleans, char for characters, int and
nat for integers, real for reals, ORDINAL, and bit-vector types.

7.1. Booleans

BoolType_ = "bool"

There are two boolean values and each has a corresponding literal in the lan-
guage: false and true.

Type bool supports the following operations:

operator description
<==> equivalence (if and only if)
——————– ————————————
==> implication (implies)
<== reverse implication (follows from)
——————– ————————————
&& conjunction (and)
|| disjunction (or)
——————– ————————————
== equality
!= disequality
——————– ————————————
! negation (not)

Negation is unary; the others are binary. The table shows the operators in
groups of increasing binding power, with equality binding stronger than conjunc-
tion and disjunction, and weaker than negation. Within each group, different
operators do not associate, so parentheses need to be used. For example,
A && B || C // error

would be ambiguous and instead has to be written as either
(A && B) || C

or
A && (B || C)

depending on the intended meaning.
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7.1.1. Equivalence Operator

The expressions A <==> B and A == B give the same value, but note that <==>
is associative whereas == is chaining and they have different precedence. So,
A <==> B <==> C

is the same as
A <==> (B <==> C)

and
(A <==> B) <==> C

whereas
A == B == C

is simply a shorthand for
A == B && B == C

7.1.2. Conjunction and Disjunction

Conjunction and disjunction are associative. These operators are short circuit-
ing (from left to right), meaning that their second argument is evaluated only if
the evaluation of the first operand does not determine the value of the expres-
sion. Logically speaking, the expression A && B is defined when A is defined and
either A evaluates to false or B is defined. When A && B is defined, its meaning
is the same as the ordinary, symmetric mathematical conjunction &. The same
holds for || and |.

7.1.3. Implication and Reverse Implication

Implication is right associative and is short-circuiting from left to right. Reverse
implication B <== A is exactly the same as A ==> B, but gives the ability to
write the operands in the opposite order. Consequently, reverse implication
is left associative and is short-circuiting from right to left. To illustrate the
associativity rules, each of the following four lines expresses the same property,
for any A, B, and C of type bool:
A ==> B ==> C
A ==> (B ==> C) // parentheses redundant, ==> is right associative
C <== B <== A
(C <== B) <== A // parentheses redundant, <== is left associative

To illustrate the short-circuiting rules, note that the expression a.Length is
defined for an array a only if a is not null (see Section 6.2), which means the
following two expressions are well-formed:
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a != null ==> 0 <= a.Length
0 <= a.Length <== a != null

The contrapositives of these two expressions would be:
a.Length < 0 ==> a == null // not well-formed
a == null <== a.Length < 0 // not well-formed

but these expressions are not well-formed, since well-formedness requires the left
(and right, respectively) operand, a.Length < 0, to be well-formed by itself.

Implication A ==> B is equivalent to the disjunction !A || B, but is sometimes
(especially in specifications) clearer to read. Since, || is short-circuiting from
left to right, note that
a == null || 0 <= a.Length

is well-formed, whereas
0 <= a.Length || a == null // not well-formed

is not.

In addition, booleans support logical quantifiers (forall and exists), described in
Section 20.34.

7.2. Numeric Types

IntType_ = "int"
RealType_ = "real"

Dafny supports numeric types of two kinds, integer-based, which includes the
basic type int of all integers, and real-based, which includes the basic type real
of all real numbers. User-defined numeric types based on int and real, either
subset types or newtypes, are described in Section 11.3 and Section 12.

There is one built-in subset type, nat, representing the non-negative subrange
of int.

The language includes a literal for each integer, like 0, 13, and 1985. Integers
can also be written in hexadecimal using the prefix “0x”, as in 0x0, 0xD, and
0x7c1 (always with a lower case x, but the hexadecimal digits themselves are
case insensitive). Leading zeros are allowed. To form negative literals, use the
unary minus operator, as in -12, but not -(12).

There are also literals for some of the reals. These are written as a decimal point
with a nonempty sequence of decimal digits on both sides, optionally prefixed
by a - character. For example, 1.0, 1609.344, -12.5, and 0.5772156649.

For integers (in both decimal and hexadecimal form) and reals, any two digits
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in a literal may be separated by an underscore in order to improve human
readability of the literals. For example:
1_000_000 // easier to read than 1000000
0_12_345_6789 // strange but legal formatting of 123456789
0x8000_0000 // same as 0x80000000 -- hex digits are

// often placed in groups of 4
0.000_000_000_1 // same as 0.0000000001 -- 1 Angstrom

In addition to equality and disequality, numeric types support the following
relational operations, which have the same precedence as equality:

operator description
< less than
<= at most
>= at least
> greater than

Like equality and disequality, these operators are chaining, as long as they are
chained in the “same direction”. That is,
A <= B < C == D <= E

is simply a shorthand for
A <= B && B < C && C == D && D <= E

whereas
A < B > C

is not allowed.

There are also operators on each numeric type:

operator description
+ addition (plus)
- subtraction (minus)
—————– ————————————
* multiplication (times)
/ division (divided by)
% modulus (mod) – int only
—————– ————————————
- negation (unary minus)

The binary operators are left associative, and they associate with each other in
the two groups. The groups are listed in order of increasing binding power, with
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equality binding less strongly than any of these operators. There is no implicit
conversion between int and real: use as int or as real conversions to write
an explicit conversion (cf. Section 20.10).

Modulus is supported only for integer-based numeric types. Integer division
and modulus are the Euclidean division and modulus. This means that modulus
always returns a non-negative value, regardless of the signs of the two operands.
More precisely, for any integer a and non-zero integer b,
a == a / b * b + a % b
0 <= a % b < B

where B denotes the absolute value of b.

Real-based numeric types have a member Floor that returns the floor of the
real value (as an int value), that is, the largest integer not exceeding the real
value. For example, the following properties hold, for any r and r' of type real:
3.14.Floor == 3
(-2.5).Floor == -3
-2.5.Floor == -2 // This is -(2.5.Floor)
r.Floor as real <= r
r <= r' ==> r.Floor <= r'.Floor

Note in the third line that member access (like .Floor) binds stronger than
unary minus. The fourth line uses the conversion function as real from int
to real, as described in Section 20.10.

TODO: Need syntax for real literals with exponents

7.3. Bit-vector Types

BitVectorType_ = bvToken

Dafny includes a family of bit-vector types, each type having a specific, constant
length, the number of bits in its values. Each such type is distinct and is
designated by the prefix bv followed (without white space) by a positive integer
(without leading zeros) stating the number of bits. For example, bv1, bv8, and
bv32 are legal bit-vector type names. The type bv0 is also legal; it is a bit-vector
type with no bits and just one value, 0x0.

Constant literals of bit-vector types are given by integer literals converted au-
tomatically to the designated type, either by an implicit or explicit conversion
operation or by initialization in a declaration. Dafny checks that the constant
literal is in the correct range. For example,
const i: bv1 := 1
const j: bv8 := 195
const k: bv2 := 5 // error - out of range
const m := (194 as bv8) | (7 as bv8)
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Bit-vector values can be converted to and from int and other bit-vector types,
as long as the values are in range for the target type. Bit-vector values are
always considered unsigned.

Bit-vector operations include bit-wise operators and arithmetic operators (as
well as equality, disequality, and comparisons). The arithmetic operations trun-
cate the high-order bits from the results; that is, they perform unsigned arith-
metic modulo 2^{number of bits}, like 2’s-complement machine arithmetic.

operator description
<< bit-limited bit-shift left
>> unsigned bit-shift right
—————– ————————————
+ bit-limited addition
- bit-limited subtraction
—————– ————————————
* bit-limited multiplication
—————– ————————————
& bit-wise and
| bit-wise or
^ bit-wise exclusive-or
—————– ————————————
- bit-limited negation (unary minus)
! bit-wise complement

The groups of operators lower in the table above bind more tightly.1 All opera-
tors bind more tightly than equality, disequality, and comparisons. All binary
operators are left-associative, but the bit-wise &, |, and ^ do not associate to-
gether (parentheses are required to disambiguate).

The right-hand operand of bit-shift operations is an int value, must be non-
negative, and no more than the number of bits in the type. There is no signed
right shift as all bit-vector values correspond to non-negative integers.

Here are examples of the various operations (all the assertions are true except
where indicated):
const i: bv4 := 9
const j: bv4 := 3

method m() {
assert (i & j) == (1 as bv4);
assert (i | j) == (11 as bv4);
assert (i ^ j) == (10 as bv4);
assert !i == (6 as bv4);

1The binding power of shift and bit-wise operations is different than in C-like languages.
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assert -i == (7 as bv4);
assert (i + i) == (2 as bv4);
assert (j - i) == (10 as bv4);
assert (i * j) == (11 as bv4);
assert (i as int) / (j as int) == 3;
assert (j << 1) == (6 as bv4);
assert (i << 1) == (2 as bv4);
assert (i >> 1) == (4 as bv4);
assert i == 9; // auto conversion of literal to bv4
assert i * 4 == j + 8 + 9; // arithmetic is modulo 16
assert i + j >> 1 == (i + j) >> 1; // + - bind tigher than << >>
assert i + j ^ 2 == i + (j^2);
assert i * j & 1 == i * (j&1); // & | ^ bind tighter than + - *

}

The following are incorrectly formed:
const i: bv4 := 9
const j: bv4 := 3

method m() {
assert i & 4 | j == 0 ; // parentheses required

}

const k: bv4 := 9

method p() {
assert k as bv5 == 9 as bv6; // error: mismatched types

}

These produce assertion errors:
const i: bv4 := 9

method m() {
assert i as bv3 == 1; // error: i is out of range for bv3

}
const j: bv4 := 9

method n() {
assert j == 25; // error: 25 is out of range for bv4

}

7.4. Ordinal type

OrdinalType_ = "ORDINAL"
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TO BE WRITTEN

7.5. Characters

CharType_ = "char"

Dafny supports a type char of characters. Character literals are enclosed in
single quotes, as in 'D'. Their form is described by the charToken nonterminal
in the grammar. To write a single quote as a character literal, it is necessary
to use an escape sequence. Escape sequences can also be used to write other
characters. The supported escape sequences are the following:

escape sequence meaning
\' the character '
\" the character "
\\ the character \
\0 the null character, same as \u0000
\n line feed
\r carriage return
\t horizontal tab
\uxxxx universal character whose hexadecimal code is xxxx,

where each x is a hexadecimal digit

The escape sequence for a double quote is redundant, because '"' and '\"'
denote the same character—both forms are provided in order to support the
same escape sequences in string literals (Section 10.3.5). In the form \uxxxx,
the u is always lower case, but the four hexadecimal digits are case insensitive.

Character values are ordered and can be compared using the standard relational
operators:

operator description
< less than
<= at most
>= at least
> greater than

Sequences of characters represent strings, as described in Section 10.3.5.

Character values can be converted to and from int values using the as int
and as char conversion operations. The result is what would be expected in
other programming languages, namely, the int value of a char is the ASCII or
unicode numeric value.
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The only other operations on characters are obtaining a character by indexing
into a string, and the implicit conversion to string when used as a parameter of
a print statement.
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8. Type parameters

GenericParameters(allowVariance) =
"<" [ Variance ] TypeVariableName { TypeParameterCharacteristics }
{ "," [ Variance ] TypeVariableName { TypeParameterCharacteristics } }
">"

// The optional Variance indicator is permitted only if allowVariance is true
Variance = ( "*" | "+" | "!" | "-" )

TypeParameterCharacteristics = "(" TPCharOption { "," TPCharOption } ")"

TPCharOption = ( "==" | "0" | "00" | "!" "new" )

Many of the types, functions, and methods in Dafny can be parameterized by
types. These type parameters are typically declared inside angle brackets and
can stand for any type.

Dafny has some inference support that makes certain signatures less cluttered
(described in Section 23.2).

8.1. Declaring restrictions on type parameters
It is sometimes necessary to restrict type parameters so that they can only be
instantiated by certain families of types, that is, by types that have certain
properties. These properties are known as type characteristics. The following
subsections describe the type characteristics that Dafny supports.

In some cases, type inference will infer that a type-parameter must be restricted
in a particular way, in which case Dafny will add the appropriate suffix, such as
(==), automatically.

If more than one restriction is needed, they are either listed comma-separated,
inside the parentheses or as multiple parenthesized elements: T(==,0) or
T(==)(0).

8.1.1. Equality-supporting type parameters: T(==)

Designating a type parameter with the (==) suffix indicates that the parameter
may only be replaced in non-ghost contexts with types that are known to support
run-time equality comparisons (== and !=). All types support equality in ghost
contexts, as if, for some types, the equality function is ghost.

For example,
method Compare<T(==)>(a: T, b: T) returns (eq: bool)
{
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if a == b { eq := true; } else { eq := false; }
}

is a method whose type parameter is restricted to equality-supporting types
when used in a non-ghost context. Again, note that all types support equal-
ity in ghost contexts; the difference is only for non-ghost (that is, compiled)
code. Co-inductive datatypes, arrow types, and inductive datatypes with ghost
parameters are examples of types that are not equality supporting.

8.1.2. Auto-initializable types: T(0)

At every access of a variable x of a type T, Dafny ensures that x holds a legal
value of type T. If no explicit initialization is given, then an arbitrary value is
assumed by the verifier and supplied by the compiler, that is, the variable is
auto-initialized. For example,
method m() {
var n: nat; // Auto-initialized to an arbitrary value of type `nat`
assert n >= 0; // true, regardless of the value of n
var i: int;
assert i >= 0; // possibly false, arbitrary ints may be negative

}

For some types (known as auto-init types), the compiler can choose an initial
value, but for others it does not. Variables and fields whose type the compiler
does not auto-initialize are subject to definite-assignment rules. These ensure
that the program explicitly assigns a value to a variable before it is used. For
more details see Section 23.6 and the -definiteAssignment command-line op-
tion.

Dafny supports auto-init as a type characteristic. To restrict a type parameter
to auto-init types, mark it with the (0) suffix. For example,
method AutoInitExamples<A(0), X>() returns (a: A, x: X)
{
// 'a' does not require an explicit initialization, since A is auto-init
// error: out-parameter 'x' has not been given a value

}

In this example, an error is reported because out-parameter x has not been
assigned—since nothing is known about type X, variables of type X are subject
to definite-assignment rules. In contrast, since type parameter A is declared to
be restricted to auto-init types, the program does not need to explicitly assign
any value to the out-parameter a.
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8.1.3. Nonempty types: T(00)

Auto-init types are important in compiled contexts. In ghost contexts, it may
still be important to know that a type is nonempty. Dafny supports a type
characteristic for nonempty types, written with the suffix (00). For example,
method NonemptyExamples<B(00), X>() returns (b: B, ghost g: B, ghost h: X)
{
// error: non-ghost out-parameter 'b' has not been given a value
// ghost out-parameter 'g' is fine, since its type is nonempty
// error: 'h' has not been given a value

}

Because of B’s nonempty type characteristic, ghost parameter g does not need
to be explicitly assigned. However, Dafny reports an error for the non-ghost
b, since B is not an auto-init type, and reports an error for h, since the type X
could be empty.

Note that every auto-init type is nonempty.

8.1.4. Non-heap based: T(!new)

Dafny makes a distinction between types whose values are on the heap, i.e. refer-
ences, like classes and arrays, and those that are strictly value-based, like basic
types and datatypes. The practical implication is that references depend on
allocation state (e.g., are affected by the old operation) whereas non-reference
values are not. Thus it can be relevant to know whether the values of a type
parameter are heap-based or not. This is indicated by the mode suffix (!new).

A type parameter characterized by (!new) is recursively independent of the allo-
cation state. For example, a datatype is not a reference, but for a parameterized
data type such as
datatype Result<T> = Failure(error: string) | Success(value: T)

the instantiation Result<int> satisfies (!new), whereas Result<array<int>>
does not.

Note that this characteristic of a type parameter is operative for both verification
and compilation. Also, opaque types at the topmost scope are always implicitly
(!new).

Here are some examples:
datatype Result<T> = Failure(error: string) | Success(v: T)
datatype ResultN<T(!new)> = Failure(error: string) | Success(v: T)

class C {}

method m() {
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var x1: Result<int>;
var x2: ResultN<int>;
var x3: Result<C>;
var x4: ResultN<C>; // error
var x5: Result<array<int>>;
var x6: ResultN<array<int>>; // error

}

8.2. Type parameter variance
TO BE WRITTEN: Type parameter variance

68



9. Generic Instantiation

GenericInstantiation = "<" Type { "," Type } ">"

When a generic entity is used, actual types must be specified for each
generic parameter. This is done using a GenericInstantiation. If the
GenericInstantiation is omitted, type inference will try to fill these in
(cf. Section 23.2).
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10. Collection types
Dafny offers several built-in collection types.

10.1. Sets

FiniteSetType_ = "set" [ GenericInstantiation ]

InfiniteSetType_ = "iset" [ GenericInstantiation ]

For any type T, each value of type set<T> is a finite set of T values.

Set membership is determined by equality in the type T, so set<T> can be used
in a non-ghost context only if T is equality supporting.

For any type T, each value of type iset<T> is a potentially infinite set of T
values.

A set can be formed using a set display expression, which is a possibly empty,
unordered, duplicate-insensitive list of expressions enclosed in curly braces. To
illustrate,
{} {2, 7, 5, 3} {4+2, 1+5, a*b}

are three examples of set displays. There is also a set comprehension expression
(with a binder, like in logical quantifications), described in Section 20.35.

In addition to equality and disequality, set types support the following relational
operations:

operator description
< proper subset
<= subset
>= superset
> proper superset

Like the arithmetic relational operators, these operators are chaining.

Sets support the following binary operators, listed in order of increasing binding
power:

operator description
!! disjointness
————— ————————————
+ set union
- set difference
————— ————————————
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operator description
* set intersection

The associativity rules of +, -, and * are like those of the arithmetic operators
with the same names. The expression A !! B, whose binding power is the same
as equality (but which neither associates nor chains with equality), says that
sets A and B have no elements in common, that is, it is equivalent to
A * B == {}

However, the disjointness operator is chaining, so A !! B !! C !! D means:
A * B == {} && (A + B) * C == {} && (A + B + C) * D == {}

In addition, for any set s of type set<T> or iset<T> and any expression e of
type T, sets support the following operations:

expression result type description
|s| nat set cardinality (not for iset)
e in s bool set membership
e !in s bool set non-membership

The expression e !in s is a syntactic shorthand for !(e in s).

10.2. Multisets

MultisetType_ = "multiset" [ GenericInstantiation ]

A multiset is similar to a set, but keeps track of the multiplicity of each element,
not just its presence or absence. For any type T, each value of type multiset<T>
is a map from T values to natural numbers denoting each element’s multiplicity.
Multisets in Dafny are finite, that is, they contain a finite number of each of a
finite set of elements. Stated differently, a multiset maps only a finite number
of elements to non-zero (finite) multiplicities.

Like sets, multiset membership is determined by equality in the type T, so
multiset<T> can be used in a non-ghost context only if T is equality supporting.

A multiset can be formed using a multiset display expression, which is a possibly
empty, unordered list of expressions enclosed in curly braces after the keyword
multiset. To illustrate,
multiset{} multiset{0, 1, 1, 2, 3, 5} multiset{4+2, 1+5, a*b}

are three examples of multiset displays. There is no multiset comprehension
expression.
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In addition to equality and disequality, multiset types support the following
relational operations:

operator description
< proper multiset subset
<= multiset subset
>= multiset superset
> proper multiset superset

Like the arithmetic relational operators, these operators are chaining.

Multisets support the following binary operators, listed in order of increasing
binding power:

operator description
!! multiset disjointness
————— ————————————
+ multiset union
- multiset difference
————— ————————————
* multiset intersection

The associativity rules of +, -, and * are like those of the arithmetic operators
with the same names. The + operator adds the multiplicity of corresponding
elements, the - operator subtracts them (but 0 is the minimum multiplicity), and
the * has multiplicity that is the minimum of the multiplicity of the operands.

The expression A !! B says that multisets A and B have no elements in common,
that is, it is equivalent to
A * B == multiset{}

Like the analogous set operator, !! is chaining.

In addition, for any multiset s of type multiset<T>, expression e of type T,
and non-negative integer-based numeric n, multisets support the following op-
erations:

expression result type description
|s| nat multiset cardinality
e in s bool multiset membership
e !in s bool multiset non-membership
s[e] nat multiplicity of e in s
s[e := n] multiset<T> multiset update (change of multiplicity)
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The expression e in s returns true if and only if s[e] != 0. The expression
e !in s is a syntactic shorthand for !(e in s). The expression s[e := n]
denotes a multiset like s, but where the multiplicity of element e is n. Note
that the multiset update s[e := 0] results in a multiset like s but without any
occurrences of e (whether or not s has occurrences of e in the first place). As
another example, note that s - multiset{e} is equivalent to:
if e in s then s[e := s[e] - 1] else s

10.3. Sequences

SequenceType_ = "seq" [ GenericInstantiation ]

For any type T, a value of type seq<T> denotes a sequence of T elements, that is,
a mapping from a finite downward-closed set of natural numbers (called indices)
to T values.

10.3.1. Sequence Displays

A sequence can be formed using a sequence display expression, which is a possibly
empty, ordered list of expressions enclosed in square brackets. To illustrate,
[] [3, 1, 4, 1, 5, 9, 3] [4+2, 1+5, a*b]

are three examples of sequence displays.

There is also a sequence comprehension expression (Section 20.27):
seq(5, i => i*i)

is equivalent to [0, 1, 4, 9, 16].

10.3.2. Sequence Relational Operators

In addition to equality and disequality, sequence types support the following
relational operations:

operator description
< proper prefix
<= prefix

Like the arithmetic relational operators, these operators are chaining. Note the
absence of > and >=.

10.3.3. Sequence Concatenation

Sequences support the following binary operator:

73



operator description
+ concatenation

Operator + is associative, like the arithmetic operator with the same name.

10.3.4. Other Sequence Expressions

In addition, for any sequence s of type seq<T>, expression e of type T, integer-
based numeric i satisfying 0 <= i < |s|, and integer-based numerics lo and hi
satisfying 0 <= lo <= hi <= |s|, sequences support the following operations:

expression result type description
|s| nat sequence length
s[i] T sequence selection
s[i := e] seq<T> sequence update
e in s bool sequence membership
e !in s bool sequence non-membership
s[lo..hi] seq<T> subsequence
s[lo..] seq<T> drop
s[..hi] seq<T> take
s[slices] seq<seq<T>> slice
multiset(s) multiset<T> sequence conversion to a multiset<T>

Expression s[i := e] returns a sequence like s, except that the element at
index i is e. The expression e in s says there exists an index i such that s[i]
== e. It is allowed in non-ghost contexts only if the element type T is equality
supporting. The expression e !in s is a syntactic shorthand for !(e in s).

Expression s[lo..hi] yields a sequence formed by taking the first hi elements
and then dropping the first lo elements. The resulting sequence thus has length
hi - lo. Note that s[0..|s|] equals s. If the upper bound is omitted, it
defaults to |s|, so s[lo..] yields the sequence formed by dropping the first lo
elements of s. If the lower bound is omitted, it defaults to 0, so s[..hi] yields
the sequence formed by taking the first hi elements of s.

In the sequence slice operation, slices is a nonempty list of length designators
separated and optionally terminated by a colon, and there is at least one colon.
Each length designator is a non-negative integer-based numeric, whose sum is no
greater than |s|. If there are k colons, the operation produces k + 1 consecutive
subsequences from s, each of the length indicated by the corresponding length
designator, and returns these as a sequence of sequences. If slices is terminated
by a colon, then the length of the last slice extends until the end of s, that is,
its length is |s| minus the sum of the given length designators. For example,
the following equalities hold, for any sequence s of length at least 10:
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var t := [3.14, 2.7, 1.41, 1985.44, 100.0, 37.2][1:0:3];
assert |t| == 3 && t[0] == [3.14] && t[1] == [];
assert t[2] == [2.7, 1.41, 1985.44];
var u := [true, false, false, true][1:1:];
assert |u| == 3 && u[0][0] && !u[1][0] && u[2] == [false, true];
assert s[10:][0] == s[..10];
assert s[10:][1] == s[10..];

The operation multiset(s) yields the multiset of elements of sequence s. It is
allowed in non-ghost contexts only if the element type T is equality supporting.

10.3.5. Strings

StringType_ = "string"

A special case of a sequence type is seq<char>, for which Dafny provides a
synonym: string. Strings are like other sequences, but provide additional
syntax for sequence display expressions, namely string literals. There are two
forms of the syntax for string literals: the standard form and the verbatim form.

String literals of the standard form are enclosed in double quotes, as in "Dafny".
To include a double quote in such a string literal, it is necessary to use an escape
sequence. Escape sequences can also be used to include other characters. The
supported escape sequences are the same as those for character literals (Section
7.5). For example, the Dafny expression "say \"yes\"" represents the string
'say "yes"'. The escape sequence for a single quote is redundant, because
"\'" and "\'" denote the same string—both forms are provided in order to
support the same escape sequences as do character literals.

String literals of the verbatim form are bracketed by @" and ", as in @"Dafny".
To include a double quote in such a string literal, it is necessary to use the
escape sequence "", that is, to write the character twice. In the verbatim form,
there are no other escape sequences. Even characters like newline can be written
inside the string literal (hence spanning more than one line in the program text).

For example, the following three expressions denote the same string:
"C:\\tmp.txt"
@"C:\tmp.txt"
['C', ':', '\\', 't', 'm', 'p', '.', 't', 'x', 't']

Since strings are sequences, the relational operators < and <= are defined on
them. Note, however, that these operators still denote proper prefix and prefix,
respectively, not some kind of alphabetic comparison as might be desirable, for
example, when sorting strings.

75



10.4. Finite and Infinite Maps

FiniteMapType_ = "map" [ GenericInstantiation ]

InfiniteMapType_ = "imap" [ GenericInstantiation ]

For any types T and U, a value of type map<T,U> denotes a (finite) map from T
to U. In other words, it is a look-up table indexed by T. The domain of the map
is a finite set of T values that have associated U values. Since the keys in the
domain are compared using equality in the type T, type map<T,U> can be used
in a non-ghost context only if T is equality supporting.

Similarly, for any types T and U, a value of type imap<T,U> denotes a (possibly)
infinite map. In most regards, imap<T,U> is like map<T,U>, but a map of type
imap<T,U> is allowed to have an infinite domain.

A map can be formed using a map display expression (see MapDisplayExpr),
which is a possibly empty, ordered list of maplets, each maplet having the form
t := u where t is an expression of type T and u is an expression of type U,
enclosed in square brackets after the keyword map. To illustrate,
map[]
map[20 := true, 3 := false, 20 := false]
map[a+b := c+d]

are three examples of map displays. By using the keyword imap instead of map,
the map produced will be of type imap<T,U> instead of map<T,U>. Note that
an infinite map (imap) is allowed to have a finite domain, whereas a finite map
(map) is not allowed to have an infinite domain. If the same key occurs more
than once in a map display expression, only the last occurrence appears in the
resulting map.2 There is also a map comprehension expression, explained in
Section 20.39.

For any map fm of type map<T,U>, any map m of type map<T,U> or imap<T,U>,
any expression t of type T, any expression u of type U, and any d in the domain
of m (that is, satisfying d in m), maps support the following operations:

expression result type description
|fm| nat map cardinality
m[d] U map selection
m[t := u] map<T,U> map update
t in m bool map domain membership
t !in m bool map domain non-membership
m.Keys (i)set<T> the domain of m
m.Values (i)set<U> the range of m
m.Items (i)set<(T,U)> set of pairs (t,u) in m

2This is likely to change in the future to disallow multiple occurrences of the same key.
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|fm| denotes the number of mappings in fm, that is, the cardinality of the
domain of fm. Note that the cardinality operator is not supported for infinite
maps. Expression m[d] returns the U value that m associates with d. Expression
m[t := u] is a map like m, except that the element at key t is u. The expression
t in m says t is in the domain of m and t !in m is a syntactic shorthand for
!(t in m).3

The expressions m.Keys, m.Values, and m.Items return, as sets, the domain,
the range, and the 2-tuples holding the key-value associations in the map. Note
that m.Values will have a different cardinality than m.Keys and m.Items if
different keys are associated with the same value. If m is an imap, then these
expressions return iset values.

Here is a small example, where a map cache of type map<int,real> is used
to cache computed values of Joule-Thomson coefficients for some fixed gas at a
given temperature:
if K in cache { // check if temperature is in domain of cache
coeff := cache[K]; // read result in cache

} else {
coeff := ComputeJTCoefficient(K); // do expensive computation
cache := cache[K := coeff]; // update the cache

}

Dafny also overloads the + and - binary operators for maps. The + operator
merges two maps or imaps of the same type, as if each (key,value) pair of the
RHS is added in turn to the LHS (i)map. In this use, + is not commutative; if a
key exists in both (i)maps, it is the value from the RHS (i)map that is present
in the result.

The - operator implements a map difference operator. Here the LHS is a
map<K,V> or imap<K,V> and the RHS is a set<K> (but not an iset); the oper-
ation removes from the LHS all the (key,value) pairs whose key is a member of
the RHS set.

10.5. Iterating over collections
Collections are very commonly used in programming and one frequently needs
to iterate over the elements of a collection. Dafny does not have built-in iterator
methods, but the idioms by which to do so are straightforward. The subsections
below give some introductory examples; more detail can be found in this power
user note.

TODO: Add examples of using a iterator class TODO: Should a foreach statment
be added to Dafny

3This is likely to change in the future as follows: The in and !in operations will no longer
be supported on maps, with x in m replaced by x in m.Keys, and similarly for !in.
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10.5.1. Sequences and arrays

Sequences and arrays are indexable and have a length. So the idiom to iterate
over the contents is well-known. For an array:
var i := 0;
var sum := 0;
while i < a.Length {
sum := sum + a[i];
i := i + 1;

}
}

For a sequence, the only difference is the length operator:
var i := 0;
var sum := 0;
while i < |s| {
sum := sum + s[i];
i := i + 1;

}

The forall statement (Section 19.21) can also be used with arrays where par-
allel assignment is needed:
var rev := new int[s.Length];
forall i | 0 <= i < s.Length {
rev[i] := s[s.Length-i-1];

}

10.5.2. Sets

There is no intrinsic order to the elements of a set. Nevertheless, we can extract
an arbitrary element of a nonempty set, performing an iteration as follows:
// s is a set<int>
var ss := s;
while ss != {}
decreases |ss|

{
var i: int :| i in ss;
ss := ss - {i};
print i, "\n";

}

Because isets may be infinite, Dafny does not permit iteration over an iset.
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10.5.3. Maps

Iterating over the contents of a map uses the component sets: Keys, Values, and
Items. The iteration loop follows the same patterns as for sets:

var items := m.Items;
while items != {}
decreases |items|

{
var item :| item in items;
items := items - { item };
print item.0, " ", item.1, "\n";

}

There are no mechanisms currently defined in Dafny for iterating over imaps.
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11. Types that stand for other types
SynonymTypeDecl =
SynonymTypeDecl_ | OpaqueTypeDecl_ | SubsetTypeDecl_

It is sometimes useful to know a type by several names or to treat a type
abstractly. There are several mechanisms in Dafny to do this:

• (Section 11.1) A typical synonym type, in which a type name is a synonym
for another type

• (Section 11.2) An opaque type, in which a new type name is declared as
an uninterpreted type

• (Section 11.3) A subset type, in which a new type name is given to a subset
of the values of a given type

11.1. Type synonyms

SynonymTypeName = NoUSIdent

SynonymTypeDecl_ =
"type" { Attribute } SynonymTypeName
{ TypeParameterCharacteristics }
[ GenericParameters ]
"=" Type

A type synonym declaration:
type Y<T> = G

declares Y<T> to be a synonym for the type G. If the = G is omitted then the
declaration just declares a name as an uninterpreted opaque type, as described
in Section 11.2. Such types may be given a definition elsewhere in the Dafny
program.

Here, T is a nonempty list of type parameters (each of which optionally has a
type characteristics suffix), which can be used as free type variables in G. If the
synonym has no type parameters, the “<T>” is dropped. In all cases, a type
synonym is just a synonym. That is, there is never a difference, other than
possibly in error messages produced, between Y<T> and G.

For example, the names of the following type synonyms may improve the read-
ability of a program:
type Replacements<T> = map<T,T>
type Vertex = int

The new type name itself may have type characteristics declared, though these
are typically inferred from the definition, if there is one.
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As already described in Section 10.3.5, string is a built-in type synonym for
seq<char>, as if it would have been declared as follows:
type string(==,0,!new) = seq<char>

If the implicit declaration did not include the type characteristics, they would
be inferred in any case.

11.2. Opaque types

OpaqueTypeDecl_ =
"type" { Attribute } SynonymTypeName
{ TypeParameterCharacteristics }
[ GenericParameters ]
[ TypeMembers ]

TypeMembers =
"{"
{
{ DeclModifier }
ClassMemberDecl(allowConstructors: false,

isValueType: true,
moduleLevelDecl: false,
isWithinAbstractModule: module.IsAbstract)

}
"}"

An opaque type is a special case of a type synonym that is underspecified. Such
a type is declared simply by:
type Y<T>

Its definition can be revealed in a refining module. The name Y can be imme-
diately followed by a type characteristics suffix (Section 8.1). Because there is
no defining RHS, the type characteristics cannot be inferred and so must be
stated. If, in some refining module, a definition of the type is given, the type
characteristics must match those of the new definition.

For example, the declarations
type T
function F(t: T): T

can be used to model an uninterpreted function F on some arbitrary type T. As
another example,
type Monad<T>

can be used abstractly to represent an arbitrary parameterized monad.
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Even as an opaque type, the type may be given members such as constants,
methods or functions.

11.3. Subset types

SubsetTypeDecl_ =
"type"
{ Attribute }
SynonymTypeName [ GenericParameters ]
"="
LocalIdentTypeOptional
"|"
Expression(allowLemma: false, allowLambda: true)
[ "ghost" "witness" Expression(allowLemma: false, allowLambda: true)
| "witness" Expression((allowLemma: false, allowLambda: true)
| "witness" "*"
]

NatType_ = "nat"

A subset type is a restricted use of an existing type, called the base type of
the subset type. A subset type is like a combined use of the base type and a
predicate on the base type.

An assignment from a subset type to its base type is always allowed. An as-
signment in the other direction, from the base type to a subset type, is allowed
provided the value assigned does indeed satisfy the predicate of the subset type.
This condition is checked by the verifier, not by the type checker. Similarly,
assignments from one subset type to another (both with the same base type)
are also permitted, as long as it can be established that the value being assigned
satisfies the predicate defining the receiving subset type. (Note, in contrast, as-
signments between a newtype and its base type are never allowed, even if the
value assigned is a value of the target type. For such assignments, an explicit
conversion must be used, see Section 20.10.)

Dafny builds in three families of subset types, as described next.

11.3.1. Type nat

The built-in type nat, which represents the non-negative integers (that is, the
natural numbers), is a subset type:
type nat = n: int | 0 <= n

A simple example that puts subset type nat to good use is the standard Fi-
bonacci function:
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function Fib(n: nat): nat
{
if n < 2 then n else Fib(n-2) + Fib(n-1)

}

An equivalent, but clumsy, formulation of this function (modulo the wording
of any error messages produced at call sites) would be to use type int and to
write the restricting predicate in pre- and postconditions:
function Fib(n: int): int
requires 0 <= n // the function argument must be non-negative
ensures 0 <= Fib(n) // the function result is non-negative

{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)

}

11.3.2. Non-null types

Every class, trait, and iterator declaration C gives rise to two types.

One type has the name C? (that is, the name of the class, trait, or iterator
declaration with a ? character appended to the end). The values of C? are the
references to C objects, and also the value null. In other words, C? is the type
of possibly null references (aka, nullable references) to C objects.

The other type has the name C (that is, the same name as the class, trait, or
iterator declaration). Its values are the references to C objects, and does not
contain the value null. In other words, C is the type of non-null references to
C objects.

The type C is a subset type of C?:
type C = c: C? | c != null

(It may be natural to think of the type C? as the union of type C and the value
null, but, technically, Dafny defines C as a subset type with base type C?.)

From being a subset type, we get that C is a subtype of C?. Moreover, if a
class or trait C extends a trait B, then type C is a subtype of B and type C? is a
subtype of B?.

Every possibly-null reference type is a subtype of the built-in possibly-null trait
type object?, and every non-null reference type is a subtype of the built-in
non-null trait type object. (And, from the fact that object is a subset type of
object?, we also have that object is a subtype of object?.)

Arrays are references and array types also come in these two flavors. For exam-
ple, array? and array2? are possibly-null (1- and 2-dimensional) array types,
and array and array2 are their respective non-null types.
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Note that ? is not an operator. Instead, it is simply the last character of the
name of these various possibly-null types.

11.3.3. Arrow types: ->, -->, and ~>

The built-in type -> stands for total functions, --> stands for partial functions
(that is, functions with possible requires clauses), and ~> stands for all func-
tions. More precisely, these are type constructors that exist for any arity (()
-> X, A -> X, (A, B) -> X, (A, B, C) -> X, etc.).

For a list of types TT and a type U, the values of the arrow type (TT) ~> U
are functions from TT to ‘U. This includes functions that may read the heap
and functions that are not defined on all inputs. It is not common to need
this generality (and working with such general functions is difficult). Therefore,
Dafny defines two subset types that are more common (and much easier to work
with).

The type (TT) --> U denotes the subset of (TT) ~> U where the functions do
not read the (mutable parts of the) heap. Values of type (TT) --> U are called
partial functions, and the subset type (TT) --> U is called the partial arrow
type. (As a mnemonic to help you remember that this is the partial arrow, you
may think of the little gap between the two hyphens in --> as showing a broken
arrow.)

The built-in partial arrow type is defined as follows (here shown for arrows with
arity 1):
type A --> B = f: A ~> B | forall a :: f.reads(a) == {}

(except that what is shown here left of the = is not legal Dafny syntax). That
is, the partial arrow type is defined as those functions f whose reads frame is
empty for all inputs. More precisely, taking variance into account, the partial
arrow type is defined as
type -A --> +B = f: A ~> B | forall a :: f.reads(a) == {}

The type (TT) -> U is, in turn, a subset type of (TT) --> U, adding the re-
striction that the functions must not impose any precondition. That is, values
of type (TT) -> U are total functions, and the subset type (TT) -> U is called
the total arrow type.

The built-in total arrow type is defined as follows (here shown for arrows with
arity 1):
type -A -> +B = f: A --> B | forall a :: f.requires(a)

That is, the total arrow type is defined as those partial functions f whose pre-
condition evaluates to true for all inputs.

Among these types, the most commonly used are the total arrow types. They
are also the easiest to work with. Because they are common, they have the
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simplest syntax (->).

Note, informally, we tend to speak of all three of these types as arrow types,
even though, technically, the ~> types are the arrow types and the --> and ->
types are subset types thereof. The one place where you may need to remember
that --> and -> are subset types is in some error messages. For example, if you
try to assign a partial function to a variable whose type is a total arrow type
and the verifier is not able to prove that the partial function really is total, then
you’ll get an error say the subset-type constraint may not be satisfied.

For more information about arrow types, see Section 17.
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12. Newtypes

NewtypeDecl = "newtype" { Attribute } NewtypeName "="
[ ellipsis ]
( LocalIdentTypeOptional
"|"
Expression(allowLemma: false, allowLambda: true)
[ "ghost" "witness" Expression(allowLemma: false, allowLambda: true)
| "witness" Expression((allowLemma: false, allowLambda: true)
| "witness" "*"
]

| Type
)
[ TypeMembers ]

A newtype is like a type synonym or subset type except that it declares a wholly
new type name that is distinct from its base type.

A new type can be declared with the newtype declaration, for example:
newtype N = x: M | Q

where M is a type and Q is a boolean expression that can use x as a free variable.
If M is an integer-based numeric type, then so is N; if M is real-based, then so is
N. If the type M can be inferred from Q, the “: M” can be omitted. If Q is just
true, then the declaration can be given simply as:
newtype N = M

Type M is known as the base type of N. At present, Dafny only supports int and
real as base types of newtypes.

A newtype is a type that supports the same operations as its base type. The
newtype is distinct from and incompatible with other types; in particular, it is
not assignable to its base type without an explicit conversion. An important
difference between the operations on a newtype and the operations on its base
type is that the newtype operations are defined only if the result satisfies the
predicate Q, and likewise for the literals of the newtype.

For example, suppose lo and hi are integer-based numerics that satisfy 0 <=
lo <= hi and consider the following code fragment:
var mid := (lo + hi) / 2;

If lo and hi have type int, then the code fragment is legal; in particular, it
never overflows, since int has no upper bound. In contrast, if lo and hi are
variables of a newtype int32 declared as follows:
newtype int32 = x | -0x8000_0000 <= x < 0x8000_0000
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then the code fragment is erroneous, since the result of the addition may fail
to satisfy the predicate in the definition of int32. The code fragment can be
rewritten as
var mid := lo + (hi - lo) / 2;

in which case it is legal for both int and int32.

Since a newtype is incompatible with its base type and since all results of the
newtype’s operations are members of the newtype, a compiler for Dafny is free
to specialize the run-time representation of the newtype. For example, by scru-
tinizing the definition of int32 above, a compiler may decide to store int32
values using signed 32-bit integers in the target hardware.

The incompatibility of a newtype and its basetype is intentional, as newtypes
are meant to be used as distinct types from the basetype. If numeric types are
desired that mix more readily with the basetype, the subset types described in
Section 11.3 may be more appropriate.

Note that the bound variable x in Q has type M, not N. Consequently, it may not
be possible to state Q about the N value. For example, consider the following
type of 8-bit 2’s complement integers:
newtype int8 = x: int | -128 <= x < 128

and consider a variable c of type int8. The expression
-128 <= c < 128

is not well-defined, because the comparisons require each operand to have type
int8, which means the literal 128 is checked to be of type int8, which it is not.
A proper way to write this expression is to use a conversion operation, described
in Section 12.1, on c to convert it to the base type:
-128 <= c as int < 128

If possible, Dafny compilers will represent values of the newtype using a native
type for the sake of efficiency. This action can be inhibited or a specific native
data type selected by using the {:nativeType} attribute, as explained in Section
22.1.12.

Furthermore, for the compiler to be able to make an appropriate choice of rep-
resentation, the constants in the defining expression as shown above must be
known constants at compile-time. They need not be numeric literals; combina-
tions of basic operations and symbolic constants are also allowed as described
in Section 20.46.

12.1. Conversion operations
For every type N, there is a conversion operation with the name as N, described
more fully in Section 20.10. It is a partial function defined when the given
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value, which can be of any type, is a member of the type converted to. When
the conversion is from a real-based numeric type to an integer-based numeric
type, the operation requires that the real-based argument have no fractional
part. (To round a real-based numeric value down to the nearest integer, use the
.Floor member, see Section 7.2.)

To illustrate using the example from above, if lo and hi have type int32, then
the code fragment can legally be written as follows:
var mid := (lo as int + hi as int) / 2;

where the type of mid is inferred to be int. Since the result value of the division
is a member of type int32, one can introduce yet another conversion operation
to make the type of mid be int32:
var mid := ((lo as int + hi as int) / 2) as int32;

If the compiler does specialize the run-time representation for int32, then these
statements come at the expense of two, respectively three, run-time conversions.

The as N conversion operation is grammatically a suffix operation like .field
and array indexing, but binds less tightly than unary operations: - x as int
is (- x) as int; a + b as int is a + (b as int).

The as N conversion can also be used with reference types. For example, if C
is a class, c is an expression of type C, and o is an expression of type object,
then c as object and c as object? are upcasts and o is C is a downcast.
A downcast requires the LHS expression to have the RHS type, as is enforced
by the verifier.

For some types (in particular, reference types), there is also a corresponding is
operation (Section 20.10) that tests whether a value is valid for a given type.
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13. Class Types

ClassDecl = "class" { Attribute } ClassName [ GenericParameters ]
["extends" Type {"," Type} | ellipsis ]
"{" { { DeclModifier }

ClassMemberDecl(allowConstructors: true,
isValueType: false,
moduleLevelDecl: false,
isWithinAbstractModule: false) }

"}"

ClassMemberDecl(allowConstructors, isValueType,
moduleLevelDecl, isWithinAbstractModule) =

( FieldDecl(isValueType) // allowed iff moduleLevelDecl is false
| ConstantFieldDecl(moduleLevelDecl)
| FunctionDecl(isWithinAbstractModule)
| MethodDecl(isGhost: "ghost" was present,

allowConstructors, isWithinAbstractModule)
)

The ClassMemberDecl parameter moduleLevelDecl will be true if the member
declaration is at the top level or directly within a module declaration. It will
be false for ClassMemberDecls that are part of a class or trait declaration. If
moduleLevelDecl is true FieldDecls are not allowed.

A class C is a reference type declared as follows:
class C<T> extends J1, ..., Jn
{
_members_

}

where the list of type parameters T is optional. The text “extends J1, ...,
Jn” is also optional and says that the class extends traits J1 … Jn. The members
of a class are fields, functions, and methods. These are accessed or invoked by
dereferencing a reference to a C instance.

A function or method is invoked on an instance of C, unless the function or
method is declared static. A function or method that is not static is called
an instance function or method.

An instance function or method takes an implicit receiver parameter, namely,
the instance used to access the member. In the specification and body of an
instance function or method, the receiver parameter can be referred to explicitly
by the keyword this. However, in such places, members of this can also be
mentioned without any qualification. To illustrate, the qualified this.f and the
unqualified f refer to the same field of the same object in the following example:
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class C {
var f: int
var x: int
method Example() returns (b: bool)
{
var x: int;
b := f == this.f;

}
}

so the method body always assigns true to the out-parameter b. However, in
this example, x and this.x are different because the field x is shadowed by
the declaration of the local variable x. There is no semantic difference between
qualified and unqualified accesses to the same receiver and member.

A C instance is created using new. There are three forms of new, depending on
whether or not the class declares any constructors (see Section 13.3.2):
c := new C;
c := new C.Init(args);
c := new C(args);

For a class with no constructors, the first two forms can be used. The first form
simply allocates a new instance of a C object, initializing its fields to values
of their respective types (and initializing each const field with a RHS to its
specified value). The second form additionally invokes an initialization method
(here, named Init) on the newly allocated object and the given arguments. It
is therefore a shorthand for
c := new C;
c.Init(args);

An initialization method is an ordinary method that has no out-parameters and
that modifies no more than this.

For a class that declares one or more constructors, the second and third forms
of new can be used. For such a class, the second form invokes the indicated
constructor (here, named Init), which allocates and initializes the object. The
third form is the same as the second, but invokes the anonymous constructor of
the class (that is, a constructor declared with the empty-string name).

13.1. Field Declarations

FieldDecl(isValueType) =
"var" { Attribute } FIdentType { "," FIdentType }

A FieldDecl is not permitted in a value type (i.e., if isValueType is true).
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An FIdentType is used to declare a field. The field name is either an identifier
(that is not allowed to start with a leading underscore) or some digits. Digits
are used if you want to number your fields, e.g. “0”, “1”, etc.

A field x of some type T is declared as:
var x: T

A field declaration declares one or more fields of the enclosing class. Each field
is a named part of the state of an object of that class. A field declaration is
similar to but distinct from a variable declaration statement. Unlike for local
variables and bound variables, the type is required and will not be inferred.

Unlike method and function declarations, a field declaration cannot be given at
the top level. Fields can be declared in either a class or a trait. A class that
inherits from multiple traits will have all the fields declared in any of its parent
traits.

Fields that are declared as ghost can only be used in specifications, not in code
that will be compiled into executable code.

Fields may not be declared static.

13.2. Constant Field Declarations

ConstantFieldDecl(moduleLeavelDecl) =
"const" { Attribute } CIdentType [ ellipsis ]
[ ":=" Expression(allowLemma: false, allowLambda:true) ]

A const declaration declares a name bound to a value, which value is fixed after
initialization.

The declaration must either have a type or an initializing expression (or both).
If the type is omitted, it is inferred from the initializing expression.

• A const declaration may include the ghost and static modifiers, but no
others.

• A const declaration may appear within a module or within any declaration
that may contain members (class, trait, datatype, newtype).

• If it is in a module, it is implicitly static, and may not also be declared
static.

• If the declaration has an initializing expression that is a ghost expression,
then the ghost-ness of the declaration is inferred; the ghost modifier may
be omitted.

13.3. Method Declarations

MethodDecl(isGhost, allowConstructors, isWithinAbstractModule) =
MethodKeyword_ { Attribute } [ MethodFunctionName ]
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( MethodSignature_(isGhost, isExtreme: true iff this is a least
or greatest lemma declaration)

| ellipsis
)
MethodSpec(isConstructor: true iff

this is a constructor declaration)
[ BlockStmt ]

The isGhost parameter is true iff the ghost keyword preceded the method
declaration.

If the allowConstructor parameter is false then the MethodDecl must not be
a constructor declaration.
MethodKeyword_ = ( "method"

| "constructor"
| "lemma"
| "twostate" "lemma"
| "least" "lemma"
| "greatest" "lemma"
)

The method keyword is used to specify special kinds of methods as explained
below.
MethodSignature_(isGhost, isExtreme) =
[ GenericParameters ]
[ KType ] // permitted only if isExtreme == true
Formals(allowGhostKeyword: !isGhost, allowNewKeyword: isTwostateLemma, allowDefault: true))
[ "returns" Formals(allowGhostKeyword: !isGhost, allowNewKeyword: false, allowDefault: false) ]

A method signature specifies the method generic parameters, input parameters
and return parameters. The formal parameters are not allowed to have ghost
specified if ghost was already specified for the method.

A ellipsis is used when a method or function is being redeclared in a mod-
ule that refines another module. (cf. Section 21) In that case the signature is
copied from the module that is being refined. This works because Dafny does
not support method or function overloading, so the name of the class method
uniquely identifies it without the signature.
KType = "[" ( "nat" | "ORDINAL" ) "]"

The k-type may be specified only for least and greatest lemmas and is described
in Section 18.3. // TODO - check this is the correct reference
Formals(allowGhostKeyword, allowNewKeyword, allowDefault) =
"(" [ GIdentType(allowGhostKeyword, allowNewKeyword, allowNameOnlyKeyword: true, allowDefault)

{ "," GIdentType(allowGhostKeyword, allowNewKeyword, allowNameOnlyKeyword: true, allowDefault) }
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]
")"

The Formals specifies the names and types of the method input or output
parameters.

See Section 5.2 for a description of MethodSpec.

A method declaration adheres to the MethodDecl grammar above. Here is an
example of a method declaration.
method {:att1}{:att2} M<T1, T2>(a: A, b: B, c: C)

returns (x: X, y: Y, z: Z)
requires Pre
modifies Frame
ensures Post
decreases Rank

{
Body

}

where :att1 and :att2 are attributes of the method, T1 and T2 are type pa-
rameters of the method (if generic), a, b, c are the method’s in-parameters,
x, y, z are the method’s out-parameters, Pre is a boolean expression denoting
the method’s precondition, Frame denotes a set of objects whose fields may be
updated by the method, Post is a boolean expression denoting the method’s
postcondition, Rank is the method’s variant function, and Body is a list of state-
ments that implements the method. Frame can be a list of expressions, each of
which is a set of objects or a single object, the latter standing for the singleton
set consisting of that one object. The method’s frame is the union of these sets,
plus the set of objects allocated by the method body. For example, if c and d
are parameters of a class type C, then
modifies {c, d}
modifies {c} + {d}
modifies c, {d}
modifies c, d

all mean the same thing.

13.3.1. Ordinary methods

A method can be declared as ghost by preceding the declaration with the key-
word ghost and as static by preceding the declaration with the keyword static.
The default is non-static (i.e., instance) and non-ghost. An instance method has
an implicit receiver parameter, this. A static method M in a class C can be
invoked by C.M(…).

An ordinary method is declared with the method keyword. Section [#sec-
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constructors] explains methods that instead use the constructor keyword. Sec-
tion [#sec-lemmas] discusses methods that are declared with the lemma keyword.
Methods declared with the inductive lemma keywords are discussed later in
the context of inductive predicates (see [#sec-inductive-datatypes]). Methods
declared with the colemma keyword are discussed later in the context of co-
inductive types, in section [#sec-colemmas].

A method without a body is abstract. A method is allowed to be abstract under
the following circumstances:

• It contains an {:axiom} attribute
• It contains an {:imported} attribute
• It contains a {:decl} attribute
• It is a declaration in an abstract module. Note that when there is no body,

Dafny assumes that the ensures clauses are true without proof. (TODO:
:extern attribute?)

13.3.2. Constructors

To write structured object-oriented programs, one often relies on objects being
constructed only in certain ways. For this purpose, Dafny provides constructor
(method)s. A constructor is declared with the keyword constructor instead of
method; constructors are permitted only in classes. A constructor is allowed to
be declared as ghost, in which case it can only be used in ghost contexts.

A constructor can only be called at the time an object is allocated (see object-
creation examples below). Moreover, when a class contains a constructor, every
call to new for a class must be accompanied by a call to one of its constructors.
A class may declare no constructors or one or more constructors.

13.3.2.1. Classes with no explicit constructors For a class that declares
no constructors, an instance of the class is created with
c := new C;

This allocates an object and initializes its fields to values of their respective
types (and initializes each const field with a RHS to its specified value). The
RHS of a const field may depend on other const or var fields, but circular
dependencies are not allowed.

This simple form of new is allowed only if the class declares no constructors,
which is not possible to determine in every scope. It is easy to determine
whether or not a class declares any constructors if the class is declared in the
same module that performs the new. If the class is declared in a different module
and that module exports a constructor, then it is also clear that the class has a
constructor (and thus this simple form of new cannot be used). (Note that an
export set that reveals a class C also exports the anonymous constructor of C,
if any.) But if the module that declares C does not export any constructors for C,
then callers outside the module do not know whether or not C has a constructor.
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Therefore, this simple form of new is allowed only for classes that are declared
in the same module as the use of new.

The simple new C is allowed in ghost contexts. Also, unlike the forms of new
that call a constructor or initialization method, it can be used in a simultaneous
assignment; for example
c, d, e := new C, new C, 15;

is legal.

As a shorthand for writing
c := new C;
c.Init(args);

where Init is an initialization method (see the top of Section [#sec-class-types]),
one can write
c := new C.Init(args);

but it is more typical in such a case to declare a constructor for the class.

(The syntactic support for initialization methods is provided for historical rea-
sons. It may be deprecated in some future version of Dafny. In most cases, a
constructor is to be preferred.)

13.3.2.2. Classes with one or more constructors Like other class mem-
bers, constructors have names. And like other members, their names must be
distinct, even if their signatures are different. Being able to name construc-
tors promotes names like InitFromList or InitFromSet (or just FromList and
FromSet). Unlike other members, one constructor is allowed to be anonymous;
in other words, an anonymous constructor is a constructor whose name is essen-
tially the empty string. For example:
class Item {
constructor I(xy: int) // ...
constructor (x: int, y: int)
// ...

}

The named constructor is invoked as
i := new Item.I(42);

The anonymous constructor is invoked as
m := new Item(45, 29);

dropping the “.”.
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13.3.2.3. Two-phase constructors The body of a constructor contains two
sections, an initialization phase and a post-initialization phase, separated by a
new; statement. If there is no new; statement, the entire body is the initializa-
tion phase. The initialization phase is intended to initialize field variables. In
this phase, uses of the object reference this are restricted; a program may use
this

• as the receiver on the LHS,
• as the entire RHS of an assignment to a field of this,
• and as a member of a set on the RHS that is being assigned to a field of

this.

A const field with a RHS is not allowed to be assigned anywhere else. A const
field without a RHS may be assigned only in constructors, and more precisely
only in the initialization phase of constructors. During this phase, a const field
may be assigned more than once; whatever value the const field has at the end
of the initialization phase is the value it will have forever thereafter.

For a constructor declared as ghost, the initialization phase is allowed to assign
both ghost and non-ghost fields. For such an object, values of non-ghost fields
at the end of the initialization phase are in effect no longer changeable.

There are no restrictions on expressions or statements in the post-initialization
phase.

13.3.3. Lemmas

Sometimes there are steps of logic required to prove a program correct, but
they are too complex for Dafny to discover and use on its own. When this
happens, we can often give Dafny assistance by providing a lemma. This is
done by declaring a method with the lemma keyword. Lemmas are implicitly
ghost methods and the ghost keyword cannot be applied to them.

For an example, see the FibProperty lemma in Section 23.5.2.

See the Dafny Lemmas tutorial for more examples and hints for using lemmas.

13.3.4. Two-state lemmas and functions

The heap is an implicit parameter to every function, though a function is only
allowed to read those parts of the mutable heap that it admits to in its reads
clause. Sometimes, it is useful for a function to take two heap parameters, for
example, so the function can return the difference between the value of a field in
the two heaps. Such a two-state function is declared by twostate function (or
twostate predicate, which is the same as a twostate function that returns
a bool). A two-state function is always ghost. It is appropriate to think of
these two implicit heap parameters as representing a “current” heap and an
“old” heap.

For example, the predicate
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twostate predicate Increasing(c: Cell)
reads c

{
old(c.data) <= c.data

}

returns true if the value of c.data has not been reduced from the old state to the
current. Dereferences in the current heap are written as usual (e.g., c.data) and
must, as usual, be accounted for in the function’s reads clause. Dereferences
in the old heap are enclosed by old (e.g., old(c.data)), just like when one
dereferences a method’s initial heap. The function is allowed to read anything
in the old heap; the reads clause only declares dependencies on locations in the
current heap. Consequently, the frame axiom for a two-state function is sensitive
to any change in the old-heap parameter; in other words, the frame axiom says
nothing about two invocations of the two-state function with different old-heap
parameters.

At a call site, the two-state function’s current-heap parameter is always passed
in as the caller’s current heap. The two-state function’s old-heap parameter is
by default passed in as the caller’s old heap (that is, the initial heap if the caller
is a method and the old heap if the caller is a two-state function). While there
is never a choice in which heap gets passed as the current heap, the caller can
use any preceding heap as the argument to the two-state function’s old-heap
parameter. This is done by labeling a state in the caller and passing in the
label, just like this is done with the built-in old function.

For example, the following assertions all hold:
method Caller(c: Cell)
modifies c

{
c.data := c.data + 10;
label L:
assert Increasing(c);
c.data := c.data - 2;
assert Increasing(c);
assert !Increasing@L(c);

}

The first call to Increasing uses Caller’s initial state as the old-heap param-
eter, and so does the second call. The third call instead uses as the old-heap
parameter the heap at label L, which is why the third call returns false. As
shown in the example, an explicitly given old-heap parameter is given after an
@-sign (which follows the name of the function and any explicitly given type pa-
rameters) and before the open parenthesis (after which the ordinary parameters
are given).

A two-state function is allowed to be called only from a two-state context, which
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means a method, a two-state lemma (see below), or another two-state function.
Just like a label used with an old expressions, any label used in a call to a
two-state function must denote a program point that dominates the call. This
means that any control leading to the call must necessarily have passed through
the labeled program point.

Any parameter (including the receiver parameter, if any) passed to a two-state
function must have been allocated already in the old state. For example, the
second call to Diff in method M is illegal, since d was not allocated on entry to
M:
twostate function Diff(c: Cell, d: Cell): int
reads d

{
d.data - old(c.data)

}

method M(c: Cell) {
var d := new Cell(10);
label L:
ghost var x := Diff@L(c, d);
ghost var y := Diff(c, d); // error: d is not allocated in old state

}

A two-state function can declare that it only assumes a parameter to be allo-
cated in the current heap. This is done by preceding the parameter with the
new modifier, as illustrated in the following example, where the first call to
DiffAgain is legal:
twostate function DiffAgain(c: Cell, new d: Cell): int
reads d

{
d.data - old(c.data)

}

method P(c: Cell) {
var d := new Cell(10);
ghost var x := DiffAgain(c, d);
ghost var y := DiffAgain(d, c); // error: d is not allocated in old state

}

A two-state lemma works in an analogous way. It is a lemma with both a
current-heap parameter and an old-heap parameter, it can use old expressions
in its specification (including in the precondition) and body, its parameters may
use the new modifier, and the old-heap parameter is by default passed in as the
caller’s old heap, which can be changed by using an @-parameter.

Here is an example of something useful that can be done with a two-state lemma:
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function SeqSum(s: seq<Cell>): int
reads s

{
if s == [] then 0 else s[0].data + SeqSum(s[1..])

}

twostate lemma IncSumDiff(s: seq<Cell>)
requires forall c :: c in s ==> Increasing(c)
ensures old(SeqSum(s)) <= SeqSum(s)

{
if s == [] {
} else {
calc {
old(SeqSum(s));

== // def. SeqSum
old(s[0].data + SeqSum(s[1..]));

== // distribute old
old(s[0].data) + old(SeqSum(s[1..]));

<= { assert Increasing(s[0]); }
s[0].data + old(SeqSum(s[1..]));

<= { IncSumDiff(s[1..]); }
s[0].data + SeqSum(s[1..]);

== // def. SeqSum
SeqSum(s);

}
}

}

A two-state function can be used as a first-class function value, where the re-
ceiver (if any), type parameters (if any), and old-heap parameter are determined
at the time the first-class value is mentioned. While the receiver and type pa-
rameters can be explicitly instantiated in such a use (for example, p.F<int> for
a two-state instance function F that takes one type parameter), there is currently
no syntactic support for giving the old-heap parameter explicitly. A caller can
work around this restriction by using (fancy-word alert!) eta-expansion, mean-
ing wrapping a lambda expression around the call, as in x => p.F<int>@L(x).
The following example illustrates using such an eta-expansion:
class P {
twostate function F<X>(x: X): X

}

method EtaExample(p: P) returns (ghost f: int -> int) {
label L:
f := x => p.F<int>@L(x);

}
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TO BE WRITTEN - unchanged predicate

13.4. Function Declarations

FunctionDecl(isWithinAbstractModule) =
( [ "twostate" ] "function" [ "method" ] { Attribute }
MethodFunctionName
FunctionSignatureOrEllipsis_(allowGhostKeyword:

("method" present),
allowNewKeyword:

"twostate" present)
| "predicate" [ "method" ] { Attribute }
MethodFunctionName
PredicateSignatureOrEllipsis_(allowGhostKeyword:

("method" present),
allowNewKeyword:

"twostate" present)
| ( "least" | "greatest" ) "predicate" { Attribute }
MethodFunctionName
PredicateSignatureOrEllipsis_(allowGhostKeyword: false,

allowNewKeyword: "twostate" present))
)
FunctionSpec
[ FunctionBody ]

FunctionSignatureOrEllipsis_(allowGhostKeyword) =
FunctionSignature_(allowGhostKeyword) | ellipsis

FunctionSignature_(allowGhostKeyword, allowNewKeyword) =
[ GenericParameters ]
Formals(allowGhostKeyword, allowNewKeyword)
":"
( Type
| "(" GIdentType(allowGhostKeyword: false,

allowNewKeyword: false,
allowNameOnlyKeyword: false,
allowDefault: false)

")"
)

PredicateSignatureOrEllipsis_(allowGhostKeyword) =
PredicateSignature_(allowGhostKeyword) | ellipsis

PredicateSignature_(allowGhostKeyword) =
[ GenericParameters ] [ KType ] Formals(allowGhostKeyword,
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allowNewKeyword)

FunctionBody = "{" Expression(allowLemma: true, allowLambda: true)
"}" [ "by" "method" BlockStmt ]

A function with a by method clause declares a function-by-method. A function-
by-method gives a way to implement a (deterministic, side-effect free) function
by a method (whose body may be nondeterministic and may allocate objects
that it modifies). This can be useful if the best implementation uses nondeter-
minism (for example, because it uses :| in a nondeterministic way) in a way
that does not affect the result, or if the implementation temporarily makes use
of some mutable data structures, or if the implementation is done with a loop.
For example, here is the standard definition of the Fibonacci function but with
an efficient implementation that uses a loop:
function Fib(n: nat): nat {
if n < 2 then n else Fib(n - 2) + Fib(n - 1)

} by method {
var x, y := 0, 1;
for i := 0 to n
invariant x == Fib(i) && y == Fib(i + 1)

{
x, y := y, x + y;

}
return x;

}

The by method clause is allowed only for the function or predicate decla-
rations (without method, twostate, least, and greatest, but possibly with
static). The method inherits the in-parameters, attributes, and requires and
decreases clauses of the function. The method also gets one out-parameter,
corresponding to the function’s result value (and the name of it, if present). Fi-
nally, the method gets an empty modifies clause and a postcondition ensures
r == F(args), where r is the name of the out-parameter and F(args) is the
function with its arguments. In other words, the method body must compute
and return exactly what the function says, and must do so without modifying
any previously existing heap state.

The function body of a function-by-method is allowed to be ghost, but the
method body must be compilable. In non-ghost contexts, the compiler turns a
call of the function-by-method into a call that leads to the method body.

Note, the method body of a function-by-method may contain print statements.
This means that the run-time evaluation of an expression may have print ef-
fects. Dafny does not track print effects, but this is the only situation that an
expression can have a print effect.

101



13.4.1. Functions

In the above productions, allowGhostKeyword is true if the optional method
keyword was specified. This allows some of the formal parameters of a function
method to be specified as ghost.

See Section 5.3 for a description of FunctionSpec.

A Dafny function is a pure mathematical function. It is allowed to read memory
that was specified in its reads expression but is not allowed to have any side
effects.

Here is an example function declaration:
function {:att1}{:att2} F<T1, T2>(a: A, b: B, c: C): T
requires Pre
reads Frame
ensures Post
decreases Rank

{
Body

}

where :att1 and :att2 are attributes of the function, if any, T1 and T2 are type
parameters of the function (if generic), a, b, c are the function’s parameters,
T is the type of the function’s result, Pre is a boolean expression denoting the
function’s precondition, Frame denotes a set of objects whose fields the function
body may depend on, Post is a boolean expression denoting the function’s
postcondition, Rank is the function’s variant function, and Body is an expression
that defines the function’s return value. The precondition allows a function to
be partial, that is, the precondition says when the function is defined (and Dafny
will verify that every use of the function meets the precondition).

The postcondition is usually not needed, since the body of the function gives the
full definition. However, the postcondition can be a convenient place to declare
properties of the function that may require an inductive proof to establish, such
as when the function is recursive. For example:
function Factorial(n: int): int
requires 0 <= n
ensures 1 <= Factorial(n)

{
if n == 0 then 1 else Factorial(n-1) * n

}

says that the result of Factorial is always positive, which Dafny verifies induc-
tively from the function body.

Within a postcondition, the result of the function is designated by a call of the
function, such as Factorial(n) in the example above. Alternatively, a name
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for the function result can be given in the signature, as in the following rewrite
of the example above.
function Factorial(n: int): (f: int)
requires 0 <= n
ensures 1 <= f

{
if n == 0 then 1 else Factorial(n-1) * n

}

By default, a function is ghost, and cannot be called from non-ghost code.
To make it non-ghost, replace the keyword function with the two keywords
“function method”.

Like methods, functions can be either instance (which they are be default) or
static (when the function declaration contains the keyword static). An instance
function, but not a static function, has an implicit receiver parameter, this.
A static function F in a class C can be invoked by C.F(…). This provides a
convenient way to declare a number of helper functions in a separate class.

As for methods, a ... is used when declaring a function in a module refinement
(cf. Section 21). For example, if module M0 declares function F, a module M1 can
be declared to refine M0 and M1 can then refine F. The refinement function, M1.F
can have a ... which means to copy the signature from M0.F. A refinement
function can furnish a body for a function (if M0.F does not provide one). It
can also add ensures clauses.

13.4.2. Predicates

A function that returns a bool result is called a predicate. As an alternative
syntax, a predicate can be declared by replacing the function keyword with
the predicate keyword and omitting a declaration of the return type.

13.4.3. Function Transparency

A function is said to be transparent in a location if the body of the function is
visible at that point. A function is said to be opaque at a location if it is not
transparent. However the FunctionSpec of a function is always available.

A function is usually transparent up to some unrolling level (up to 1, or maybe
2 or 3). If its arguments are all literals it is transparent all the way.

But the transparency of a function is affected by whether the function was given
the {:opaque} attribute (as explained in Section 22.1.13).

The following table summarizes where the function is transparent. The module
referenced in the table is the module in which the function is defined.

103



{:opaque}? Transparent Inside Module Transparent Outside Module
N Y Y
Y N N

When {:opaque} is specified for function g, g is opaque, however the statement
reveal g(); is available to give the semantics of g whether in the defining
module or outside.

13.4.4. Least/Greatest (CoInductive) Predicates and Lemmas

See Section 23.5.3 for descriptions of inductive predicates and lemmas.
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14. Trait Types
TraitDecl =
"trait" { Attribute } ClassName [ GenericParameters ]
[ "extends" Type { "," Type } | ellipsis ]
"{"
{ { DeclModifier } ClassMemberDecl(allowConstructors: true,

isValueType: false,
moduleLevelDecl: false,
isWithinAbstractModule: false) }

"}"

A trait is an abstract superclass, similar to an “interface” or “mixin”. A trait
can be extended only by another trait or by a class (and in the latter case we
say that the class implements the trait). More specifically, algebraic datatypes
cannot extend traits.4

The declaration of a trait is much like that of a class:
trait J
{
_members_

}

where members can include fields, functions, methods and declarations of nested
traits, but no constructor methods. The functions and methods are allowed to
be declared static.

A reference type C that extends a trait J is assignable to a variable of type J; a
value of type J is assignable to a variable of a reference type C that extends J
only if the verifier can prove that the reference does indeed refer to an object of
allocated type C. The members of J are available as members of C. A member
in J is not allowed to be redeclared in C, except if the member is a non-static
function or method without a body in J. By doing so, type C can supply a
stronger specification and a body for the member. There is further discussion
on this point in Section 14.2.

new is not allowed to be used with traits. Therefore, there is no object whose
allocated type is a trait. But there can of course be objects of a class C that
implement a trait J, and a reference to such a C object can be used as a value
of type J.

14.1. Type object

ObjectType_ = "object" | "object?"

4Traits are new to Dafny and are likely to evolve for a while.
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There is a built-in trait object that is implicitly extended by all classes and
traits. It produces two types: the type object? that is a supertype of all
reference types and a subset type object that is a supertype of all non-null
reference types. This includes reference types like arrays and iterators that do
not permit explicit extending of traits. The purpose of type object is to enable
a uniform treatment of dynamic frames. In particular, it is useful to keep a
ghost field (typically named Repr for “representation”) of type set<object>.

It serves no purpose (but does no harm) to explicitly list the trait object as an
extendee in a class or trait declaration.

Traits object? and object contain no members.

The dynamic allocation of objects is done using new C…, where C is the name of
a class. The name C is not allowed to be a trait, except that it is allowed to be
object. The construction new object allocates a new object (of an unspecified
class type). The construction can be used to create unique references, where no
other properties of those references are needed. (new object? makes no sense;
always use new object instead because the result of new is always non-null.)

14.2. Inheritance
The purpose of traits is to be able to express abstraction: a trait encapsulates
a set of behaviors; classes and traits that extend it inherit those behaviors,
perhaps specializing them.

A trait or class may extend multiple other traits. The traits syntactically listed
in a trait or class’s extends clause are called its direct parents; the transitive
parents of a trait or class are its direct parents, the transitive parents of its
direct parents, and the object trait (if it is not itself object). These are sets
of traits, in that it does not matter if there are repetitions of a given trait
in a class or trait’s direct or transitive parents. However, if a trait with type
parameters is repeated, it must have the same actual type parameters in each
instance. Furthermore, a trait may not be in its own set of transitive parents;
that is, the graph of traits connected by the directed extends relationship may
not have any cycles.

A class or trait inherits (as if they are copied) all the instance members of
its transitive parents. However, since names may not be overloaded in Dafny,
different members (that is, members with different type signatures) within the
set of transitive parents and the class or trait itself must have different names.5
This restriction does mean that traits from different sources that coincidentally
use the same name for different purposes cannot be combined by being part of
the set of transitive parents for some new trait or class.

A declaration of member C.M in a class or trait overrides any other declarations
of the same name (and signature) in a transitive parent. C.M is then called

5It is possible to conceive of a mechanism for disambiguating conflicting names, but this
would add complexity to the language that does not appear to be needed, at least as yet.
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an override; a declaration that does not override anything is called an original
declaration.

Static members of a trait may not be redeclared; thus, if there is a body it must
be declared in the trait; the compiler will require a body, though the verifier
will not.

Where traits within an extension hierarchy do declare instance members with
the same name (and thus the same signature), some rules apply. Recall that, for
methods, every declaration includes a specification; if no specification is given
explicitly, a default specification applies. Instance method declarations in traits,
however, need not have a body, as a body can be declared in an override.

For a given non-static method M,

• A trait or class may not redeclare M if it has a transitive parent that
declares M and provides a body.

• A trait may but need not provide a body if all its transitive parents that
declare M do not declare a body.

• A trait or class may not have more than one transitive parent that declares
M with a body.

• A class that has one or more transitive parents that declare M without
a body and no transitive parent that declares M with a body must itself
redeclare M with a body if it is compiled. (The verifier alone does not
require a body.)

• Currently (and under debate), the following restriction applies: if M over-
rides two (or more) declarations, P.M and Q.M, then either P.M must over-
ride Q.M or Q.M must override P.M.

The last restriction above is the current implementation. It effectively limits
inheritance of a method M to a single “chain” of declarations and does not
permit mixins.

Each of any method declarations explicitly or implicitly includes a specification.
In simple cases, those syntactically separate specifications will be copies of each
other (up to renaming to take account of differing formal parameter names).
However they need not be. The rule is that the specifications of M in a given
class or trait must be as strong as M’s specifications in a transitive parent.
Here as strong as means that it must be permitted to call the subtype’s M in
the context of the supertype’s M. Stated differently, where P and C are a parent
trait and a child class or trait, respectively, then, under the precondition of P.M,

• C.M’s requires clause must be implied by P.M’s requires clause
• C.M’s ensures clause must imply P.M’s ensures clause
• C.M’s reads set must be a subset of P.M’s reads set
• C.M’s modifies set must be a subset of P.M’s modifies set
• C.M’s decreases expression must be smaller than or equal to P.M’s

decreases expression

Non-static const and field declarations are also inherited from parent traits.
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These may not be redeclared in extending traits and classes. However, a trait
need not initialize a const field with a value. The class that extends a trait
that declares such a const field without an initializer can initialize the field in a
constructor. If the declaring trait does give an initial value in the declaration,
the extending class or trait may not either redeclare the field or give it a value
in a constructor.

When names are inherited from multiple traits, they must be different. If two
traits declare a common name (even with the same signature), they cannot both
be extendees of the same class or trait.

14.3. Example of traits
As an example, the following trait represents movable geometric shapes:
trait Shape
{
function method Width(): real
reads this

method Move(dx: real, dy: real)
modifies this

method MoveH(dx: real)
modifies this

{
Move(dx, 0.0);

}
}

Members Width and Move are abstract (that is, body-less) and can be imple-
mented differently by different classes that extend the trait. The implementa-
tion of method MoveH is given in the trait and thus is used by all classes that
extend Shape. Here are two classes that each extend Shape:
class UnitSquare extends Shape
{
var x: real, y: real
function method Width(): real { // note the empty reads clause
1.0

}
method Move(dx: real, dy: real)
modifies this

{
x, y := x + dx, y + dy;

}
}

class LowerRightTriangle extends Shape
{
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var xNW: real, yNW: real, xSE: real, ySE: real
function method Width(): real
reads this

{
xSE - xNW

}
method Move(dx: real, dy: real)
modifies this

{
xNW, yNW, xSE, ySE := xNW + dx, yNW + dy, xSE + dx, ySE + dy;

}
}

Note that the classes can declare additional members, that they supply imple-
mentations for the abstract members of the trait, that they repeat the member
signatures, and that they are responsible for providing their own member spec-
ifications that both strengthen the corresponding specification in the trait and
are satisfied by the provided body. Finally, here is some code that creates two
class instances and uses them together as shapes:
var myShapes: seq<Shape>;
var A := new UnitSquare;
myShapes := [A];
var tri := new LowerRightTriangle;
// myShapes contains two Shape values, of different classes
myShapes := myShapes + [tri];
// move shape 1 to the right by the width of shape 0
myShapes[1].MoveH(myShapes[0].Width());
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15. Array Types

ArrayType_ = arrayToken [ GenericInstantiation ]

Dafny supports mutable fixed-length array types of any positive dimension. Ar-
ray types are (heap-based) reference types.

15.1. One-dimensional arrays
A one-dimensional array of n T elements is created as follows:
a := new T[n];

The initial values of the array elements are arbitrary values of type T. They can
be initialized using an ordered list of expressions enclosed in square brackets, as
follows:

a := new T[] [t1, t2, t3, t4];

The length of an array is retrieved using the immutable Length member. For
example, the array allocated above satisfies:
a.Length == n

Once an array is allocated, its length cannot be changed.

For any integer-based numeric i in the range 0 <= i < a.Length, the array
selection expression a[i] retrieves element i (that is, the element preceded by
i elements in the array). The element stored at i can be changed to a value t
using the array update statement:
a[i] := t;

Caveat: The type of the array created by new T[n] is array<T>. A mistake
that is simple to make and that can lead to befuddlement is to write array<T>
instead of T after new. For example, consider the following:
var a := new array<T>;
var b := new array<T>[n];
var c := new array<T>(n); // resolution error
var d := new array(n); // resolution error

The first statement allocates an array of type array<T>, but of unknown length.
The second allocates an array of type array<array<T>> of length n, that is, an
array that holds n values of type array<T>. The third statement allocates an
array of type array<T> and then attempts to invoke an anonymous constructor
on this array, passing argument n. Since array has no constructors, let alone
an anonymous constructor, this statement gives rise to an error. If the type-
parameter list is omitted for a type that expects type parameters, Dafny will
attempt to fill these in, so as long as the array type parameter can be inferred,
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it is okay to leave off the “<T>” in the fourth statement above. However, as with
the third statement, array has no anonymous constructor, so an error message
is generated.

One-dimensional arrays support operations that convert a stretch of consecu-
tive elements into a sequence. For any array a of type array<T>, integer-based
numerics lo and hi satisfying 0 <= lo <= hi <= a.Length, the following op-
erations each yields a seq<T>:

expression description
a[lo..hi] subarray conversion to sequence
a[lo..] drop
a[..hi] take
a[..] array conversion to sequence

The expression a[lo..hi] takes the first hi elements of the array, then drops
the first lo elements thereof and returns what remains as a sequence, with
length hi - lo. The other operations are special instances of the first. If lo
is omitted, it defaults to 0 and if hi is omitted, it defaults to a.Length. In
the last operation, both lo and hi have been omitted, thus a[..] returns the
sequence consisting of all the array elements of a.

The subarray operations are especially useful in specifications. For example,
the loop invariant of a binary search algorithm that uses variables lo and hi to
delimit the subarray where the search key may be still found can be expressed
as follows:
key !in a[..lo] && key !in a[hi..]

Another use is to say that a certain range of array elements have not been
changed since the beginning of a method:
a[lo..hi] == old(a[lo..hi])

or since the beginning of a loop:
ghost var prevElements := a[..];
while // ...
invariant a[lo..hi] == prevElements[lo..hi]

{
// ...

}

Note that the type of prevElements in this example is seq<T>, if a has type
array<T>.

A final example of the subarray operation lies in expressing that an array’s
elements are a permutation of the array’s elements at the beginning of a method,
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as would be done in most sorting algorithms. Here, the subarray operation is
combined with the sequence-to-multiset conversion:
multiset(a[..]) == multiset(old(a[..]))

15.2. Multi-dimensional arrays
An array of 2 or more dimensions is mostly like a one-dimensional array, except
that new takes more length arguments (one for each dimension), and the array
selection expression and the array update statement take more indices. For
example:
matrix := new T[m, n];
matrix[i, j], matrix[x, y] := matrix[x, y], matrix[i, j];

create a 2-dimensional array whose dimensions have lengths m and n, respectively,
and then swaps the elements at i,j and x,y. The type of matrix is array2<T>,
and similarly for higher-dimensional arrays (array3<T>, array4<T>, etc.). Note,
however, that there is no type array0<T>, and what could have been array1<T>
is actually named just array<T>. (Accordingly, array0 and array1 are just
normal identifiers, not type names.)

The new operation above requires m and n to be non-negative integer-based
numerics. These lengths can be retrieved using the immutable fields Length0
and Length1. For example, the following holds for the array created above:
matrix.Length0 == m && matrix.Length1 == n

Higher-dimensional arrays are similar (Length0, Length1, Length2, …). The
array selection expression and array update statement require that the indices
are in bounds. For example, the swap statement above is well-formed only if:
0 <= i < matrix.Length0 && 0 <= j < matrix.Length1 &&
0 <= x < matrix.Length0 && 0 <= y < matrix.Length1

In contrast to one-dimensional arrays, there is no operation to convert stretches
of elements from a multi-dimensional array to a sequence.
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16. Iterator types

IteratorDecl = "iterator" { Attribute } IteratorName
( [ GenericParameters ]
Formals(allowGhostKeyword: true, allowNewKeyword: false)
[ "yields" Formals(allowGhostKeyword: true, allowNewKeyword: false) ]

| ellipsis
)
IteratorSpec
[ BlockStmt ]

See Section 5.5 for a description of IteratorSpec.

An iterator provides a programming abstraction for writing code that iteratively
returns elements. These CLU-style iterators are co-routines in the sense that
they keep track of their own program counter and control can be transferred
into and out of the iterator body.

An iterator is declared as follows:
iterator Iter<T>(_in-params_) yields (_yield-params_)
_specification_

{
_body_

}

where T is a list of type parameters (as usual, if there are no type parameters,
“<T>” is omitted). This declaration gives rise to a reference type with the same
name, Iter<T>. In the signature, in-parameters and yield-parameters are the
iterator’s analog of a method’s in-parameters and out-parameters. The differ-
ence is that the out-parameters of a method are returned to a caller just once,
whereas the yield-parameters of an iterator are returned each time the iterator
body performs a yield. The body consists of statements, like in a method body,
but with the availability also of yield statements.

From the perspective of an iterator client, the iterator declaration can be
understood as generating a class Iter<T> with various members, a simplified
version of which is described next.

The Iter<T> class contains an anonymous constructor whose parameters are
the iterator’s in-parameters:
predicate Valid()
constructor (_in-params_)
modifies this
ensures Valid()

An iterator is created using new and this anonymous constructor. For example,
an iterator willing to return ten consecutive integers from start can be declared
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as follows:
iterator Gen(start: int) yields (x: int)
{
var i := 0;
while i < 10 {
x := start + i;
yield;
i := i + 1;

}
}

An instance of this iterator is created using
iter := new Gen(30);

TODO: Add example of using the iterator

The predicate Valid() says when the iterator is in a state where one can attempt
to compute more elements. It is a postcondition of the constructor and occurs
in the specification of the MoveNext member:
method MoveNext() returns (more: bool)
requires Valid()
modifies this
ensures more ==> Valid()

Note that the iterator remains valid as long as MoveNext returns true. Once
MoveNext returns false, the MoveNext method can no longer be called. Note,
the client is under no obligation to keep calling MoveNext until it returns false,
and the body of the iterator is allowed to keep returning elements forever.

The in-parameters of the iterator are stored in immutable fields of the iterator
class. To illustrate in terms of the example above, the iterator class Gen contains
the following field:
var start: int

The yield-parameters also result in members of the iterator class:
var x: int

These fields are set by the MoveNext method. If MoveNext returns true, the
latest yield values are available in these fields and the client can read them from
there.

To aid in writing specifications, the iterator class also contains ghost members
that keep the history of values returned by MoveNext. The names of these ghost
fields follow the names of the yield-parameters with an “s” appended to the
name (to suggest plural). Name checking rules make sure these names do not
give rise to ambiguities. The iterator class for Gen above thus contains:
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ghost var xs: seq<int>

These history fields are changed automatically by MoveNext, but are not
assignable by user code.

Finally, the iterator class contains some special fields for use in specifications.
In particular, the iterator specification is recorded in the following immutable
fields:
ghost var _reads: set<object>
ghost var _modifies: set<object>
ghost var _decreases0: T0
ghost var _decreases1: T1
// ...

where there is a _decreases(i): T(i) field for each component of the iterator’s
decreases clause.6 In addition, there is a field:
ghost var _new: set<object>;

to which any objects allocated on behalf of the iterator body are added. The
iterator body is allowed to remove elements from the _new set, but cannot by
assignment to _new add any elements.

Note, in the precondition of the iterator, which is to hold upon construction of
the iterator, the in-parameters are indeed in-parameters, not fields of this.

It is regrettably tricky to use iterators. The language really ought to have a
foreach statement to make this easier. Here is an example showing a definition
and use of an iterator.
iterator Iter<T>(s: set<T>) yields (x: T)
yield ensures x in s && x !in xs[..|xs|-1];
ensures s == set z | z in xs;

{
var r := s;
while (r != {})
invariant forall z :: z in xs ==> x !in r;

// r and xs are disjoint
invariant s == r + set z | z in xs;

{
var y :| y in r;
r, x := r - {y}, y;
yield;
assert y == xs[|xs|-1]; // a lemma to help prove loop invariant

6It would make sense to rename the special fields _reads and _modifies to have the same
names as the corresponding keywords, reads and modifies, as is done for function values.
Also, the various _decreases\(_i_\) fields can be combined into one field named decreases
whose type is a n-tuple. These changes may be incorporated into a future version of Dafny.
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}
}

method UseIterToCopy<T>(s: set<T>) returns (t: set<T>)
ensures s == t;

{
t := {};
var m := new Iter(s);
while (true)
invariant m.Valid() && fresh(m._new);
invariant t == set z | z in m.xs;
decreases s - t;

{
var more := m.MoveNext();
if (!more) { break; }
t := t + {m.x};

}
}

TODO: The section above can use some rewriting, a summary of the defined
members of an iterator, and more examples. Probably also a redesign.
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17. Arrow types

ArrowType_ = ( DomainType_ "~>" Type
| DomainType_ "-->" Type
| DomainType_ "->" Type
)

Functions are first-class values in Dafny. The types of function values are called
arrow types (aka, function types). Arrow types have the form (TT) ~> U where
TT is a (possibly empty) comma-delimited list of types and U is a type. TT is
called the function’s domain type(s) and U is its range type. For example, the
type of a function
function F(x: int, arr: array<bool>): real
requires x < 1000
reads arr

is (int, array<bool>) ~> real.

As seen in the example above, the functions that are values of a type (TT) ~>
U can have a precondition (as indicated by the requires clause) and can read
values in the heap (as indicated by the reads clause). As described in Sec-
tion 11.3.3, the subset type (TT) --> U denotes partial (but heap-independent)
functions and the subset type (TT) -> U denotes total functions.

A function declared without a reads clause is known by the type checker to be
a partial function. For example, the type of
function F(x: int, b: bool): real
requires x < 1000

is (int, bool) --> real. Similarly, a function declared with neither a reads
clause nor a requires clause is known by the type checker to be a total function.
For example, the type of
function F(x: int, b: bool): real

is (int, bool) -> real. In addition to functions declared by name, Dafny
also supports anonymous functions by means of lambda expressions (see Section
20.13).

To simplify the appearance of the basic case where a function’s domain consists
of a list of exactly one non-function, non-tuple type, the parentheses around
the domain type can be dropped in this case. For example, you may write just
T -> U for a total arrow type. This innocent simplification requires additional
explanation in the case where that one type is a tuple type, since tuple types are
also written with enclosing parentheses. If the function takes a single argument
that is a tuple, an additional set of parentheses is needed. For example, the
function
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function G(pair: (int, bool)): real

has type ((int, bool)) -> real. Note the necessary double parentheses. Sim-
ilarly, a function that takes no arguments is different from one that takes a
0-tuple as an argument. For instance, the functions
function NoArgs(): real
function Z(unit: ()): real

have types () -> real and (()) -> real, respectively.

The function arrows are right associative. For example, A -> B -> C means
A -> (B -> C), whereas the other association requires explicit parentheses: (A
-> B) -> C. As another example, A -> B --> C ~> D means A -> (B --> (C
~> D)).

Note that the receiver parameter of a named function is not part of the type.
Rather, it is used when looking up the function and can then be thought of as
being captured into the function definition. For example, suppose function F
above is declared in a class C and that c references an object of type C; then,
the following is type correct:
var f: (int, bool) -> real := c.F;

whereas it would have been incorrect to have written something like:
var f': (C, int, bool) -> real := F; // not correct

The arrow types themselves do not divide its parameters into ghost versus non-
ghost. Instead, a function used as a first-class value is considered to be ghost
if either the function or any of its arguments is ghost. The following example
program illustrates:
function method F(x: int, ghost y: int): int
{
x

}

method Example() {
ghost var f: (int, int) -> int;
var g: (int, int) -> int;
var h: (int) -> int;
var x: int;
f := F;
x := F(20, 30);
g := F; // error: tries to assign ghost to non-ghost
h := F; // error: wrong arity (and also tries to assign ghost to non-ghost)

}
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In addition to its type signature, each function value has three properties, de-
scribed next.

Every function implicitly takes the heap as an argument. No function ever
depends on the entire heap, however. A property of the function is its declared
upper bound on the set of heap locations it depends on for a given input. This
lets the verifier figure out that certain heap modifications have no effect on the
value returned by a certain function. For a function f: T ~> U and a value t of
type T, the dependency set is denoted f.reads(t) and has type set<object>.

The second property of functions stems from the fact that every function is
potentially partial. In other words, a property of a function is its precondition.
For a function f: T ~> U, the precondition of f for a parameter value t of type
T is denoted f.requires(t) and has type bool.

The third property of a function is more obvious—the function’s body. For a
function f: T ~> U, the value that the function yields for an input t of type T
is denoted f(t) and has type U.

Note that f.reads and f.requires are themselves functions. Suppose f has
type T ~> U and t has type T. Then, f.reads is a function of type T ~>
set<object?> whose reads and requires properties are:
f.reads.reads(t) == f.reads(t)
f.reads.requires(t) == true

f.requires is a function of type T ~> bool whose reads and requires prop-
erties are:
f.requires.reads(t) == f.reads(t)
f.requires.requires(t) == true

In these examples, if f instead had type T --> U or T -> U, then the type of
f.reads is T -> set<object?> and the type of f.requires is T -> bool.

Dafny also supports anonymous functions by means of lambda expressions. See
Section 20.13.
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17.1. Tuple types

TupleType = "(" [ [ "ghost" ] Type { "," [ "ghost" ] Type } ] ")"

Dafny builds in record types that correspond to tuples and gives these a con-
venient special syntax, namely parentheses. For example, for what might have
been declared as
datatype Pair<T,U> = Pair(0: T, 1: U)

Dafny provides the type (T, U) and the constructor (t, u), as if the datatype’s
name were “” (i.e., an empty string) and its type arguments are given in round
parentheses, and as if the constructor name were the empty string. Note that
the destructor names are 0 and 1, which are legal identifier names for members.
For example, showing the use of a tuple destructor, here is a property that holds
of 2-tuples (that is, pairs):
(5, true).1 == true

Dafny declares n-tuples where n is 0 or 2 or more. There are no 1-tuples, since
parentheses around a single type or a single value have no semantic meaning.
The 0-tuple type, (), is often known as the unit type and its single value, also
written (), is known as unit.

The ghost modifier can be used to mark tuple components as being used for
specification only:
var pair: (int, ghost int) := (1, ghost 2);
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18. Algebraic Datatypes
DatatypeDecl =
( "datatype" | "codatatype" )
{ Attribute }
DatatypeName [ GenericParameters ]
"=" [ ellipsis ]

[ "|" ] DatatypeMemberDecl
{ "|" DatatypeMemberDecl }
[ TypeMembers ]

DatatypeMemberDecl =
{ Attribute } DatatypeMemberName [ FormalsOptionalIds ]

Dafny offers two kinds of algebraic datatypes, those defined inductively (with
datatype) and those defined co-inductively (with codatatype). The salient
property of every datatype is that each value of the type uniquely identifies one
of the datatype’s constructors and each constructor is injective in its parameters.

18.1. Inductive datatypes
The values of inductive datatypes can be seen as finite trees where the leaves
are values of basic types, numeric types, reference types, co-inductive datatypes,
or arrow types. Indeed, values of inductive datatypes can be compared using
Dafny’s well-founded < ordering.

An inductive datatype is declared as follows:
datatype D<T> = _Ctors_

where Ctors is a nonempty |-separated list of (datatype) constructors for the
datatype. Each constructor has the form:
C(_params_)

where params is a comma-delimited list of types, optionally preceded by a name
for the parameter and a colon, and optionally preceded by the keyword ghost.
If a constructor has no parameters, the parentheses after the constructor name
may be omitted. If no constructor takes a parameter, the type is usually called
an enumeration; for example:
datatype Friends = Agnes | Agatha | Jermaine | Jack

For every constructor C, Dafny defines a discriminator C?, which is a member
that returns true if and only if the datatype value has been constructed using
C. For every named parameter p of a constructor C, Dafny defines a destructor
p, which is a member that returns the p parameter from the C call used to
construct the datatype value; its use requires that C? holds. For example, for
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the standard List type
datatype List<T> = Nil | Cons(head: T, tail: List<T>)

the following holds:
Cons(5, Nil).Cons? && Cons(5, Nil).head == 5

Note that the expression
Cons(5, Nil).tail.head

is not well-formed, since Cons(5, Nil).tail does not satisfy Cons?.

A constructor can have the same name as the enclosing datatype; this is espe-
cially useful for single-constructor datatypes, which are often called record types.
For example, a record type for black-and-white pixels might be represented as
follows:
datatype Pixel = Pixel(x: int, y: int, on: bool)

To call a constructor, it is usually necessary only to mention the name of the
constructor, but if this is ambiguous, it is always possible to qualify the name
of constructor by the name of the datatype. For example, Cons(5, Nil) above
can be written
List.Cons(5, List.Nil)

As an alternative to calling a datatype constructor explicitly, a datatype value
can be constructed as a change in one parameter from a given datatype value
using the datatype update expression. For any d whose type is a datatype that
includes a constructor C that has a parameter (destructor) named f of type T,
and any expression t of type T,
d.(f := t)

constructs a value like d but whose f parameter is t. The operation requires
that d satisfies C?. For example, the following equality holds:
Cons(4, Nil).(tail := Cons(3, Nil)) == Cons(4, Cons(3, Nil))

The datatype update expression also accepts multiple field names, provided
these are distinct. For example, a node of some inductive datatype for trees
may be updated as follows:
node.(left := L, right := R)

18.2. Co-inductive datatypes
TODO: This section and particularly the subsections need rewriting using the
least and greatest terminology, and to make the text fit better into the overall
reference manual.
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Whereas Dafny insists that there is a way to construct every inductive datatype
value from the ground up, Dafny also supports co-inductive datatypes, whose
constructors are evaluated lazily, and hence the language allows infinite struc-
tures. A co-inductive datatype is declared using the keyword codatatype; other
than that, it is declared and used like an inductive datatype.

For example,
codatatype IList<T> = Nil | Cons(head: T, tail: IList<T>)
codatatype Stream<T> = More(head: T, tail: Stream<T>)
codatatype Tree<T> = Node(left: Tree<T>, value: T, right: Tree<T>)

declare possibly infinite lists (that is, lists that can be either finite or infinite),
infinite streams (that is, lists that are always infinite), and infinite binary trees
(that is, trees where every branch goes on forever), respectively.

The paper [Co-induction Simply], by Leino and Moskal(Leino and Moskal
2014a), explains Dafny’s implementation and verification of co-inductive types.
We capture the key features from that paper in this section but the reader is
referred to that paper for more complete details and to supply bibliographic
references that are omitted here.

18.3. Co-induction
Mathematical induction is a cornerstone of programming and program verifi-
cation. It arises in data definitions (e.g., some algebraic data structures can
be described using induction), it underlies program semantics (e.g., it explains
how to reason about finite iteration and recursion), and it is used in proofs (e.g.,
supporting lemmas about data structures use inductive proofs). Whereas induc-
tion deals with finite things (data, behavior, etc.), its dual, co-induction, deals
with possibly infinite things. Co-induction, too, is important in programming
and program verification: it arises in data definitions (e.g., lazy data struc-
tures), semantics (e.g., concurrency), and proofs (e.g., showing refinement in
a co-inductive big-step semantics). It is thus desirable to have good support
for both induction and co-induction in a system for constructing and reasoning
about programs.

Co-datatypes and co-recursive functions make it possible to use lazily evaluated
data structures (like in Haskell or Agda). Co-predicates, defined by greatest
fix-points, let programs state properties of such data structures (as can also
be done in, for example, Coq). For the purpose of writing co-inductive proofs
in the language, we introduce co-lemmas. Ostensibly, a co-lemma invokes the
co-induction hypothesis much like an inductive proof invokes the induction hy-
pothesis. Underneath the hood, our co-inductive proofs are actually approached
via induction: co-lemmas provide a syntactic veneer around this approach.

The following example gives a taste of how the co-inductive features in Dafny
come together to give straightforward definitions of infinite matters.
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// infinite streams
codatatype IStream<T> = ICons(head: T, tail: IStream<T>)

// pointwise product of streams
function Mult(a: IStream<int>, b: IStream<int>): IStream<int>
{ ICons(a.head * b.head, Mult(a.tail, b.tail)) }

// lexicographic order on streams
copredicate Below(a: IStream<int>, b: IStream<int>)
{ a.head <= b.head &&
((a.head == b.head) ==> Below(a.tail, b.tail))

}

// a stream is Below its Square
colemma Theorem_BelowSquare(a: IStream<int>)
ensures Below(a, Mult(a, a))

{ assert a.head <= Mult(a, a).head;
if a.head == Mult(a, a).head {
Theorem_BelowSquare(a.tail);

}
}

// an incorrect property and a bogus proof attempt
colemma NotATheorem_SquareBelow(a: IStream<int>)
ensures Below(Mult(a, a), a); // ERROR

{
NotATheorem_SquareBelow(a);

}

The example defines a type IStream of infinite streams, with constructor ICons
and destructors head and tail. Function Mult performs pointwise multiplica-
tion on infinite streams of integers, defined using a co-recursive call (which is
evaluated lazily). Co-predicate Below is defined as a greatest fix-point, which in-
tuitively means that the co-predicate will take on the value true if the recursion
goes on forever without determining a different value. The co-lemma states the
theorem Below(a, Mult(a, a)). Its body gives the proof, where the recursive
invocation of the co-lemma corresponds to an invocation of the co-induction
hypothesis.

The proof of the theorem stated by the first co-lemma lends itself to the following
intuitive reading: To prove that a is below Mult(a, a), check that their heads
are ordered and, if the heads are equal, also prove that the tails are ordered.
The second co-lemma states a property that does not always hold; the verifier
is not fooled by the bogus proof attempt and instead reports the property as
unproved.
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We argue that these definitions in Dafny are simple enough to level the playing
field between induction (which is familiar) and co-induction (which, despite be-
ing the dual of induction, is often perceived as eerily mysterious). Moreover, the
automation provided by our SMT-based verifier reduces the tedium in writing
co-inductive proofs. For example, it verifies Theorem_BelowSquare from the
program text given above— no additional lemmas or tactics are needed. In fact,
as a consequence of the automatic-induction heuristic in Dafny, the verifier will
automatically verify Theorem_BelowSquare even given an empty body.

Just like there are restrictions on when an inductive hypothesis can be invoked,
there are restrictions on how a co-inductive hypothesis can be used. These
are, of course, taken into consideration by Dafny’s verifier. For example, as
illustrated by the second co-lemma above, invoking the co-inductive hypothesis
in an attempt to obtain the entire proof goal is futile. (We explain how this works
in Section 18.3.5.2) Our initial experience with co-induction in Dafny shows it
to provide an intuitive, low-overhead user experience that compares favorably to
even the best of today’s interactive proof assistants for co-induction. In addition,
the co-inductive features and verification support in Dafny have other potential
benefits. The features are a stepping stone for verifying functional lazy programs
with Dafny. Co-inductive features have also shown to be useful in defining
language semantics, as needed to verify the correctness of a compiler, so this
opens the possibility that such verifications can benefit from SMT automation.

18.3.1. Well-Founded Function/Method Definitions

The Dafny programming language supports functions and methods. A function
in Dafny is a mathematical function (i.e., it is well-defined, deterministic, and
pure), whereas a method is a body of statements that can mutate the state of
the program. A function is defined by its given body, which is an expression.
To ensure that function definitions are mathematically consistent, Dafny insists
that recursive calls be well-founded, enforced as follows: Dafny computes the call
graph of functions. The strongly connected components within it are clusters of
mutually recursive definitions; the clusters are arranged in a DAG. This stratifies
the functions so that a call from one cluster in the DAG to a lower cluster is
allowed arbitrarily. For an intra-cluster call, Dafny prescribes a proof obligation
that is taken through the program verifier’s reasoning engine. Semantically, each
function activation is labeled by a rank—a lexicographic tuple determined by
evaluating the function’s decreases clause upon invocation of the function. The
proof obligation for an intra-cluster call is thus that the rank of the callee is
strictly less (in a language-defined well-founded relation) than the rank of the
caller. Because these well-founded checks correspond to proving termination of
executable code, we will often refer to them as “termination checks”. The same
process applies to methods.

Lemmas in Dafny are commonly introduced by declaring a method, stating the
property of the lemma in the postcondition (keyword ensures) of the method,
perhaps restricting the domain of the lemma by also giving a precondition (key-
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word requires), and using the lemma by invoking the method. Lemmas are
stated, used, and proved as methods, but since they have no use at run time,
such lemma methods are typically declared as ghost, meaning that they are not
compiled into code. The keyword lemma introduces such a method. Control
flow statements correspond to proof techniques—case splits are introduced with
if statements, recursion and loops are used for induction, and method calls for
structuring the proof. Additionally, the statement:
forall x | P(x) { Lemma(x); }

is used to invoke Lemma(x) on all x for which P(x) holds. If Lemma(x) ensures
Q(x), then the forall statement establishes
forall x :: P(x) ==> Q(x).

18.3.2. Defining Co-inductive Datatypes

Each value of an inductive datatype is finite, in the sense that it can be con-
structed by a finite number of calls to datatype constructors. In contrast, values
of a co-inductive datatype, or co-datatype for short, can be infinite. For exam-
ple, a co-datatype can be used to represent infinite trees.

Syntactically, the declaration of a co-datatype in Dafny looks like that of a
datatype, giving prominence to the constructors (following Coq). The following
example defines a co-datatype Stream of possibly infinite lists.
codatatype Stream<T> = SNil | SCons(head: T, tail: Stream)
function Up(n: int): Stream<int> { SCons(n, Up(n+1)) }
function FivesUp(n: int): Stream<int>
decreases 4 - (n - 1) % 5

{
if (n % 5 == 0) then
SCons(n, FivesUp(n+1))

else
FivesUp(n+1)

}

Stream is a co-inductive datatype whose values are possibly infinite lists. Func-
tion Up returns a stream consisting of all integers upwards of n and FivesUp
returns a stream consisting of all multiples of 5 upwards of n . The self-call in
Up and the first self-call in FivesUp sit in productive positions and are therefore
classified as co-recursive calls, exempt from termination checks. The second
self-call in FivesUp is not in a productive position and is therefore subject to
termination checking; in particular, each recursive call must decrease the rank
defined by the decreases clause.

Analogous to the common finite list datatype, Stream declares two construc-
tors, SNil and SCons. Values can be destructed using match expressions and
statements. In addition, like for inductive datatypes, each constructor C auto-
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matically gives rise to a discriminator C? and each parameter of a constructor
can be named in order to introduce a corresponding destructor. For example, if
xs is the stream SCons(x, ys), then xs.SCons? and xs.head == x hold. In
contrast to datatype declarations, there is no grounding check for co-datatypes—
since a codatatype admits infinite values, the type is nevertheless inhabited.

18.3.3. Creating Values of Co-datatypes

To define values of co-datatypes, one could imagine a “co-function” language fea-
ture: the body of a “co-function” could include possibly never-ending self-calls
that are interpreted by a greatest fix-point semantics (akin to a CoFixpoint in
Coq). Dafny uses a different design: it offers only functions (not “co-functions”),
but it classifies each intra-cluster call as either recursive or co-recursive. Recur-
sive calls are subject to termination checks. Co-recursive calls may be never-
ending, which is what is needed to define infinite values of a co-datatype. For
example, function Up(n) in the preceding example is defined as the stream of
numbers from n upward: it returns a stream that starts with n and continues
as the co-recursive call Up(n + 1).

To ensure that co-recursive calls give rise to mathematically consistent defini-
tions, they must occur only in productive positions. This says that it must be
possible to determine each successive piece of a co-datatype value after a finite
amount of work. This condition is satisfied if every co-recursive call is syntac-
tically guarded by a constructor of a co-datatype, which is the criterion Dafny
uses to classify intra-cluster calls as being either co-recursive or recursive. Calls
that are classified as co-recursive are exempt from termination checks.

A consequence of the productivity checks and termination checks is that, even in
the absence of talking about least or greatest fix-points of self-calling functions,
all functions in Dafny are deterministic. Since there cannot be multiple fix-
points, the language allows one function to be involved in both recursive and
co-recursive calls, as we illustrate by the function FivesUp.

18.3.4. Copredicates

Determining properties of co-datatype values may require an infinite number
of observations. To that end, Dafny provides co-predicates which are function
declarations that use the copredicate keyword. Self-calls to a co-predicate
need not terminate. Instead, the value defined is the greatest fix-point of the
given recurrence equations. Continuing the preceding example, the following
code defines a co-predicate that holds for exactly those streams whose payload
consists solely of positive integers. The co-predicate definition implicitly also
gives rise to a corresponding prefix predicate, Pos#. The syntax for calling a
prefix predicate sets apart the argument that specifies the prefix length, as shown
in the last line; for this figure, we took the liberty of making up a coordinating
syntax for the signature of the automatically generated prefix predicate (which
is not part of Dafny syntax).
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copredicate Pos(s: Stream<int>)
{
match s
case SNil => true
case SCons(x, rest) => x > 0 && Pos(rest)

}
// Automatically generated by the Dafny compiler:
predicate Pos#[_k: nat](s: Stream<int>)
decreases _k

{ if _k = 0 then true else
match s
case SNil => true
case SCons(x, rest) => x > 0 && Pos#[_k-1](rest)

}

Some restrictions apply. To guarantee that the greatest fix-point always exists,
the (implicit functor defining the) co-predicate must be monotonic. This is
enforced by a syntactic restriction on the form of the body of co-predicates: after
conversion to negation normal form (i.e., pushing negations down to the atoms),
intra-cluster calls of co-predicates must appear only in positive positions—that is,
they must appear as atoms and must not be negated. Additionally, to guarantee
soundness later on, we require that they appear in co-friendly positions—that
is, in negation normal form, when they appear under existential quantification,
the quantification needs to be limited to a finite range7. Since the evaluation
of a co-predicate might not terminate, co-predicates are always ghost. There is
also a restriction on the call graph that a cluster containing a co-predicate must
contain only co-predicates, no other kinds of functions.

A copredicate declaration of P defines not just a co-predicate, but also a cor-
responding prefix predicate P#. A prefix predicate is a finite unrolling of a
co-predicate. The prefix predicate is constructed from the co-predicate by

• adding a parameter _k of type nat to denote the prefix length,

• adding the clause decreases _k; to the prefix predicate (the co-predicate
itself is not allowed to have a decreases clause),

• replacing in the body of the co-predicate every intra-cluster call Q(args)
to a copredicate by a call Q#[_k - 1](args) to the corresponding prefix
predicate, and then

• prepending the body with if _k = 0 then true else.

For example, for co-predicate Pos, the definition of the prefix predicate Pos# is
as suggested above. Syntactically, the prefix-length argument passed to a prefix
predicate to indicate how many times to unroll the definition is written in square

7Higher-order function support in Dafny is rather modest and typical reasoning patterns
do not involve them, so this restriction is not as limiting as it would have been in, e.g., Coq.
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brackets, as in Pos#[k](s). In the Dafny grammar this is called a HashCall.
The definition of Pos# is available only at clusters strictly higher than that of
Pos; that is, Pos and Pos# must not be in the same cluster. In other words, the
definition of Pos cannot depend on Pos#.

18.3.4.1. Co-Equality Equality between two values of a co-datatype is a
built-in co-predicate. It has the usual equality syntax s == t, and the corre-
sponding prefix equality is written s ==#[k] t. And similarly for s != t and
s !=#[k] t.

18.3.5. Co-inductive Proofs

From what we have said so far, a program can make use of properties of co-
datatypes. For example, a method that declares Pos(s) as a precondition can
rely on the stream s containing only positive integers. In this section, we con-
sider how such properties are established in the first place.

18.3.5.1. Properties About Prefix Predicates Among other possible
strategies for establishing co-inductive properties we take the time-honored ap-
proach of reducing co-induction to induction. More precisely, Dafny passes to
the SMT solver an assumption D(P) for every co-predicate P, where:
D(P) = ? x • P(x) <==> ? k • P#[k](x)

In other words, a co-predicate is true iff its corresponding prefix predicate is
true for all finite unrollings.

In Sec. 4 of the paper [Co-induction Simply] a soundness theorem of such
assumptions is given, provided the co-predicates meet the co-friendly restrictions.
An example proof of Pos(Up(n)) for every n > 0 is here shown:
lemma UpPosLemma(n: int)
requires n > 0
ensures Pos(Up(n))

{
forall k | 0 <= k { UpPosLemmaK(k, n); }

}

lemma UpPosLemmaK(k: nat, n: int)
requires n > 0
ensures Pos#[k](Up(n))
decreases k

{
if k != 0 {
// this establishes Pos#[k-1](Up(n).tail)
UpPosLemmaK(k-1, n+1);
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}
}

The lemma UpPosLemma proves Pos(Up(n)) for every n > 0. We first show
Pos#[k](Up(n )), for n > 0 and an arbitrary k, and then use the forall state-
ment to show ? k • Pos#[k](Up(n)). Finally, the axiom D(Pos) is used (au-
tomatically) to establish the co-predicate.

18.3.5.2. Colemmas As we just showed, with help of the D axiom we can
now prove a co-predicate by inductively proving that the corresponding prefix
predicate holds for all prefix lengths k. In this section, we introduce co-lemma
declarations, which bring about two benefits. The first benefit is that co-lemmas
are syntactic sugar and reduce the tedium of having to write explicit quantifica-
tions over k. The second benefit is that, in simple cases, the bodies of co-lemmas
can be understood as co-inductive proofs directly. As an example consider the
following co-lemma.
colemma UpPosLemma(n: int)
requires n > 0
ensures Pos(Up(n))

{
UpPosLemma(n+1);

}

This co-lemma can be understood as follows: UpPosLemma invokes itself co-
recursively to obtain the proof for Pos(Up(n).tail) (since Up(n).tail equals
Up(n+1)). The proof glue needed to then conclude Pos(Up(n)) is provided
automatically, thanks to the power of the SMT-based verifier.

18.3.5.3. Prefix Lemmas To understand why the above UpPosLemma co-
lemma code is a sound proof, let us now describe the details of the desugaring
of co-lemmas. In analogy to how a copredicate declaration defines both a
co-predicate and a prefix predicate, a colemma declaration defines both a co-
lemma and prefix lemma. In the call graph, the cluster containing a co-lemma
must contain only co-lemmas and prefix lemmas, no other methods or function.
By decree, a co-lemma and its corresponding prefix lemma are always placed in
the same cluster. Both co-lemmas and prefix lemmas are always ghosts.

The prefix lemma is constructed from the co-lemma by

• adding a parameter _k of type nat to denote the prefix length,

• replacing in the co-lemma’s postcondition the positive co-friendly occur-
rences of co-predicates by corresponding prefix predicates, passing in _k
as the prefix-length argument,

• prepending _k to the (typically implicit) decreases clause of the co-
lemma,
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• replacing in the body of the co-lemma every intra-cluster call M(args) to a
colemma by a call M#[_k - 1](args) to the corresponding prefix lemma,
and then

• making the body’s execution conditional on _k != 0.

Note that this rewriting removes all co-recursive calls of co-lemmas, replacing
them with recursive calls to prefix lemmas. These recursive call are, as usual,
checked to be terminating. We allow the pre-declared identifier _k to appear in
the original body of the co-lemma.8

We can now think of the body of the co-lemma as being replaced by a forall
call, for every k , to the prefix lemma. By construction, this new body will
establish the colemma’s declared postcondition (on account of the D axiom,
and remembering that only the positive co-friendly occurrences of co-predicates
in the co-lemma’s postcondition are rewritten), so there is no reason for the
program verifier to check it.

The actual desugaring of our co-lemma UpPosLemma is in fact the previous code
for the UpPosLemma lemma except that UpPosLemmaK is named UpPosLemma#
and modulo a minor syntactic difference in how the k argument is passed.

In the recursive call of the prefix lemma, there is a proof obligation that the
prefixlength argument _k - 1 is a natural number. Conveniently, this follows
from the fact that the body has been wrapped in an if _k != 0 statement.
This also means that the postcondition must hold trivially when _k = 0, or
else a postcondition violation will be reported. This is an appropriate design
for our desugaring, because co-lemmas are expected to be used to establish co-
predicates, whose corresponding prefix predicates hold trivially when _k = 0.
(To prove other predicates, use an ordinary lemma, not a co-lemma.)

It is interesting to compare the intuitive understanding of the co-inductive proof
in using a co-lemma with the inductive proof in using the lemma. Whereas the
inductive proof is performing proofs for deeper and deeper equalities, the co-
lemma can be understood as producing the infinite proof on demand.

8Note, two places where co-predicates and co-lemmas are not analogous are (a) co-
predicates must not make recursive calls to their prefix predicates and (b) co-predicates cannot
mention _k.
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19. Statements

Stmt = { "label" LabelName ":" } NonLabeledStmt
NonLabeledStmt =
( AssertStmt | AssumeStmt | BlockStmt | BreakStmt
| CalcStmt | ExpectStmt | ForallStmt | IfStmt
| MatchStmt | ModifyStmt
| PrintStmt | ReturnStmt | RevealStmt | SkeletonStmt
| UpdateStmt | UpdateFailureStmt
| VarDeclStatement | WhileStmt | ForLoopStmt | YieldStmt
)

Many of Dafny’s statements are similar to those in traditional programming
languages, but a number of them are significantly different. This grammar
production shows the different kinds of Dafny statements. They are described
in subsequent sections.

19.1. Labeled Statement

Stmt = { "label" LabelName ":" } NonLabeledStmt

A labeled statement is just the keyword label followed by an identifier which is
the label, followed by a colon and a statement. The label may be referenced in
a break or continue statement within the labeled statement (see Section 19.2).
That is, the break or continue that mentions the label must be enclosed in the
labeled statement. The label may also be used in an old expression (Section
20.24). In this case, the label must have been encountered during the control
flow en route to the old expression. We say in this case that the (program point
of the) label dominates the (program point of the) use of the label.

A statement can be given several labels. It makes no difference which of these
labels is used to reference the statement—they are synonyms of each other. The
labels must be distinct from each other, and are not allowed to be the same as
any previous enclosing or dominating label.

19.2. Break and Continue Statements

BreakStmt =
( "break" LabelName ";"
| "continue" LabelName ";"
| { "break" } "break" ";"
| { "break" } "continue" ";"
)

Break and continue statements provide a means to transfer control in a way
different than the usual nested control structures. There are two forms of each
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of these statements: with and without a label.

If a label is used, the break or continue statement must be enclosed in a state-
ment with that label. The enclosing statement is called the target of the break
or continue.

A break statement transfers control to the point immediately following the
target statement. For example, such a break statement can be used to exit
a sequence of statements in a block statement before reaching the end of the
block.

For example,
label L: {
var n := ReadNext();
if n < 0 {
break L;

}
DoSomething(n);

}

is equivalent to
{
var n := ReadNext();
if 0 <= n {
DoSomething(n);

}
}

If no label is specified and the statement lists n occurrences of break, then the
statement must be enclosed in at least n levels of loop statements. Control
continues after exiting n enclosing loops. For example,
for i := 0 to 10 {
for j := 0 to 10 {
label X: {
for k := 0 to 10 {
if j + k == 15 {
break break;

}
}

}
}
// control continues here after the "break break", exiting two loops

}

Note that a non-labeled break pays attention only to loop, not to labeled state-
ments. For example, the labeled block X in the previous example does not play
a role in determining the target statement of the break break;.
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For a continue statement, the target statement must be a loop statement. The
continue statement transfers control to the point immediately before the closing
curly-brace of the loop body.

For example,
for i := 0 to 100 {
if i == 17 {
continue;

}
DoSomething(i);

}

is equivalent to
for i := 0 to 100 {
if i != 17 {
DoSomething(i);

}
}

The same effect can also be obtained by wrapping the loop body in a labeled
block statement and then using break with a label, but that usually makes for
a more cluttered program:
for i := 0 to 100 {
label LoopBody: {
if i == 17 {
break LoopBody;

}
DoSomething(i);

}
}

Stated differently, continue has the effect of ending the current loop iteration,
after which control continues with any remaining iterations. This is most natural
for for loops. For a while loop, be careful to make progress toward termination
before a continue statement. For example, the following program snippet shows
an easy mistake to make (the verifier will complain that the loop may not
terminate):
var i := 0;
while i < 100 {
if i == 17 {
continue; // error: this would cause an infinite loop

}
DoSomething(i);
i := i + 1;

}
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The continue statement can give a label, provided the label is a label of a loop.
For example,
label Outer:
for i := 0 to 100 {
for j := 0 to 100 {
if i + j == 19 {
continue Outer;

}
WorkIt(i, j);

}
PostProcess(i);
// the "continue Outer" statement above transfers control to here

}

If a non-labeled continue statement lists n occurrences of break before the
continue keyword, then the statement must be enclosed in at least n + 1 levels
of loop statements. The effect is to break out of the n most closely enclosing
loops and then continue the iterations of the next loop. That is, n occurrences
of break followed by one more break; will break out of n levels of loops and
then do a break, whereas n occurrences of break followed by continue; will
break out of n levels of loops and then do a continue.

For example, the WorkIt example above can equivalently be written without
labels as
for i := 0 to 100 {
for j := 0 to 100 {
if i + j == 19 {
break continue;

}
WorkIt(i, j);

}
PostProcess(i);
// the "break continue" statement above transfers control to here

}

Note that a loop invariant is checked on entry to a loop and at the closing
curly-brace of the loop body. It is not checked at break statements. It also
isn’t checked at continue statements per se, but the loop invariant is checked
as usual at the closing curly-brace that the continue statement jumps to. This
checking ensures that the loop invariant holds at the very top of every iteration.
Commonly, the only exit out of a loop happens when the loop guard evaluates
to false. Since no state is changed between the top of an iteration (where the
loop invariant is known to hold) and the evaluation of the loop guard, one can
also rely on the loop invariant to hold immediately following the loop. But the
loop invariant may not hold immediately following a loop if a loop iteration
changes the program state and then exits the loop with a break statement.
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For example, the following program verifies:
var i := 0;
while i < 10
invariant 0 <= i <= 10

{
if P(i) {
i := i + 200;
break;

}
i := i + 1;

}
assert i == 10 || 200 <= i < 210;

To explain the example, the loop invariant 0 <= i <= 10 is known to hold at the
very top of each iteration, that is, just before the loop guard i < 10 is evaluated.
If the loop guard evaluates to false, then the negated guard condition (10 <=
i) and the invariant hold, so i == 10 will hold immediately after the loop. If
the loop guard evaluates to true (that is, i < 10 holds), then the loop body
is entered. If the test P(i) then evaluates to true, the loop adds 200 to i and
breaks out of the loop, so on such a path, 200 <= i < 210 is known to hold
immediately after the loop. This is summarized in the assert statement in the
example. So, remember, a loop invariant holds at the very top of every iteration,
not necessarily immediately after the loop.

19.3. Block Statement

BlockStmt = "{" { Stmt } "}"

A block statement is just a sequence of statements enclosed by curly braces.
Local variables declared in the block end their scope at the end of the block.

19.4. Return Statement

ReturnStmt = "return" [ Rhs { "," Rhs } ] ";"

A return statement can only be used in a method. It is used to terminate the
execution of the method.

To return a value from a method, the value is assigned to one of the named out-
parameters sometime before a return statement. In fact, the out-parameters act
very much like local variables, and can be assigned to more than once. Return
statements are used when one wants to return before reaching the end of the
body block of the method.

Return statements can be just the return keyword (where the current values
of the out-parameters are used), or they can take a list of expressions to return.
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If a list is given, the number of expressions given must be the same as the
number of named out-parameters. These expressions are evaluated, then they
are assigned to the out-parameters, and then the method terminates.

19.5. Yield Statement

YieldStmt = "yield" [ Rhs { "," Rhs } ] ";"

A yield statement can only be used in an iterator. See Section 16 for more
details about iterators.

The body of an iterator is a co-routine. It is used to yield control to its caller,
signaling that a new set of values for the iterator’s yield (out-)parameters (if
any) are available. Values are assigned to the yield parameters at or before a
yield statement. In fact, the yield parameters act very much like local variables,
and can be assigned to more than once. Yield statements are used when one
wants to return new yield parameter values to the caller. Yield statements can
be just the yield keyword (where the current values of the yield parameters
are used), or they can take a list of expressions to yield. If a list is given, the
number of expressions given must be the same as the number of named iterator
out-parameters. These expressions are then evaluated, then they are assigned
to the yield parameters, and then the iterator yields.

19.6. Update and Call Statements

UpdateStmt =
Lhs
( {Attribute} ";"
|
{ "," Lhs }
( ":=" Rhs { "," Rhs }
| ":|" [ "assume" ]

Expression(allowLemma: false, allowLambda: true)
)
";"
)

If more than one left-hand side is used, these must denote different l-values,
unless the corresponding right-hand sides also denote the same value.

The update statement serves several logical purposes.

1) The form

Lhs {Attribute} ";"

is assumed to be a call to a method with no out-parameters.
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2) The form

Lhs { , Lhs } ":=" Rhs ";"

can occur in the UpdateStmt grammar when there is a single Rhs that takes
the special form of a Lhs that is a call. This is the only case where the number
of left-hand sides can be different than the number of right-hand sides in the
UpdateStmt. In that case the number of left-hand sides must match the number
of out-parameters of the method that is called or there must be just one Lhs to
the left of the :=, which then is assigned a tuple of the out-parameters. Note
that the result of a method call is not allowed to be used as an argument of
another method call, as if it were an expression.

3) This is the typical parallel-assignment form, in which no call is involved:

Lhs { , Lhs } ":=" Rhs { "," Rhs } ";"

This UpdateStmt is a parallel assignment of right-hand-side values to the left-
hand sides. For example, x,y := y,x swaps the values of x and y. If more
than one left-hand side is used, these must denote different l-values, unless the
corresponding right-hand sides also denote the same value. There must be an
equal number of left-hand sides and right-hand sides in this case. Of course, the
most common case will have only one Rhs and one Lhs.

4) The form

Lhs { "," Lhs } :| [ "assume" ] Expression<false,false>

using “:|” assigns some values to the left-hand side variables such that the
boolean expression on the right hand side is satisfied. This can be used to make
a choice as in the following example where we choose an element in a set. The
given boolean expression need not constrain the LHS values uniquely.
method Sum(X: set<int>) returns (s: int)
{
s := 0; var Y := X;
while Y != {}
decreases Y

{
var y: int;
y :| y in Y;
s, Y := s + y, Y - {y};

}
}

Dafny will report an error if it cannot prove that values exist that satisfy the
condition.
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In addition, as the choice is arbitrary, assignment statements using :| may be
non-deterministic when executed.

Note that the form
Lhs ":"

is diagnosed as a label in which the user forgot the label keyword.

19.7. Update with Failure Statement (:-)

UpdateFailureStmt =
[ Lhs { "," Lhs } ]
":-"
[ "expect" | "assert" | "assume" ]
Expression(allowLemma: false, allowLambda: false)
{ "," Rhs }
";"

A :- statement is an alternate form of the := statement that allows for abrupt
return if a failure is detected. This is a language feature somewhat analogous
to exceptions in other languages.

An update-with-failure statement uses failure-compatible types. A failure-
compatible type is a type that has the following members (each with no
in-parameters and one out-parameter):

• a function method IsFailure() that returns a bool
• an optional function method PropagateFailure() that returns a value

assignable to the first out-parameter of the caller
• an optional method or function Extract()

A failure-compatible type with an Extract member is called value-carrying.

To use this form of update,

• if the RHS of the update-with-failure statement is a method call, the first
out-parameter of the callee must be failure-compatible

• if instead the RHS of the update-with-failure statement is one or more
expressions, the first of these expressions must be a value with a failure-
compatible type

• the caller must have a first out-parameter whose type matches the output
of PropagateFailure applied to the first output of the callee, unless an
expect, assume, or assert keyword is used after :- (cf. Section 19.7.7).

• if the failure-compatible type of the RHS does not have an Extract mem-
ber, then the LHS of the :- statement has one less expression than the
RHS (or than the number of out-parameters from the method call)

• if the failure-compatible type of the RHS does have an Extract member,
then the LHS of the :- statement has the same number of expressions as
the RHS (or as the number of out-parameters from the method call) and
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the type of the first LHS expression must be assignable from the return
type of the Extract member

• the IsFailure and PropagateFailure methods may not be ghost
• the LHS expression assigned the output of the Extract member is ghost

precisely if Extract is ghost

The following subsections show various uses and alternatives.

19.7.1. Failure compatible types

A simple failure-compatible type is the following:
datatype Status =
| Success
| Failure(error: string)
{
predicate method IsFailure() { this.Failure? }
function method PropagateFailure(): Status
requires IsFailure()

{
Failure(this.error)

}
}

A commonly used alternative that carries some value information is something
like this generic type:
datatype Outcome<T> =
| Success(value: T)
| Failure(error: string)
{
predicate method IsFailure() {
this.Failure?

}
function method PropagateFailure<U>(): Outcome<U>
requires IsFailure()

{
Failure(this.error) // this is Outcome<U>.Failure(...)

}
function method Extract(): T
requires !IsFailure()

{
this.value

}
}
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19.7.2. Simple status return with no other outputs

The simplest use of this failure-return style of programming is to have a method
call that just returns a non-value-carrying Status value:
method Callee(i: int) returns (r: Status)
{
if i < 0 { return Failure("negative"); }
return Success;

}

method Caller(i: int) returns (rr: Status)
{
:- Callee(i);
...

}

Note that there is no LHS to the :- statement. If Callee returns Failure, then
the caller immediately returns, not executing any statements following the call
of Callee. The value returned by Caller (the value of rr in the code above) is
the result of PropagateFailure applied to the value returned by Callee, which
is often just the same value. If Callee does not return Failure (that is, returns
a value for which IsFailure() is false) then that return value is forgotten and
execution proceeds normally with the statements following the call of Callee
in the body of Caller.

The desugaring of the :- Callee(i); statement is
var tmp;
tmp := Callee(i);
if tmp.IsFailure() {
rr := tmp.PropagateFailure();
return;

}

In this and subsequent examples of desugaring, the tmp variable is a new, unique
variable, unused elsewhere in the calling member.

19.7.3. Status return with additional outputs

The example in the previous subsection affects the program only through side
effects or the status return itself. It may well be convenient to have additional
out-parameters, as is allowed for := updates; these out-parameters behave just
as for :=. Here is an example:
method Callee(i: int) returns (r: Status, v: int, w: int)
{
if i < 0 { return Failure("negative"), 0, 0; }
return Success, i+i, i*i;
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}

method Caller(i: int) returns (rr: Status, k: int)
{
var j: int;
j, k :- Callee(i);
k := k + k;
...

}

Here Callee has two outputs in addition to the Status output. The LHS of
the :- statement accordingly has two l-values to receive those outputs. The
recipients of those outputs may be any sort of l-values; here they are a local
variable and an out-parameter of the caller. Those outputs are assigned in the
:- call regardless of the Status value:

• If Callee returns a failure value as its first output, then the other outputs
are assigned, the caller’s first out-parameter (here rr) is assigned the value
of PropagateFailure, and the caller returns.

• If Callee returns a non-failure value as its first output, then the other
outputs are assigned and the caller continues execution as normal.

The desugaring of the j, k :- Callee(i); statement is
var tmp;
tmp, j, k := Callee(i);
if tmp.IsFailure() {
rr := tmp.PropagateFailure();
return;

}

19.7.4. Failure-returns with additional data

The failure-compatible return value can carry additional data as shown in the
Outcome<T> example above. In this case there is a (first) LHS l-value to receive
this additional data.
method Callee(i: int) returns (r: Outcome<nat>, v: int)
{
if i < 0 { return Failure("negative"), i+i; }
return Success(i), i+i;

}

method Caller(i: int) returns (rr: Outcome<int>, k: int)
{
var j: int;
j, k :- Callee(i);
k := k + k;
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...
}

Suppose Caller is called with an argument of 10. Then Callee is called with
argument 10 and returns r and v of Outcome<nat>.Success(10) and 20. Here
r.IsFailure() is false, so control proceeds normally. The j is assigned the
result of r.Extract(), which will be 10, and k is assigned 20. Control flow
proceeds to the next line, where k now gets the value 40.

Suppose instead that Caller is called with an argument of -1. Then
Callee is called with the value -1 and returns r and v with values
Outcome<nat>.Failure("negative") and -2. k is assigned the value of
v (-2). But r.IsFailure() is true, so control proceeds directly to return
from Caller. The first out-parameter of Caller (rr) gets the value of
r.PropagateFailure(), which is Outcome<int>.Failure("negative"); k
already has the value -2. The rest of the body of Caller is skipped. In this
example, the first out-parameter of Caller has a failure-compatible type so the
exceptional return will propagate up the call stack. It will keep propagating up
the call stack as long as there are callers with this first special output type and
calls that use :- and the return value keeps having IsFailure() true.

The desugaring of the j, k :- Callee(i); statement in this example is
var tmp;
tmp, k := Callee(i);
if tmp.IsFailure() {
rr := tmp.PropagateFailure();
return;

}
j := tmp.Extract();

19.7.5. RHS with expression list

Instead of a failure-returning method call on the RHS of the statement, the
RHS can instead be a list of expressions. As for a := statement, in this form,
the expressions on the left and right sides of :- must correspond, just omitting
a LHS l-value for the first RHS expression if its type is not value-carrying. The
semantics is very similar to that in the previous subsection.

• The first RHS expression must have a failure-compatible type.
• All the assignments of RHS expressions to LHS values except for the first

RHS value are made.
• If the first RHS value (say r) responds true to r.IsFailure(), then

r.PropagateFailure() is assigned to the first out-parameter of the caller
and the execution of the caller’s body is ended.

• If the first RHS value (say r) responds false to r.IsFailure(), then
– if the type of r is value-carrying, then r.Extract() is assigned to

the first LHS value of the :- statement (if r is not value-carrying,
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then the corresponding LHS l-value is omitted)
– execution of the caller’s body continues with the statement following

the :- statement.

A RHS with a method call cannot be mixed with a RHS containing multiple
expressions.

For example, the desugaring of
method m(Status r) returns (rr: Status) {
var k;
k :- r, 7;
...

}

is
var k;
var tmp;
tmp, k := r, 7;
if tmp.IsFailure() {
rr := tmp.PropagateFailure();
return;

}

19.7.6. Failure with initialized declaration.

The :- syntax can also be used in initialization, as in
var s :- M();

This is equivalent to
var s;
s :- M();

with the semantics as described above.

19.7.7. Keyword alternative

In any of the above described uses of :-, the :- token may be followed immedi-
ately by the keyword expect, assert or assume.

• assert means that the RHS evaluation is expected to be successful, but
that the verifier should prove that this is so; that is, the verifier should
prove assert !r.IsFailure() (where r is the status return from the
callee) (cf. Section 19.16)

• assume means that the RHS evaluation should be assumed to be successful,
as if the statement assume !r.IsFailure() followed the evaluation of the
RHS (cf. Section 19.17)
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• expect means that the RHS evaluation should be assumed to be successful
(like using assume above), but that the compiler should include a run-time
check for success. This is equivalent to including expect !r.IsFailure()
after the RHS evaluation; that is, if the status return is a failure, the
program halts. (cf. Section 19.18)

In each of these cases, there is no abrupt return from the caller. Thus there is no
evaluation of PropagateFailure. Consequently the first out-parameter of the
caller need not match the return type of PropagateFailure; indeed, the failure-
compatible type returned by the callee need not have a PropagateFailure
member.

The equivalent desugaring replaces
if tmp.IsFailure() {
rr := tmp.PropagateFailure();
return;

}

with
expect !tmp.IsFailure(), tmp;

or
assert !tmp.IsFailure();

or
assume !tmp.IsFailure();

There is a grammatical nuance that the user should be aware of. The keywords
assert, assume, and expect can start an expression. For example, assert P;
E can be an expression. However, in e :- assert P; E; the assert is parsed
as the keyword associated with :-. To have the assert considered part of the
expression use parentheses: e :- (assert P; E);.

19.7.8. Key points

There are several points to note.

• The first out-parameter of the callee is special. It has a special type and
that type indicates that the value is inspected to see if an abrupt return
from the caller is warranted. This type is often a datatype, as shown in the
examples above, but it may be any type with the appropriate members.

• The restriction on the type of caller’s first out-parameter is just that it
must be possible (perhaps through generic instantiation and type infer-
ence, as in these examples) for PropagateFailure applied to the failure-
compatible output from the callee to produce a value of the caller’s first
out-parameter type. If the caller’s first out-parameter type is failure-
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compatible (which it need not be), then failures can be propagated up
the call chain. If the keyword form of the statement is used, then no
PropagateFailure member is needed and there is no restriction on the
caller’s first out-parameter.

• In the statement j, k :- Callee(i);, when the callee’s return value has
an Extract member, the type of j is not the type of the first out-parameter
of Callee. Rather it is a type assignable from the output type of Extract
applied to the first out-value of Callee.

• A method like Callee with a special first out-parameter type can still be
used in the normal way: r, k := Callee(i). Now r gets the first output
value from Callee, of type Status or Outcome<nat> in the examples above.
No special semantics or exceptional control paths apply. Subsequent code
can do its own testing of the value of r and whatever other computations
or control flow are desired.

• The caller and callee can have any (positive) number of output arguments,
as long as the callee’s first out-parameter has a failure-compatible type and
the caller’s first out-parameter type matches PropagateFailure.

• If there is more than one LHS, the LHSs must denote different l-values,
unless the RHS is a list of expressions and the corresponding RHS values
are equal.

• The LHS l-values are evaluated before the RHS method call, in case the
method call has side-effects or return values that modify the l-values prior
to assignments being made.

It is important to note the connection between the failure-compatible types used
in the caller and callee, if they both use them. They do not have to be the same
type, but they must be closely related, as it must be possible for the callee’s
PropagateFailure to return a value of the caller’s failure-compatible type. In
practice this means that one such failure-compatible type should be used for an
entire program. If a Dafny program uses a library shared by multiple programs,
the library should supply such a type and it should be used by all the client
programs (and, effectively, all Dafny libraries). It is also the case that it is
inconvenient to mix types such as Outcome and Status above within the same
program. If there is a mix of failure-compatible types, then the program will
need to use := statements and code for explicit handling of failure values.

19.7.9. Failure returns and exceptions

The :- mechanism is like the exceptions used in other programming languages,
with some similarities and differences.

• There is essentially just one kind of ‘exception’ in Dafny, the variations of
the failure-compatible data type.

• Exceptions are passed up the call stack whether or not intervening meth-
ods are aware of the possibility of an exception, that is, whether or not
the intervening methods have declared that they throw exceptions. Not
so in Dafny: a failure is passed up the call stack only if each caller has
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a failure-compatible first out-parameter, is itself called in a :- statement,
and returns a value that responds true to IsFailure().

• All methods that contain failure-return callees must explicitly handle those
failures using either :- statements or using := statements with a LHS to
receive the failure value.

19.8. Variable Declaration Statement

VarDeclStatement =
[ "ghost" ] "var" { Attribute }
(
LocalIdentTypeOptional
{ "," { Attribute } LocalIdentTypeOptional }
[ ":="
Rhs { "," Rhs }

| ":-"
[ "expect" | "assert" | "assume" ]
Expression(allowLemma: false, allowLambda: false)
{ "," Rhs }

| { Attribute }
":|"
[ "assume" ] Expression(allowLemma: false, allowLambda: true)

]
|
CasePatternLocal
( ":=" | { Attribute } ":|" )
Expression(allowLemma: false, allowLambda: true)

)
";"

CasePatternLocal = ( [ Ident ] "(" CasePatternLocsl { "," CasePatternLocal } ")"
| LocalIdentTypeOptional
)

A VarDeclStatement is used to declare one or more local variables in a method
or function. The type of each local variable must be given unless its type can be
inferred, either from a given initial value, or from other uses of the variable. If
initial values are given, the number of values must match the number of variables
declared.

Note that the type of each variable must be given individually. The following
code
var x, y : int;

does not declare both x and y to be of type int. Rather it will give an error
explaining that the type of x is underspecified if it cannot be inferred from uses
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of x.

What follows the LocalIdentTypeOptional optionally combines the variable
declarations with an update statement (cf. Section 19.6). If the RHS is a call,
then any variable receiving the value of a formal ghost out-parameter will au-
tomatically be declared as ghost, even if the ghost keyword is not part of the
variable declaration statement.

The left-hand side can also contain a tuple of patterns that will be matched
against the right-hand-side. For example:
function returnsTuple() : (int, int)
{

(5, 10)
}

function usesTuple() : int
{

var (x, y) := returnsTuple();
x + y

}

The assignment with failure operator :- returns from the method if the value
evaluates to a failure value of a failure-compatible type, see Section 19.7.

19.9. Guards

Guard = ( "*"
| "(" "*" ")"
| Expression(allowLemma: true, allowLambda: true)
)

Guards are used in if and while statements as boolean expressions. Guards
take two forms.

The first and most common form is just a boolean expression.

The second form is either * or (*). These have the same meaning. An unspec-
ified boolean value is returned. The value returned may be different each time
it is executed.

19.10. Binding Guards

BindingGuard(allowLambda) =
IdentTypeOptional { "," IdentTypeOptional }
{ Attribute }
":|"
Expression(allowLemma: true, allowLambda)
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IfStmts can also take a BindingGuard. It checks if there exist values for the
given variables that satisfy the given expression. If so, it binds some satisfy-
ing values to the variables and proceeds into the “then” branch; otherwise it
proceeds with the “else” branch, where the bound variables are not in scope.

In other words, the statement
if x :| P { S } else { T }

has the same meaning as
if exists x :| P { var x :| P; S } else { T }

The identifiers bound by BindingGuard are ghost variables and cannot be as-
signed to non-ghost variables. They are only used in specification contexts.

Here is an example:
predicate P(n: int)
{
n % 2 == 0

}

method M1() returns (ghost y: int)
requires exists x :: P(x)
ensures P(y)

{
if x : int :| P(x) {

y := x;
}

}

19.11. If Statement

IfStmt = "if"
( AlternativeBlock(allowBindingGuards: true)
|
( BindingGuard(allowLambda: true)
| Guard
| ellipsis
)
BlockStmt [ "else" ( IfStmt | BlockStmt ) ]

)

AlternativeBlock(allowBindingGuards) =
( { AlternativeBlockCase(allowBindingGuards) }
| "{" { AlternativeBlockCase(allowBindingGuards) } "}"
)
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AlternativeBlockCase(allowBindingGuards) =
{ "case"
(
BindingGuard(allowLambda: false) // permitted iff allowBindingGuards == true

| Expression(allowLemma: true, allowLambda: false)
) "=>" { Stmt } } .

The simplest form of an if statement uses a guard that is a boolean expression.
For example,

if x < 0 {
x := -x;

}

Unlike match statements, if statements do not have to be exhaustive: omitting
the else block is the same as including an empty else block. To ensure that
an if statement is exhaustive, use the if-case statement documented below.

If the guard is an asterisk then a non-deterministic choice is made:
if * {
print "True";

} else {
print "False";

}

The if-case statement using the AlternativeBlock form is similar to the if
... fi construct used in the book “A Discipline of Programming” by Edsger
W. Dijkstra. It is used for a multi-branch if.

For example:
if {
case x <= y => max := y;
case y <= x => max := x;

}

In this form, the expressions following the case keyword are called guards. The
statement is evaluated by evaluating the guards in an undetermined order until
one is found that is true and the statements to the right of => for that guard
are executed. The statement requires at least one of the guards to evaluate to
true (that is, if-case statements must be exhaustive: the guards must cover
all cases).

TODO: Describe the … refinement
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19.12. While Statement

WhileStmt =
"while"
( LoopSpec
AlternativeBlock(allowBindingGuards: false)

| ( Guard | ellipsis )
LoopSpec
( BlockStmt
| ellipsis
| /* go body-less */
)

)

Loops need loop specifications (LoopSpec in the grammar) in order for Dafny to
prove that they obey expected behavior. In some cases Dafny can infer the loop
specifications by analyzing the code, so the loop specifications need not always
be explicit. These specifications are described in Section 19.14.

The general loop statement in Dafny is the familiar while statement. It has
two general forms.

The first form is similar to a while loop in a C-like language. For example:
var i := 0;
while i < 5 {
i := i + 1;

}

In this form, the condition following the while is one of these:

• A boolean expression. If true it means execute one more iteration of the
loop. If false then terminate the loop.

• An asterisk (*), meaning non-deterministically yield either true or false
as the value of the condition

The second form uses the AlternativeBlock. It is similar to the do ... od
construct used in the book “A Discipline of Programming” by Edsger W. Dijk-
stra. For example:

while
decreases if 0 <= r then r else -r;

{
case r < 0 =>
r := r + 1;

case 0 < r =>
r := r - 1;

}

For this form, the guards are evaluated in some undetermined order until one
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is found that is true, in which case the corresponding statements are executed
and the while statement is repeated. If none of the guards evaluates to true,
then the loop execution is terminated.

TODO: Describe … refinement

19.13. For Loops

ForLoopStmt =
"for" IdentTypeOptional ":="
Expression(allowLemma: false, allowLambda: false)
( "to" | "downto" )
( Expression(allowLemma: false, allowLambda: false)
| "*"
)
LoopSpec
( BlockStmt
| /* go body-less */
)

)

The for statement provides a convenient way to write some common loops.

The statement introduces a local variable IdentTypeOptional, which is called
the loop index. The loop index is in scope in the LoopSpec and BlockStmt,
but not after the for loop. Assignments to the loop index are not allowed.
The type of the loop index can typically be inferred, so it need not be given
explicitly. If the identifier is not used, it can be written as _, as illustrated in
this repeat-20-times loop:
for _ := 0 to 20 {
Body

}

There are four basic variations of the for loop:
for i: T := lo to hi
LoopSpec

{ Body }

for i: T := hi downto lo
LoopSpec

{ Body }

for i: T := lo to *
LoopSpec

{ Body }

152



for i: T := hi downto *
LoopSpec

{ Body }

Semantically, they are defined as the following respective while loops:
{
var _lo, _hi := lo, hi;
assert _lo <= _hi && forall _i: int :: _lo <= _i <= _hi ==> _i is T;
var i := _lo;
while i != _hi
invariant _lo <= i <= _hi
LoopSpec
decreases _hi - i

{
Body
i := i + 1;

}
}

{
var _lo, _hi := lo, hi;
assert _lo <= _hi && forall _i: int :: _lo <= _i <= _hi ==> _i is T;
var i := _hi;
while i != lo
invariant _lo <= i <= _hi
LoopSpec
decreases i - _lo

{
i := i - 1;
Body

}
}

{
var _lo := lo;
assert forall _i: int :: _lo <= _i ==> _i is T;
var i := _lo;
while true
invariant _lo <= i
LoopSpec

{
Body
i := i + 1;

}
}
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{
var _hi := hi;
assert forall _i: int :: _i <= _hi ==> _i is T;
var i := _hi;
while true
invariant i <= _hi
LoopSpec

{
i := i - 1;
Body

}
}

Note that expressions lo and hi are evaluated just once, before the loop itera-
tions start.

Also, note in all variations that the values of i in the body are the values from
lo to, but not including, hi. This makes it convenient to write common loops,
including these:
for i := 0 to a.Length {
Process(a[i]);

}
for i := a.Length downto 0 {
Process(a[i]);

}

Nevertheless, hi must be a legal value for the type of the index variable, since
that is how the index variable is used in the invariant.

If the end-expression is not *, then no explicit decreases is allowed, since such a
loop is already known to terminate. If the end-expression is *, then the absence
of an explicit decreases clause makes it default to decreases *. So, if the end-
expression is * and no explicit decreases clause is given, the loop is allowed
only in methods that are declared with decreases *.

The directions to or downto are contextual keywords. That is, these two words
are part of the syntax of the for loop, but they are not reserved keywords
elsewhere.

19.14. Loop Specifications
For some simple loops, such as those mentioned previously, Dafny can figure out
what the loop is doing without more help. However, in general the user must
provide more information in order to help Dafny prove the effect of the loop.
This information is provided by a LoopSpec. A LoopSpec provides informa-
tion about invariants, termination, and what the loop modifies. For additional
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tutorial information see (Koenig and Leino 2012) or the online Dafny tutorial.

19.14.1. Loop invariants

Loops present a problem for specification-based reasoning. There is no way to
know in advance how many times the code will go around the loop and a tool
cannot reason about every one of a possibly unbounded sequence of unrollings.
In order to consider all paths through a program, specification-based program
verification tools require loop invariants, which are another kind of annotation.

A loop invariant is an expression that holds just prior to the loop test, that is,
upon entering a loop and after every execution of the loop body. It captures
something that is invariant, i.e. does not change, about every step of the loop.
Now, obviously we are going to want to change variables, etc. each time around
the loop, or we wouldn’t need the loop. Like pre- and postconditions, an in-
variant is a property that is preserved for each execution of the loop, expressed
using the same boolean expressions we have seen. For example,
var i := 0;
while i < n
invariant 0 <= i

{
i := i + 1;

}

When you specify an invariant, Dafny proves two things: the invariant holds
upon entering the loop, and it is preserved by the loop. By preserved, we mean
that assuming that the invariant holds at the beginning of the loop (just prior
to the loop test), we must show that executing the loop body once makes the
invariant hold again. Dafny can only know upon analyzing the loop body what
the invariants say, in addition to the loop guard (the loop condition). Just as
Dafny will not discover properties of a method on its own, it will not know that
any but the most basic properties of a loop are preserved unless it is told via
an invariant.

19.14.2. Loop termination

Dafny proves that code terminates, i.e. does not loop forever, by using
decreases annotations. For many things, Dafny is able to guess the right
annotations, but sometimes it needs to be made explicit. There are two places
Dafny proves termination: loops and recursion. Both of these situations require
either an explicit annotation or a correct guess by Dafny.

A decreases annotation, as its name suggests, gives Dafny an expression that
decreases with every loop iteration or recursive call. There are two conditions
that Dafny needs to verify when using a decreases expression:

• that the expression actually gets smaller, and
• that it is bounded.
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That is, the expression must strictly decrease in a well-founded ordering (cf. Sec-
tion 23.7).

Many times, an integral value (natural or plain integer) is the quantity that
decreases, but other values can be used as well. In the case of integers, the
bound is assumed to be zero. For each loop iteration the decreases expression
at the end of the loop body must be strictly smaller than the value at the
beginning of the loop body (after the loop test). For integers, the well-founded
relation between x and X is x < X && 0 <= X. Thus if the decreases value (X)
is negative at the loop test, it must exit the loop, since there is no permitted
value for x to have at the end of the loop body.

For example, the following is a proper use of decreases on a loop:
while 0 < i
invariant 0 <= i
decreases i

{
i := i - 1;

}

Here Dafny has all the ingredients it needs to prove termination. The variable
i becomes smaller each loop iteration, and is bounded below by zero. When
i becomes 0, the lower bound of the well-founded order, control flow exits the
loop.

This is fine, except the loop is backwards from most loops, which tend to count
up instead of down. In this case, what decreases is not the counter itself, but
rather the distance between the counter and the upper bound. A simple trick
for dealing with this situation is given below:
while i < n
invariant 0 <= i <= n
decreases n - i

{
i := i + 1;

}

This is actually Dafny’s guess for this situation, as it sees i < n and assumes
that n - i is the quantity that decreases. The upper bound of the loop invariant
implies that 0 <= n – i, and gives Dafny a lower bound on the quantity. This
also works when the bound n is not constant, such as in the binary search
algorithm, where two quantities approach each other, and neither is fixed.

If the decreases clause of a loop specifies *, then no termination check will be
performed. Use of this feature is sound only with respect to partial correctness.
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19.14.3. Loop framing

The specification of a loop also includes framing, which says what the loop
modifies. The loop frame includes both local variables and locations in the
heap.

For local variables, the Dafny verifier performs a syntactic scan of the loop body
to find every local variable or out-parameter that occurs as a left-hand side of an
assignment. These variables are called syntactic assignment targets of the loop,
or syntactic loop targets for short. Any local variable or out-parameter that is
not a syntactic assignment target is known by the verifier to remain unchanged
by the loop.

The heap may or may not be a syntactic loop target. It is when the loop body
syntactically contains a statement that can modify a heap location. This in-
cludes calls to compiled methods, even if such a method has an empty modifies
clause, since a compiled method is always allowed to allocate new objects and
change their values in the heap.

If the heap is not a syntactic loop target, then the verifier knows the heap
remains unchanged by the loop. If the heap is a syntactic loop target, then the
loop’s effective modifies clause determines what is allowed to be modified by
iterations of the loop body.

A loop can use modifies clauses to declare the effective modifies clause of
the loop. If a loop does not explicitly declare any modifies clause, then the
effective modifies clause of the loop is the effective modifies clause of the most
tightly enclosing loop or, if there is no enclosing loop, the modifies clause of
the enclosing method.

In most cases, there is no need to give an explicit modifies clause for a loop.
The one case where it is sometimes needed is if a loop modifies less than is
allowed by the enclosing method. Here are two simple methods that illustrate
this case:
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class Cell {
var data: int

}

method M0(c: Cell, d: Cell)
requires c != d
modifies c, d
ensures c.data == d.data == 100

{
c.data, d.data := 100, 0;
var i := 0;
while i < 100
invariant d.data == i
// Needs "invariant c.data == 100" or "modifies d" to verify

{
d.data := d.data + 1;
i := i + 1;

}
}

method M1(c: Cell)
modifies c
ensures c.data == 100

{
c.data := 100;
var i := 0;
while i < 100
// Needs "invariant c.data == 100" or "modifies {}" to verify

{
var tmp := new Cell;
tmp.data := i;
i := i + 1;

}
}

In M0, the effective modifies clause of the loop is modifies c, d. Therefore,
the method’s postcondition c.data == 100 is not provable. To remedy the
situation, the loop needs to be declared either with invariant c.data == 100
or with modifies d.

Similarly, the effective modifies clause of the loop in M1 is modifies c. There-
fore, the method’s postcondition c.data == 100 is not provable. To remedy
the situation, the loop needs to be declared either with invariant c.data ==
100 or with modifies {}.

When a loop has an explicit modifies clause, there is, at the top of every
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iteration, a proof obligation that

• the expressions given in the modifies clause are well-formed, and
• everything indicated in the loop modifies clause is allowed to be modified

by the (effective modifies clause of the) enclosing loop or method.

19.14.4. Body-less methods, functions, loops, and aggregate state-
ments

Methods (including lemmas), functions, loops, and forall statements are or-
dinarily declared with a body, that is, a curly-braces pair that contains (for
methods, loops, and forall) a list of statements or (for a function) an ex-
pression. In each case, Dafny syntactically allows these constructs to be given
without a body. This is to allow programmers to temporarily postpone the
development of the implementation of the method, function, loop, or aggregate
statement.

If a method has no body, there is no difference for callers of the method. Callers
still reason about the call in terms of the method’s specification. But without
a body, the verifier has no method implementation to check against the specifi-
cation, so the verifier is silently happy. The compiler, on the other hand, will
complain if it encounters a body-less method, because the compiler is supposed
to generate code for the method, but it isn’t clever enough to do that by itself
without a given method body. If the method implementation is provided by
code written outside of Dafny, the method can be marked with an {:extern}
annotation, in which case the compiler will no longer complain about the ab-
sence of a method body.

A lemma is a special kind of method. Callers are therefore unaffected by the
absence of a body, and the verifier is silently happy with not having a proof
to check against the lemma specification. Despite a lemma being ghost, it is
still the compiler that checks for, and complains about, body-less lemmas. A
body-less lemma is an unproven lemma, which is often known as an axiom. If
you intend to use a lemma as an axiom, omit its body and add the attribute
{:axiom}, which causes the compiler to suppress its complaint about the lack
of a body.

Similarly, calls to a body-less function use only the specification of the function.
The verifier is silently happy, but the compiler complains (whether or not the
function is ghost). As for methods and lemmas, the {:extern} and {:axiom}
attributes can be used to suppress the compiler’s complaint.

By supplying a body for a method or function, the verifier will in effect show
the feasibility of the specification of the method or function. By supplying an
{:extern} or {:axiom} attribute, you are taking that responsibility into your
own hands. Common mistakes include forgetting to provide an appropriate
modifies or reads clause in the specification, or forgetting that the results of
functions in Dafny (unlike in most other languages) must be deterministic.
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Just like methods and functions have two sides, callers and implementations,
loops also have two sides. One side (analogous to callers) is the context that
uses the loop. That context treats the loop in the same way regardless of
whether or not the loop has a body. The other side is the loop body, that is, the
implementation of each loop iteration. The verifier checks that the loop body
maintains the loop invariant and that the iterations will eventually terminate,
but if there is no loop body, the verifier is silently happy. This allows you to
temporarily postpone the authoring of the loop body until after you’ve made
sure that the loop specification is what you need in the context of the loop.

There is one thing that works differently for body-less loops than for loops with
bodies. It is the computation of syntactic loop targets, which become part of
the loop frame (see Section 19.14.3). For a body-less loop, the local variables
computed as part of the loop frame are the mutable variables that occur free
in the loop specification. The heap is considered a part of the loop frame if it
is used for mutable fields in the loop specification or if the loop has an explicit
modifies clause. The IDE will display the computed loop frame in hover text.

For example, consider
class Cell {
var data: int
const K: int

}

method BodylessLoop(n: nat, c: Cell)
requires c.K == 8
modifies c

{
c.data := 5;
var a, b := n, n;
for i := 0 to n
invariant c.K < 10
invariant a <= n
invariant c.data < 10

assert a == n;
assert b == n;
assert c.data == 5;

}

The loop specification mentions local variable a, and thus a is considered part of
the loop frame. Since what the loop invariant says about a is not strong enough
to prove the assertion a == n that follows the loop, the verifier complains about
that assertion.

Local variable b is not mentioned in the loop specification, and thus b is not
included in the loop frame. Since in-parameter n is immutable, it is not included
in the loop frame, either, despite being mentioned in the loop specification. For
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these reasons, the assertion b == n is provable after the loop.

Because the loop specification mentions the mutable field data, the heap be-
comes part of the loop frame. Since the loop invariant is not strong enough to
prove the assertion c.data == 5 that follows the loop, the verifier complains
about that assertion. On the other hand, had c.data < 10 not been mentioned
in the loop specification, the assertion would be verified, since field K is then the
only field mentioned in the loop specification and K is immutable.

Finally, the aggregate statement (forall) can also be given without a body.
Such a statement claims that the given ensures clause holds true for all values
of the bound variables that satisfy the given range constraint. If the statement
has no body, the program is in effect omitting the proof, much like a body-less
lemma is omitting the proof of the claim made by the lemma specification. As
with the other body-less constructs above, the verifier is silently happy with a
body-less forall statement, but the compiler will complain.

19.15. Match Statement

MatchStmt =
"match"
Expression(allowLemma: true, allowLambda: true)
( "{" { CaseStmt } "}"
| { CaseStmt }
)

CaseStmt = "case" ExtendedPattern "=>" { Stmt }

[ ExtendedPattern is defined in Section 20.32.]

The match statement is used to do case analysis on a value of an inductive or
co-inductive datatype (which includes the built-in tuple types), a base type, or
newtype. The expression after the match keyword is called the selector. The
expression is evaluated and then matched against each clause in order until a
matching clause is found.

The process of matching the selector expression against the CaseBinding_s is
the same as for match expressions and is described in Section 20.32.

The code below shows an example of a match statement.
datatype Tree = Empty | Node(left: Tree, data: int, right: Tree)

// Return the sum of the data in a tree.
method Sum(x: Tree) returns (r: int)
{
match x {
case Empty => r := 0;
case Node(t1, d, t2) =>
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var v1 := Sum(t1);
var v2 := Sum(t2);
r := v1 + d + v2;

}
}

Note that the Sum method is recursive yet has no decreases annotation. In
this case it is not needed because Dafny is able to deduce that t1 and t2 are
smaller (structurally) than x. If Tree had been coinductive this would not have
been possible since x might have been infinite.

19.16. Assert Statement

AssertStmt =
"assert"
{ Attribute }
( [ LabelName ":" ]
Expression(allowLemma: false, allowLambda: true)
( ";"
| "by" BlockStmt
)

| ellipsis
";"

Assert statements are used to express logical proposition that are expected to
be true. Dafny will attempt to prove that the assertion is true and give an error
if the assertion cannot be proven. Once the assertion is proved, its truth may
aid in proving subsequent deductions. Thus if Dafny is having a difficult time
verifying a method, the user may help by inserting assertions that Dafny can
prove, and whose truth may aid in the larger verification effort, much as lemmas
might be used in mathematical proofs.

Assert statements are ignored by the compiler.

Using ... as the argument of the statement is part of module refinement, as
described in Section 21.

TO BE WRITTEN - assert by statements

19.17. Assume Statement

AssumeStmt =
"assume"
{ Attribute }
( Expression(allowLemma: false, allowLambda: true)
| ellipsis
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)
";"

The assume statement lets the user specify a logical proposition that Dafny may
assume to be true without proof. If in fact the proposition is not true this may
lead to invalid conclusions.

An assume statement would ordinarily be used as part of a larger verification
effort where verification of some other part of the program required the propo-
sition. By using the assume statement the other verification can proceed. Then
when that is completed the user would come back and replace the assume with
assert.

An assume statement cannot be compiled. In fact, the compiler will complain if
it finds an assume anywhere where it has not been replaced through a refinement
step.

Using ... as the argument of the statement is part of module refinement, as
described in Section 21.

19.18. Expect Statement

ExpectStmt =
"expect"
{ Attribute }
( Expression(allowLemma: false, allowLambda: true)
| ellipsis
)
[ "," Expression(allowLemma: false, allowLambda: true) ]
";"

The expect statement states a boolean expression that is (a) assumed to be true
by the verifier and (b) checked to be true at run-time. That is, the compiler
inserts into the run-time executable a check that the given expression is true;
if the expression is false, then the execution of the program halts immediately.
If a second argument is given, it may be a value of any type. That value is
converted to a string (just like the print statement) and the string is included in
the message emitted by the program when it halts; otherwise a default message
is emitted.

Because the expect expression and optional second argument are compiled, they
cannot be ghost expressions.

assume statements are ignored at run-time. The expect statement behaves like
assume for the verifier, but also inserts a run-time check that the assumption is
indeed correct (for the test cases used at run-time).

Here are a few use-cases for the expect statement.
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A) To check the specifications of external methods.

Consider an external method Random that takes a nat as input and returns a
nat value that is less than the input. Such a method could be specified as
method {:extern} Random(n: nat) returns (r: nat)
ensures r < n

But because there is no body for Random (only the external non-dafny implemen-
tation), it cannot be verified that Random actually satisfies this specification.

To mitigate this situation somewhat, we can define a wrapper function, Random',
that calls Random but in which we can put some run-time checks:
method {:extern} Random(n: nat) returns (r: nat)

method Random'(n: nat) returns (r: nat)
ensures r < n

{
r := Random(n);
expect r < n;

}

Here we can verify that Random' satisfies its own specification, relying on the
unverified specification of Random. But we are also checking at run-time that
any input-output pairs for Random encountered during execution do satisfy the
specification, as they are checked by the expect statement.

Note, in this example, two problems still remain. One problem is that the out-
parameter of the extern Random has type nat, but there is no check that the
value returned really is non-negative. It would be better to declare the out-
parameter of Random to be int and to include 0 <= r in the condition checked
by the expect statement in Random'. The other problem is that Random surely
will need n to be strictly positive. This can be fixed by adding requires n !=
0 to Random' and Random.

B) Run-time testing

Verification and run-time testing are complementary and both have their role
in assuring that software does what is intended. Dafny can produce executables
and these can be instrumented with unit tests. Annotating a method with
the {:test} attribute indicates to the compiler that it should produce target
code that is correspondingly annotated to mark the method as a unit test (e.g.,
an XUnit test) in the target language. Within that method one might use
expect statements (as well as print statements) to insert checks that the target
program is behaving as expected.

C) Compiler tests

If one wants to assure that compiled code is behaving at run-time consistently
with the statically verified code, one can use paired assert/expect statements
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with the same expression:
assert _P_;
expect _P_;

The verifier will check that P is always true at the given point in a program (at
the assert statement).

At run-time, the compiler will insert checks that the same predicate, in the
expect statement, is true. Any difference identifies a compiler bug. Note that
the expect must be after the assert. If the expect is first, then the verifier will
interpret the expect like an assume, in which case the assert will be proved
trivially and potential unsoundness will be hidden.

Using ... as the argument of the expect statement is part of module refinement,
as described in Section 21.

19.19. Print Statement

PrintStmt =
"print"
Expression(allowLemma: false, allowLambda: true)
{ "," Expression(allowLemma: false, allowLambda: true) }
";"

The print statement is used to print the values of a comma-separated list of
expressions to the console. The generated code uses target-language-specific
idioms to perform this printing. The expressions may of course include strings
that are used for captions. There is no implicit new line added, so to add
a new line you should include "\n" as part of one of the expressions. Dafny
automatically creates implementations of methods that convert values to strings
for all Dafny data types. For example,
datatype Tree = Empty | Node(left: Tree, data: int, right: Tree)
method Main()
{
var x : Tree := Node(Node(Empty, 1, Empty), 2, Empty);
print "x=", x, "\n";

}

produces this output:

x=Tree.Node(Tree.Node(Tree.Empty, 1, Tree.Empty), 2, Tree.Empty)

Note that Dafny does not have method overriding and there is no mechanism to
override the built-in value->string conversion. Nor is there a way to explicitly
invoke this conversion.

Dafny does not keep track of print effects. print statements are allowed only in
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non-ghost contexts and not in expressions, with one exception. The exception
is that a function-by-method may contain print statements, whose effect may
be observed as part of the run-time evaluation of such functions.

19.20. Reveal Statement

RevealStmt =
"reveal"
Expression(allowLemma: false, allowLambda: true)
{ "," Expression(allowLemma: false, allowLambda: true) }
";"

TODO

19.21. Forall Statement

ForallStmt =
"forall"
( "(" [ QuantifierDomain ] ")"
| [ QuantifierDomain ]
)
{ EnsuresClause(allowLambda: true) }
[ BlockStmt ]

The forall statement executes the body simultaneously for all quantified values
in the specified range. There are several variant uses of the forall statement
and there are a number of restrictions.

In particular, a forall statement can be classified as one of the following:

• Assign - the forall statement is used for simultaneous assignment. The
target must be an array element or an object field.

• Call - The body consists of a single call to a ghost method without side
effects

• Proof - The forall has ensure expressions which are effectively quantified
or proved by the body (if present).

An assign forall statement performs simultaneous assignment. The left-hand
sides must denote different l-values, unless the corresponding right-hand sides
also coincide.

The following is an excerpt of an example given by Leino in Developing Verified
Programs with Dafny. When the buffer holding the queue needs to be resized,
the forall statement is used to simultaneously copy the old contents into the
new buffer.
class {:autocontracts} SimpleQueue<Data>
{
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ghost var Contents: seq<Data>;
var a: array<Data> // Buffer holding contents of queue.
var m: int // Index head of queue.
var n: int // Index just past end of queue
...
method Enqueue(d: Data)
ensures Contents == old(Contents) + [d]

{
if n == a.Length {
var b := a;
if m == 0 { b := new Data[2 * a.Length]; }
forall i | 0 <= i < n - m {
b[i] := a[m + i];

}
a, m, n := b, 0, n - m;

}
a[n], n, Contents := d, n + 1, Contents + [d];

}
}

Here is an example of a call forall statement and the callee. This is contained
in the CloudMake-ConsistentBuilds.dfy test in the Dafny repository.
forall cmd', deps', e' |

Hash(Loc(cmd', deps', e')) == Hash(Loc(cmd, deps, e)) {
HashProperty(cmd', deps', e', cmd, deps, e);

}

lemma HashProperty(cmd: Expression, deps: Expression, ext: string,
cmd': Expression, deps': Expression, ext': string)

requires Hash(Loc(cmd, deps, ext)) == Hash(Loc(cmd', deps', ext'))
ensures cmd == cmd' && deps == deps' && ext == ext'

The following example of a proof forall statement comes from the same file:
forall p | p in DomSt(stCombinedC.st) && p in DomSt(stExecC.st)
ensures GetSt(p, stCombinedC.st) == GetSt(p, stExecC.st)

{
assert DomSt(stCombinedC.st) <= DomSt(stExecC.st);
assert stCombinedC.st == Restrict(DomSt(stCombinedC.st),

stExecC.st);
}

More generally, the statement
forall x | P(x) { Lemma(x); }

is used to invoke Lemma(x) on all x for which P(x) holds. If Lemma(x) ensures
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Q(x), then the forall statement establishes
forall x :: P(x) ==> Q(x).

The forall statement is also used extensively in the de-sugared forms of co-
predicates and co-lemmas. See section [#sec-co-inductive-datatypes].

19.22. Modify Statement

ModifyStmt =
"modify"
{ Attribute }
( FrameExpression(allowLemma: false, allowLambda: true)
{ "," FrameExpression(allowLemma: false, allowLambda: true) }

| ellipsis
)
( BlockStmt
| ";"
)

The modify statement has two forms which have two different purposes.

When the modify statement ends with a semi-colon rather than a block state-
ment its effect is to say that some undetermined modifications have been made
to any or all of the memory locations specified by the frame expressions. In the
following example, a value is assigned to field x followed by a modify statement
that may modify any field in the object. After that we can no longer prove that
the field x still has the value we assigned to it.
class MyClass {
var x: int
method N()
modifies this

{
x := 18;
modify this;
assert x == 18; // error: cannot conclude this here

}
}

When the modify statement is followed by a block statement, we are instead
specifying what can be modified in that block statement. Namely, only memory
locations specified by the frame expressions of the block modify statement may
be modified. Consider the following example.
class ModifyBody {
var x: int
var y: int
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method M0()
modifies this

{
modify {} {
x := 3; // error: violates the modifies clause

// on the line above
}

}

method M1()
modifies this

{
modify {} {
var o := new ModifyBody;
o.x := 3; // fine

}
}

method M2()
modifies this

{
modify this {
x := 3;

}
}

method M3()
modifies this

{
var k: int;
modify {} { k := 4; } // fine. k is local

}
}

The first modify statement in the example has an empty frame expression so
the statement guarded by the modifies clause cannot modify any heap memory
locations. So an error is reported when it tries to modify field x.

The second modify statement also has an empty frame expression. But it al-
locates a new object and modifies it. Thus we see that the frame expressions
on a block modify statement only limit what may be modified in already allo-
cated memory. It does not limit what may be modified in new memory that is
allocated within the block.

The third modify statement has a frame expression that allows it to modify any
of the fields of the current object, so the modification of field x is allowed.
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Finally, the fourth example shows that the restrictions imposed by the modify
statement do not apply to local variables, only those that are heap-based.

Using ... as the argument of the statement is part of module refinement, as
described in Section 21.

19.23. Calc Statement

CalcStmt = "calc" { Attribute } [ CalcOp ] "{" CalcBody_ "}"

CalcBody_ = { CalcLine_ [ CalcOp ] Hints_ }

CalcLine_ = Expression(allowLemma: false, allowLambda: true) ";"

Hints_ = { ( BlockStmt | CalcStmt ) }

CalcOp =
( "==" [ "#" "["

Expression(allowLemma: true, allowLambda: true) "]" ]
| "<" | ">"
| "!=" | "<=" | ">="
| "<==>" | "==>" | "<=="
)

The calc statement supports calculational proofs using a language feature called
program-oriented calculations (poC). This feature was introduced and explained
in the [Verified Calculations] paper by Leino and Polikarpova(Leino and Polikar-
pova 2013). Please see that paper for a more complete explanation of the calc
statement. We here mention only the highlights.

Calculational proofs are proofs by stepwise formula manipulation as is taught
in elementary algebra. The typical example is to prove an equality by starting
with a left-hand-side and through a series of transformations morph it into the
desired right-hand-side.

Non-syntactic rules further restrict hints to only ghost and side-effect free state-
ments, as well as imposing a constraint that only chain-compatible operators
can be used together in a calculation. The notion of chain-compatibility is quite
intuitive for the operators supported by poC; for example, it is clear that “<”
and “>” cannot be used within the same calculation, as there would be no re-
lation to conclude between the first and the last line. See the paper for a more
formal treatment of chain-compatibility.

Note that we allow a single occurrence of the intransitive operator “!=” to appear
in a chain of equalities (that is, “!=” is chain-compatible with equality but not
with any other operator, including itself). Calculations with fewer than two
lines are allowed, but have no effect. If a step operator is omitted, it defaults to
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the calculation-wide operator, defined after the calc keyword. If that operator
is omitted, it defaults to equality.

Here is an example using calc statements to prove an elementary algebraic
identity. As it turns out, Dafny is able to prove this without the calc statements,
but the example illustrates the syntax.
lemma docalc(x : int, y: int)
ensures (x + y) * (x + y) == x * x + 2 * x * y + y * y

{
calc {
(x + y) * (x + y);
==
// distributive law: (a + b) * c == a * c + b * c
x * (x + y) + y * (x + y);
==
// distributive law: a * (b + c) == a * b + a * c
x * x + x * y + y * x + y * y;
==
calc {

y * x;
==
x * y;

}
x * x + x * y + x * y + y * y;
==
calc {
x * y + x * y;
==
// a = 1 * a
1 * x * y + 1 * x * y;
==
// Distributive law
(1 + 1) * x * y;
==
2 * x * y;

}
x * x + 2 * x * y + y * y;

}
}

Here we started with (x + y) * (x + y) as the left-hand-side expressions and
gradually transformed it using distributive, commutative and other laws into
the desired right-hand-side.

The justification for the steps are given as comments or as nested calc state-
ments that prove equality of some sub-parts of the expression.
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The == operators show the relation between the previous expression and the
next. Because of the transitivity of equality we can then conclude that the
original left-hand-side is equal to the final expression.

We can avoid having to supply the relational operator between every pair of
expressions by giving a default operator between the calc keyword and the
opening brace as shown in this abbreviated version of the above calc statement:
calc == {
(x + y) * (x + y);
x * (x + y) + y * (x + y);
x * x + x * y + y * x + y * y;
x * x + x * y + x * y + y * y;
x * x + 2 * x * y + y * y;

}

And since equality is the default operator, we could have omitted it after the
calc keyword. The purpose of the block statements or the calc statements
between the expressions is to provide hints to aid Dafny in proving that step.
As shown in the example, comments can also be used to aid the human reader
in cases where Dafny can prove the step automatically.

19.24. Skeleton Statement

SkeletonStmt =
ellipsis
";"

TODO: Move to discussion of refinement?
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20. Expressions
The grammar of Dafny expressions follows a hierarchy that reflects the prece-
dence of Dafny operators. The following table shows the Dafny operators and
their precedence in order of increasing binding power.

operator description
; That is LemmaCall; Expression
————————– ————————————
<==> equivalence (if and only if)
————————– ————————————
==> implication (implies)
<== reverse implication (follows from)
————————– ————————————
&&, & conjunction (and)
||, | disjunction (or)
————————– ————————————
== equality
==#[k] prefix equality (co-inductive)
!= disequality
!=#[k] prefix disequality (co-inductive)
< less than
<= at most
>= at least
> greater than
in collection membership
!in collection non-membership
!! disjointness
————————– ————————————
<< left-shift
>> right-shift
————————– ————————————
+ addition (plus)
- subtraction (minus)
————————– ————————————
* multiplication (times)
/ division (divided by)
% modulus (mod)
————————– ————————————
| bit-wise or
& bit-wise and
^ bit-wise exclusive-or (not equal)
————————– ————————————
as operation type conversion
is operation type conversion
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operator description
————————– ————————————
- arithmetic negation (unary minus)
! logical negation, bit-wise complement
————————– ————————————
Primary Expressions

We are calling the UnaryExpressions that are neither arithmetic nor logical
negation the primary expressions. They are the most tightly bound.

In the grammar entries below we explain the meaning when the operator for
that precedence level is present. If the operator is not present then we just
descend to the next precedence level.

20.1. Top-level expressions

Expression(allowLemma, allowLambda) =
EquivExpression(allowLemma, allowLambda)
[ ";" Expression(allowLemma, allowLambda) ]

The “allowLemma” argument says whether or not the expression to be parsed
is allowed to have the form S;E where S is a call to a lemma. “allowLemma”
should be passed in as “false” whenever the expression to be parsed sits in a
context that itself is terminated by a semi-colon.

The “allowLambda” says whether or not the expression to be parsed is allowed to
be a lambda expression. More precisely, an identifier or parenthesized-enclosed
comma-delimited list of identifiers is allowed to continue as a lambda expression
(that is, continue with a reads, requires, or =>) only if “allowLambda” is true.
This affects function/method/iterator specifications, if/while statements with
guarded alternatives, and expressions in the specification of a lambda expression
itself.

Sometimes an expression will fail unless some relevant fact is known. In the
following example the F_Fails function fails to verify because the Fact(n)
divisor may be zero. But preceding the expression by a lemma that ensures
that the denominator is not zero allows function F_Succeeds to succeed.
function Fact(n: nat): nat
{
if n == 0 then 1 else n * Fact(n-1)

}

lemma L(n: nat)
ensures 1 <= Fact(n)

{
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}

function F_Fails(n: nat): int
{
50 / Fact(n) // error: possible division by zero

}

function F_Succeeds(n: nat): int
{
L(n); // note, this is a lemma call in an expression
50 / Fact(n)

}

20.2. Equivalence Expressions

EquivExpression(allowLemma, allowLambda) =
ImpliesExpliesExpression(allowLemma, allowLambda)
{ "<==>" ImpliesExpliesExpression(allowLemma, allowLambda) }

An EquivExpression that contains one or more “<==>”s is a boolean expres-
sion and all the contained ImpliesExpliesExpression must also be boolean
expressions. In that case each “<==>” operator tests for logical equality which
is the same as ordinary equality.

See [Section 0](#sec-equivalence-operator] for an explanation of the <==> oper-
ator as compared with the == operator.

20.3. Implies or Explies Expressions

ImpliesExpliesExpression(allowLemma, allowLambda) =
LogicalExpression(allowLemma, allowLambda)
[ ( "==>" ImpliesExpression(allowLemma, allowLambda)
| "<==" LogicalExpression(allowLemma, allowLambda)

{ "<==" LogicalExpression(allowLemma, allowLambda) }
)

]

ImpliesExpression(allowLemma, allowLambda) =
LogicalExpression(allowLemma, allowLambda)
[ "==>" ImpliesExpression(allowLemma, allowLambda) ]

See Section 7.1.3] for an explanation of the ==> and <== operators.
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20.4. Logical Expressions

LogicalExpression(allowLemma, allowLambda) =
RelationalExpression(allowLemma, allowLambda)
[ ( "&&" RelationalExpression(allowLemma, allowLambda)

{ "&&" RelationalExpression(allowLemma, allowLambda) }
| "||" RelationalExpression(allowLemma, allowLambda)

{ "||" RelationalExpression(allowLemma, allowLambda) }
)

]
| { "&&" RelationalExpression(allowLemma, allowLambda) }
| { "||" RelationalExpression(allowLemma, allowLambda) }

Note that the Dafny grammar allows a conjunction or disjunction to be prefixed
with && or || respectively. This form simply allows a parallel structure to be
written:
var b: bool :=
&& x != null
&& y != null
&& z != null
;

This is purely a syntactic convenience allowing easy edits such as reordering
lines or commenting out lines without having to check that the infix operators
are always where they should be.

See Section 7.1.2 for an explanation of the && and || operators.

20.5. Relational Expressions

RelationalExpression(allowLemma, allowLambda) =
ShiftTerm(allowLemma, allowLambda)
{ RelOp ShiftTerm(allowLemma, allowLambda) }

RelOp =
( "=="
[ "#" "[" Expression(allowLemma: true, allowLambda: true) "]" ]

| "!="
[ "#" "[" Expression(allowLemma: true, allowLambda: true) "]" ]

| "<" | ">" | "<=" | ">="
| "in"
| "!in"
| "!!"
)

The relation expressions that have a RelOp compare two or more terms. As
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explained in section [#sec-basic-types], ==, !=, <, >, <=, and >= are chaining.

The in and !in operators apply to collection types as explained in Section 10
and represent membership or non-membership respectively.

The !! represents disjointness for sets and multisets as explained in Section
10.1 and Section 10.2.

Note that x ==#[k] y is the prefix equality operator that compares co-inductive
values for equality to a nesting level of k, as explained in section [#sec-co-
equality].

20.6. Bit Shifts

ShiftTerm(allowLemma, allowLambda) =
Term(allowLemma, allowLambda)
{ ShiftOp Term(allowLemma, allowLambda) }

ShiftOp = ( "<<" | ">>" )

These operators are the left and right shift operators for bit-vector values. They
take a bit-vector value and an int, shifting the bits by the given amount; the
result has the same bit-vector type as the LHS. For the expression to be well-
defined, the RHS value must be in the range 0 to the number of bits in the
bit-vector type, inclusive.

The operations are left-associative: a << i >> j is (a << i) >> j. ## 20.7.
Terms
Term(allowLemma, allowLambda) =
Factor(allowLemma, allowLambda)
{ AddOp Factor(allowLemma, allowLambda) }

AddOp = ( "+" | "-" )

Terms combine Factors by adding or subtracting. Addition has these meanings
for different types:

• Arithmetic addition for numeric types (Section 7.2]).
• Union for sets and multisets (Section 10.1 and Section 10.2)
• Concatenation for sequences (Section 10.3)
• Map merging for maps (Section 10.4).

Subtraction is arithmetic subtraction for numeric types, and set or multiset
subtraction for sets and multisets, and domain subtraction for maps.
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20.8. Factors

Factor(allowLemma, allowLambda) =
BitvectorFactor(allowLemma, allowLambda)
{ MulOp BitvectorFactor(allowLemma, allowLambda) }

MulOp = ( "*" | "/" | "%" )

A Factor combines UnaryExpressions using multiplication, division, or modu-
lus. For numeric types these are explained in Section 7.2. As explained there, /
and % on int values represent Euclidean integer division and modulus and not
the typical C-like programming language operations.

Only * has a non-numeric application. It represents set or multiset intersection
as explained in Section 10.1 and Section 10.2.

20.9. Bit-vector Operations

BitvectorFactor(allowLemma, allowLambda) =
AsExpression(allowLemma, allowLambda)
{ BVOp AsExpression(allowLemma, allowLambda) }

BVOp = ( "|" | "&" | "^" )

These operations take two bit-vector values of the same type, returning a value
of the same type. The operations perform bit-wise or (|), and (&), and exclusive-
or (^). To perform bit-wise equality, use ^ and ! (unary complement) together.

These operations associate to the left but do not associate with each other; use
parentheses: a & b | c is illegal; use (a & b) | c or a & (b | c) instead.

Bit-vector operations are not allowed in some contexts. The | symbol is used
both for bit-wise or and as the delimiter in a cardinality expression: an ambi-
guity arise if the expression E in | E | contains a |. This situation is easily
remedied; just enclose E in parentheses, as in |(E)|. The only type-correct way
this can happen is if the expression is a comprehension, as in | set x: int ::
x | 0x101 |.

20.10. As (Conversion) and Is (type test) Expressions

AsExpression(allowLemma, allowLambda) =
UnaryExpression(allowLemma, allowLambda)
{ ( "as" | "is" ) Type }

The as expression converts the given UnaryExpression to the stated Type, with
the result being of the given type. The following combinations of conversions
are permitted:
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• Any type to itself
• Any int or real based numeric type or bit-vector type to another int or

real based numeric type or bit-vector type
• Any base type to a subset or newtype with that base
• Any subset or newtype or to its base type or a subset or newtype of the

same base
• Any type to a subset of newtype that has the type as its base
• Any trait to a class or trait that extends that trait
• Any class or trait to a trait extended by that class or trait

Some of the conversions above are already implicitly allowed, without the as
operation, such as from a subset type to its base. In any case, it must be able
to be proved that the value of the given expression is a legal value of the given
type. For example, 5 as MyType is permitted (by the verifier) only if 5 is a
legitimate value ofMyType (which must be a numeric type).

The as operation is like a grammatical suffix or postfix operation. However,
note that the unary operations bind more tightly than does as. That is - 5 as
nat is (- 5) as nat (which fails), whereas a * b as nat is a * (b as nat).
On the other hand, - a[4] is - (a[4]).

The is expression is grammatically similar to the as expression, with the same
binding power. The is expression is a run-time type test that returns a bool
value indicating whether the LHS expression is a legal value of the RHS type.
The expression can be used to check whether a trait value is of a particular class
type. That is, the expression in effect checks the allocated type of a trait.

The RHS type of an is expression can always be a supertype of the type of the
LHS expression. Other than that, the RHS must be based on a reference type
and the LHS expression must be assignable to the RHS type. Furthermore, in
order to be compilable, the RHS type must not be a subset type other than a
non-null reference type, and the type parameters of the RHS must be uniquely
determined from the type parameters of the LHS type. The last restriction
is designed to make it possible to perform type tests without inspecting type
parameters at run time. For example, consider the following types:
trait A { }
trait B<X> { }
class C<Y> extends B<Y> { }
class D<Y> extends B<set<Y>> { }
class E extends B<int> { }
class F<Z> extends A { }

A LHS expression of type B<set<int>> can be used in a type test where the
RHS is B<set<int>>, C<set<int>>, or D<int>, and a LHS expression of type
B<int> can be used in a type test where the RHS is B<int>, C<int>, or E.
Those are always allowed in compiled (and ghost) contexts. For an expression
a of type A, the expression a is F<int> is a ghost expression; it can be used in
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ghost contexts, but not in compiled contexts.

For an expression e and type t, e is t is the condition determining whether e
as t is well-defined (but, as noted above, is not always a legal expression).

The repertoire of types allowed in is tests may be expanded in the future.

20.11. Unary Expressions

UnaryExpression(allowLemma, allowLambda) =
( "-" UnaryExpression(allowLemma, allowLambda)
| "!" UnaryExpression(allowLemma, allowLambda)
| PrimaryExpression(allowLemma, allowLambda)
)

A UnaryExpression applies either numeric (Section 7.2) or logical (Section 7.1)
negation to its operand.

20.12. Primary Expressions

PrimaryExpression(allowLemma, allowLambda) =
( NameSegment { Suffix }
| LambdaExpression(allowLemma)
| MapDisplayExpr { Suffix }
| SeqDisplayExpr { Suffix }
| SetDisplayExpr { Suffix }
| EndlessExpression(allowLemma, allowLambda)
| ConstAtomExpression { Suffix }
)

After descending through all the binary and unary operators we arrive at the
primary expressions, which are explained in subsequent sections. As can be seen,
a number of these can be followed by 0 or more Suffixes to select a component
of the value.

If the allowLambda is false then LambdaExpressions are not recognized in this
context.

20.13. Lambda expressions

LambdaExpression(allowLemma) =
( WildIdent
| "(" [ IdentTypeOptional { "," IdentTypeOptional } ] ")"
)
LambdaSpec
"=>"
Expression(allowLemma, allowLambda: true)
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See Section 5.4 for a description of LambdaSpec.

In addition to named functions, Dafny supports expressions that define func-
tions. These are called lambda (expression)s (some languages know them as
anonymous functions). A lambda expression has the form:
( _params_ ) _specification_ => _body_

where params is a comma-delimited list of parameter declarations, each of which
has the form x or x: T. The type T of a parameter can be omitted when it
can be inferred. If the identifier x is not needed, it can be replaced by _. If
params consists of a single parameter x (or _) without an explicit type, then the
parentheses can be dropped; for example, the function that returns the successor
of a given integer can be written as the following lambda expression:
x => x + 1

The specification is a list of clauses requires E or reads W, where E is a boolean
expression and W is a frame expression.

body is an expression that defines the function’s return value. The body must be
well-formed for all possible values of the parameters that satisfy the precondition
(just like the bodies of named functions and methods). In some cases, this means
it is necessary to write explicit requires and reads clauses. For example, the
lambda expression
x requires x != 0 => 100 / x

would not be well-formed if the requires clause were omitted, because of the
possibility of division-by-zero.

In settings where functions cannot be partial and there are no restrictions on
reading the heap, the eta expansion of a function F: T -> U (that is, the wrap-
ping of F inside a lambda expression in such a way that the lambda expression is
equivalent to F) would be written x => F(x). In Dafny, eta expansion must also
account for the precondition and reads set of the function, so the eta expansion
of F looks like:
x requires F.requires(x) reads F.reads(x) => F(x)

20.14. Left-Hand-Side Expressions

Lhs =
( NameSegment { Suffix }
| ConstAtomExpression
Suffix { Suffix }

)
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A left-hand-side expression is only used on the left hand side of an UpdateStmt
or an Update with Failure Statement.

An example of the first (NameSegment) form is:
LibraryModule.F().x

An example of the second (ConstAtomExpression) form is:
old(o.f).x

20.15. Right-Hand-Side Expressions

Rhs =
( ArrayAllocation_
| ObjectAllocation_
| Expression(allowLemma: false, allowLambda: true)
| HavocRhs_
)
{ Attribute }

An Rhs is either array allocation, an object allocation, an expression, or a havoc
right-hand-side, optionally followed by one or more Attributes.

Right-hand-side expressions appear in the following constructs: ReturnStmt,
YieldStmt, UpdateStmt, UpdateFailureStmt, or VarDeclStatement. These
are the only contexts in which arrays or objects may be allocated, or in which
havoc may be produced.

20.16. Array Allocation

ArrayAllocation_ =
"new" [ Type ] "[" [ Expressions ] "]"
[ "(" Expression(allowLemma: true, allowLambda: true) ")"
| "[" [ Expressions ] "]"
]

This allocates a new single or multi-dimensional array as explained in section
Section 15. The initialization portion is optional. One form is an explicit list of
values, in which case the dimension is optional:
var a := new int[5];
var b := new int[5][2,3,5,7,11];
var c := new int[][2,3,5,7,11];
var d := new int[3][4,5,6,7]; // error

The comprehension form requires a dimension and uses a function of type nat
-> T where T is the array element type:
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var a := new int[5](i => i*i);

To allocate a multi-dimensional array, simply give the sizes of each dimension.
For example,
var m := new real[640, 480];

allocates a 640-by-480 two-dimensional array of reals. The initialization por-
tion cannot give a display of elements like in the one-dimensional case, but it
can use an initialization function. A function used to initialize a n-dimensional
array requires a function from n nats to a T, where T is element type of the
array. Here is an example:
var diag := new int[30, 30]((i, j) => if i == j then 1 else 0);

Array allocation is permitted in ghost contexts. If any expression used to specify
a dimension or initialization value is ghost, then the new allocation can only be
used in ghost contexts. Because the elements of an array are non-ghost, an array
allocated in a ghost context in effect cannot be changed after initialization.

20.17. Object Allocation

ObjectAllocation_ = "new" Type [ "." TypeNameOrCtorSuffix ]
[ "(" [ Bindings ] ")" ]

This allocated a new object of a class type as explained in section Class Types.

20.18. Havoc Right-Hand-Side

HavocRhs_ = "*"

A havoc right-hand-side produces an arbitrary value of its associated type. To
obtain a more constrained arbitrary value the “assign-such-that” operator (:|)
can be used. See Section 19.6.

20.19. Constant Or Atomic Expressions

ConstAtomExpression =
( LiteralExpression
| "this"
| FreshExpression_
| AllocatedExpression_
| UnchangedExpression_
| OldExpression_
| CardinalityExpression_

183



| ParensExpression
)

A ConstAtomExpression represents either a constant of some type, or an atomic
expression. A ConstAtomExpression is never an l-value.

20.20. Literal Expressions

LiteralExpression =
( "false" | "true" | "null" | Nat | Dec |
charToken | stringToken )

A literal expression is a boolean literal, a null object reference, an integer or real
literal, a character or string literal, or this, which denotes the current object
in the context of an instance method or function.

20.21. Fresh Expressions

FreshExpression_ =
"fresh" [ "@" LabelName ]
"(" Expression(allowLemma: true, allowLambda: true) ")"

fresh(e) returns a boolean value that is true if the objects denoted by expres-
sion e were all freshly allocated since the time of entry to the enclosing method.

If the LabelName is present, it must denote a label that in the enclosing method’s
control flow dominates the expression. In this case, fresh@L(e) returns true
if the objects denoted by e were all freshly allocated since control flow reached
label L.

The argument of fresh must be either an object reference or a set or sequence
of object references.

20.22. Allocated Expressions

AllocatedExpression_ =
"allocated" "(" Expression(allowLemma: true, allowLambda: true) ")"

For any expression e, the expression allocated(e) evaluates to true in a state
if the value of e is available in that state, meaning that it could in principle have
been the value of a variable in that state. This can be useful when, for example,
allocated(e) is evaluated in an old state. For instance, if d is a local variable
holding a datatype value Cons(r, Nil) where r is an object that was allocated
in the enclosing method, then old(allocated(d)) is false.

If the expression e is of a reference type, then !old(allocated(e)) is the same
as fresh(e).
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20.23. Unchanged Expressions

UnchangedExpression_ =
"unchanged" [ "@" LabelName ]
"(" FrameExpression(allowLemma: true, allowLambda: true)

{ "," FrameExpression(allowLemma: true, allowLambda: true) }
")"

The unchanged expression returns true if and only if every reference denoted
by its arguments has the same value for all its fields in the old and current state.
For example, if c is an object with two fields, x and y, then unchanged(c) is
equivalent to
c.x == old(c.x) && c.y == old(c.y)

Each argument to unchanged can be a reference, a set of references, or a se-
quence of references. If it is a reference, it can be followed by `f, where f is a
field of the reference. This form expresses that f, not necessarily all fields, has
the same value in the old and current state.

The optional @-label says to use it as the old-state instead of using the old state.
That is, using the example c from above, the expression unchanged@Lbl(c) is
equivalent to
c.x == old@Lbl(c.x) && c.y == old@Lbl(c.y)

Each reference denoted by the arguments of unchanged must be non-null and
must be allocated in the old-state of the expression.

20.24. Old and Old@ Expressions

OldExpression_ =
"old" [ "@" LabelName ]
"(" Expression(allowLemma: true, allowLambda: true) ")"

An old expression is used in postconditions or in the body of a method or in
the body or specification of any two-state function or two-state lemma; an old
expression with a label is used only in the body of a method at a point where
the label dominates its use in this expression.

old(e) evaluates the argument using the value of the heap on entry to the
method; old@ident(e) evaluates the argument using the value of the heap at
the given statement label.

Note that old and old@ only affect heap dereferences, like o.f and a[i]. In
particular, neither form has any effect on the value returned for local variables
or out-parameters (as they are not on the heap).9 If the value of an entire

9The semantics of old in Dafny differs from similar constructs in other specification lan-
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expression at a particular point in the method body is needed later on in the
method body, the clearest means is to declare a ghost variable, initializing it to
the expression in question.

The argument of an old expression may not contain nested old, fresh, or
unchanged expressions, nor two-state functions or two-state lemmas.

Here are some explanatory examples. All assert statements verify to be true.
class A {

var value: int

method m(i: int)
requires i == 6
requires value == 42
modifies this

{
var j: int := 17;
value := 43;
label L:
j := 18;
value := 44;
label M:
assert old(i) == 6; // i is local, but can't be changed anyway
assert old(j) == 18; // j is local and not affected by old
assert old@L(j) == 18; // j is local and not affected by old
assert old(value) == 42;
assert old@L(value) == 43;
assert old@M(value) == 44 && this.value == 44;
// value is this.value; 'this' is the same
// same reference in current and pre state but the
// values stored in the heap as its fields are different;
// '.value' evaluates to 42 in the pre-state, 43 at L,
// and 44 in the current state

}
}

class A {
var value: int
constructor ()

ensures value == 10
{

value := 10;
}

}

guages like ACSL or JML.
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class B {
var a: A
constructor () { a := new A(); }

method m()
requires a.value == 11
modifies this, this.a

{
label L:
a.value := 12;
label M:
a := new A(); // Line X
label N:
a.value := 20;
label P:

assert old(a.value) == 11;
assert old(a).value == 12; // this.a is from pre-state,

// but .value in current state
assert old@L(a.value) == 11;
assert old@L(a).value == 12; // same as above
assert old@M(a.value) == 12; // .value in M state is 12
assert old@M(a).value == 12;
assert old@N(a.value) == 10; // this.a in N is the heap

// reference at Line X
assert old@N(a).value == 20; // .value in current state is 20
assert old@P(a.value) == 20;
assert old@P(a).value == 20;

}
}

The next example demonstrates the interaction between old and array elements.
class A {
var z1: array<nat>
var z2: array<nat>

method mm()
requires z1.Length > 10 && z1[0] == 7
requires z2.Length > 10 && z2[0] == 17
modifies z2

{
var a: array<nat> := z1;
assert a[0] == 7;
a := z2;

187



assert a[0] == 17;
assert old(a[0]) == 17; // a is local with value z2
z2[0] := 27;
assert old(a[0]) == 17; // a is local, with current value of

// z2; in pre-state z2[0] == 17
assert old(a)[0] == 27; // a is local, with current value of

// z2; z2[0] is currently 27
}

}

20.25. Cardinality Expressions

CardinalityExpression_ =
"|" Expression(allowLemma: true, allowLambda: true) "|"

For a finite-collection expression c, |c| is the cardinality of c. For a finite
set or sequence, the cardinality is the number of elements. For a multiset, the
cardinality is the sum of the multiplicities of the elements. For a finite map,
the cardinality is the cardinality of the domain of the map. Cardinality is not
defined for infinite sets or infinite maps. For more, see Section 10.

20.26. Parenthesized Expression

ParensExpression =
"(" [ Expressions ] ")"

A ParensExpression is a list of zero or more expressions enclosed in parenthe-
ses.

If there is exactly one expression enclosed then the value is just the value of
that expression.

If there are zero or more than one, the result is a tuple value. See Section 17.1.

20.27. Sequence Display Expression

SeqDisplayExpr =
( "[" [ Expressions ] "]"
| "seq" [ GenericInstantiation ]
"(" Expression(allowLemma: true, allowLambda: true)
"," Expression(allowLemma: true, allowLambda: true)
")"

)

A sequence display expression provides a way to construct a sequence with given
values. For example
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[1, 2, 3]

is a sequence with three elements in it.
seq(k, n => n+1)

is a sequence of k elements whose values are obtained by evaluating the second
argument (a function) on the indices 0 up to k.

See section [#sec-sequences] for more information on sequences.

20.28. Set Display Expression

SetDisplayExpr =
( [ "iset" | "multiset" ] "{" [ Expressions ] "}"
| "multiset" "(" Expression(allowLemma: true,

allowLambda: true) ")"
)

A set display expression provides a way of constructing a set with given elements.
If the keyword iset is present, then a potentially infinite set (with the finite set
of given elements) is constructed.

For example
{1, 2, 3}

is a set with three elements in it. See Section 10.1 for more information on sets.

A multiset display expression provides a way of constructing a multiset with
given elements and multiplicities. For example
multiset{1, 1, 2, 3}

is a multiset with three elements in it. The number 1 has a multiplicity of 2,
and the numbers 2 and 3 each have a multiplicity of 1.

A multiset cast expression converts a set or a sequence into a multiset as shown
here:
var s : set<int> := {1, 2, 3};
var ms : multiset<int> := multiset(s);
ms := ms + multiset{1};
var sq : seq<int> := [1, 1, 2, 3];
var ms2 : multiset<int> := multiset(sq);
assert ms == ms2;

See Section 10.2 for more information on multisets.
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20.29. Map Display Expression

MapDisplayExpr =
("map" | "imap" ) "[" [ MapLiteralExpressions ] "]"

MapLiteralExpressions =
Expression(allowLemma: true, allowLambda: true)
":=" Expression(allowLemma: true, allowLambda: true)
{ "," Expression(allowLemma: true, allowLambda: true)

":=" Expression(allowLemma: true, allowLambda: true)
}

A map display expression builds a finite or potentially infinite map from explicit
MapLiteralExpressions. For example:
var m := map[1 := "a", 2 := "b"];
ghost var im := imap[1 := "a", 2 := "b"];

See Section 10.4 for more details on maps and imaps.

20.30. Endless Expression

EndlessExpression(allowLemma, allowLambda) =
( IfExpression(allowLemma, allowLambda)
| MatchExpression(allowLemma, allowLambda)
| QuantifierExpression(allowLemma, allowLambda)
| SetComprehensionExpr(allowLemma, allowLambda)
| StmtInExpr Expression(allowLemma, allowLambda)
| LetExpression(allowLemma, allowLambda)
| MapComprehensionExpr(allowLemma, allowLambda)
)

EndlessExpression gets it name from the fact that all its alternate produc-
tions have no terminating symbol to end them, but rather they all end with
an Expression at the end. The various EndlessExpression alternatives are
described below.

20.31. If Expression

IfExpression(allowLemma, allowLambda) =
"if" ( BindingGuard(allowLambda: true)

| Expression(allowLemma: true, allowLambda: true)
)

"then" Expression(allowLemma: true, allowLambda: true)
"else" Expression(allowLemma, allowLambda)

The IfExpression is a conditional expression. It first evaluates the expression

190



following the if. If it evaluates to true then it evaluates the expression following
the then and that is the result of the expression. If it evaluates to false then
the expression following the else is evaluated and that is the result of the
expression. It is important that only the selected expression is evaluated as the
following example shows.
var k := 10 / x; // error, may divide by 0.
var m := if x != 0 then 10 / x else 1; // ok, guarded

TO BE WRITTEN - binding form

20.32. Case and Extended Patterns

CasePattern =
( Ident "(" [ CasePattern { "," CasePattern } ] ")"
| "(" [ CasePattern { "," CasePattern } ] ")"
| IdentTypeOptional
)

ExtendedPattern =
( PossiblyNegatedLiteralExpression
| IdentTypeOptional
| [ Ident ] "(" [ ExtendedPattern { "," ExtendedPattern } ] ")"
)

PossiblyNegatedLiteralExpression =
( "-" ( Nat | Dec )
| LiteralExpression
)

Case patterns and extended patterns are used for (possibly nested) pattern
matching on inductive, coinductive or base type values. The ExtendedPattern
construct is used in CaseStatement and CaseExpressions, that is, in
match statements and expressions. CasePatterns are used in LetExprs and
VarDeclStatements. The ExtendedPattern differs from CasePattern is
allowing literals and symbolic constants.

When matching an inductive or coinductive value in a MatchStmt or
MatchExpression, the ExtendedPattern must correspond to a

• (1) bound variable (a simple identifier),

• (2) a constructor of the type of the value,

• (3) a literal of the correct type, or

• (4) a symbolic constant.

If the extended pattern is
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• a parentheses-enclosed possibly-empty list of patterns, then the pattern
matches a tuple.

• an identifier followed by a parentheses-enclosed possibly-empty list of pat-
terns, then the pattern matches a constructor.

• a literal, then the pattern matches exactly that literal.
• a simple identifier, then the pattern matches

– a parameter-less constructor if there is one defined with the correct
type and the given name, else

– the value of a symbolic constant, if a name lookup finds a declaration
for a constant with the given name (if the name is declared but with
a non-matching type, a type resolution error will occur),

– otherwise, the identifier is a new bound variable

Any ExtendedPatterns inside the parentheses are then matched against the
arguments that were given to the constructor when the value was constructed.
The number of ExtendedPattern must match the number of parameters to the
constructor (or the arity of the tuple). When matching a value of base type, the
ExtendedPattern should either be a LiteralExpression_ of the same type as
the value, or a single identifier matching all values of this type.

The ExtendedPatterns and CasePatterns may be nested. The set of bound
variable identifiers contained in a CaseBinding_ or CasePattern must be dis-
tinct. They are bound to the corresponding values in the value being matched.
(Thus, for example, one cannot repeat a bound variable to attempt to match a
constructor that has two identical arguments.)

20.33. Match Expression

MatchExpression(allowLemma, allowLambda) =
"match" Expression(allowLemma, allowLambda)
( "{" { CaseExpression(allowLemma: true, allowLambda: true) } "}"
| { CaseExpression(allowLemma, allowLambda) }
)

CaseExpression(allowLemma, allowLambda) =
"case" ExtendedPattern "=>" Expression(allowLemma, allowLambda)

A MatchExpression is used to conditionally evaluate and select an expression
depending on the value of an algebraic type, i.e. an inductive type, a co-inductive
type, or a base type.

The Expression following the match keyword is called the selector. The selector
is evaluated and then matched against each CaseExpression in order until a
matching clause is found, as described in the section on CaseBindings.

All of the variables in the CasePatterns must be distinct. If types for the
identifiers are not given then types are inferred from the types of the construc-
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tor’s parameters. If types are given then they must agree with the types of the
corresponding parameters.

A MatchExpression is evaluated by first evaluating the selector. The
ExtendedPatterns of each CaseClause are then compared in order with the
resulting value until a matching pattern is found. If the constructor had
parameters then the actual values used to construct the selector value are
bound to the identifiers in the identifier list. The expression to the right of the
=> in the CaseClause is then evaluated in the environment enriched by this
binding. The result of that evaluation is the result of the MatchExpression.

Note that the braces enclosing the CaseClauses may be omitted.

20.34. Quantifier Expression

QuantifierExpression(allowLemma, allowLambda) =
( "forall" | "exists" ) QuantifierDomain "::"
Expression(allowLemma, allowLambda)

QuantifierDomain =
IdentTypeOptional { "," IdentTypeOptional } { Attribute }
[ "|" Expression(allowLemma: true, allowLambda: true) ]

A QuantifierExpression is a boolean expression that specifies that a given
expression (the one following the ::) is true for all (for forall) or some (for
exists) combination of values of the quantified variables, namely those in the
QuantifierDomain.

Here are some examples:
assert forall x : nat | x <= 5 :: x * x <= 25;
(forall n :: 2 <= n ==> (exists d :: n < d < 2*n))

The quantifier identifiers are bound within the scope of the expressions in the
QuantifierExpression.

If types are not given for the quantified identifiers, then Dafny attempts to
infer their types from the context of the expressions. It this is not possible, the
program is in error.

20.35. Set Comprehension Expressions

SetComprehensionExpr(allowLemma, allowLambda) =
[ "set" | "iset" ]
IdentTypeOptional
{ "," IdentTypeOptional }
{ Attribute }
"|"
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Expression(allowLemma, allowLambda)
[ "::" Expression(allowLemma, allowLambda) ]

A set comprehension expression is an expression that yields a set (possibly in-
finite if iset is used) that satisfies specified conditions. There are two basic
forms.

If there is only one quantified variable, the optional "::" Expression need not
be supplied, in which case it is as if it had been supplied and the expression
consists solely of the quantified variable. That is,
set x : T | P(x)

is equivalent to
set x : T | P(x) :: x

For the full form
var S := set x1:T1, x2:T2 ... | P(x1, x2, ...) :: Q(x1, x2, ...)

the elements of S will be all values resulting from evaluation of Q(x1, x2, ...)
for all combinations of quantified variables x1, x2, ... such that predicate
P(x1, x2, ...) holds. For example,
var S := set x:nat, y:nat | x < 2 && y < 2 :: (x, y)

yields S == {(0, 0), (0, 1), (1, 0), (1,1) }

The types on the quantified variables are optional and if not given Dafny will
attempt to infer them from the contexts in which they are used in the P or Q
expressions.

If a finite set was specified (“set” keyword used), Dafny must be able to prove
that the result is finite otherwise the set comprehension expression will not be
accepted.

Set comprehensions involving reference types such as
set o: object | true

are allowed in ghost contexts. In particular, in ghost contexts, the check that
the result is finite should allow any set comprehension where the bound variable
is of a reference type. In non-ghost contexts, it is not allowed, because–even
though the resulting set would be finite–it is not pleasant or practical to compute
at run time.

The universe in which set comprehensions are evaluated is the set of all allocated
objects, of the appropriate type and satisfying the given predicate. For example,
given
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class I {
var i: int

}

method test() {
ghost var m := set x: I :: 0 <= x.i <= 10;

}

the set m contains only those instances of I that have been allocated at the point
in program execution that test is evaluated. This could be no instances, one
per value of x.i in the stated range, multiple instances of I for each value of
x.i, or any other combination.

20.36. Statements in an Expression

StmtInExpr = ( AssertStmt | AssumeStmt | ExpectStmt
| RevealStmt | CalcStmt
)

A StmtInExpr is a kind of statement that is allowed to precede an expression in
order to ensure that the expression can be evaluated without error. For example:
assume x != 0; 10/x

Assert, assume, expect, ‘reveal’ and calc statements can be used in this way.

20.37. Let Expression

LetExpression(allowLemma, allowLambda) =
(
[ "ghost" ] "var" CasePattern { "," CasePattern }
( ":=" | ":-" | { Attribute } ":|" )
Expression(allowLemma: false, allowLambda: true)
{ "," Expression(allowLemma: false, allowLambda: true) }

|
":-"
Expression(allowLemma: false, allowLambda: true)

)
";"
Expression(allowLemma, allowLambda)

A let expression allows binding of intermediate values to identifiers for use in
an expression. The start of the let expression is signaled by the var keyword.
They look much like a local variable declaration except the scope of the variable
only extends to the enclosed expression.

For example:
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var sum := x + y; sum * sum

In the simple case, the CasePattern is just an identifier with optional type
(which if missing is inferred from the rhs).

The more complex case allows destructuring of constructor expressions. For
example:
datatype Stuff = SCons(x: int, y: int) | Other
function GhostF(z: Stuff): int
requires z.SCons?

{
var SCons(u, v) := z; var sum := u + v; sum * sum

}

The syntax using :- is discussed in the following subsection.

20.38. Let or Fail Expression
The Let expression described in Section 20.37 has a failure variant that simply
uses :- instead of :=. This Let-or-Fail expression also permits propagating
failure results. However, in statements Section 19.7, failure results in immediate
return from the method; expressions do not have side effects or immediate return
mechanisms.

The expression :- V; E is desugared into the expression
var tmp := V;
if tmp.IsFailure()
then tmp.PropagateFailure()
else E

The expression var v :- V; E is desugared into the expression
var tmp := V;
if tmp.IsFailure()
then tmp.PropagateFailure()
else var v := tmp.Extract(); E

If the RHS is a list of expressions then the desugaring is similar. var v, v1 :-
V, V1; E becomes
var tmp := V;
if tmp.IsFailure()
then tmp.PropagateFailure()
else var v, v1 := tmp.Extract(), V1; E

So, if tmp is a failure value, then a corresponding failure value is propagated
along; otherwise, the expression is evaluated as normal.
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Note that the value of the let-or-fail expression is either tmp.PropagateFailure()
or E, the two sides of the if-then-else expression. Consequently these two ex-
pressions must have types that can be joined into one type for the whole
let-or-fail expression. Typically that means that tmp.PropagateFailure()
is a failure value and E is a value-carrying success value, both of the same
failure-compatible type, as described in Section 19.7.

20.39. Map Comprehension Expression

MapComprehensionExpr(allowLemma, allowLambda) =
( "map" | "imap" )
IdentTypeOptional
{ "," IdentTypeOptional }
{ Attribute }
[ "|" Expression(allowLemma: true, allowLambda: true) ]
"::"
Expression(allowLemma, allowLambda)
[ ":=" Expression(allowLemma, allowLambda) ]

A MapComprehensionExpr defines a finite or infinite map value by defining a
domain (using the IdentTypeOptional and the optional condition following
the “|”) and for each value in the domain, giving the mapped value using the
expression following the “::”.

For example:
function square(x : int) : int { x * x }
method test()
{
var m := map x : int | 0 <= x <= 10 :: x * x;
ghost var im := imap x : int :: x * x;
ghost var im2 := imap x : int :: square(x);

}

Dafny finite maps must be finite, so the domain must be constrained to be
finite. But imaps may be infinite as the example shows. The last example
shows creation of an infinite map that gives the same results as a function.

If the expression includes the := token, that token separates domain values from
range values. For example, in the following code
method test()
{
var m := map x : int | 1 <= x <= 10 :: 2*x := 3*x;

}

m maps 2 to 3, 4 to 6, and so on.
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20.40. Name Segment

NameSegment = Ident [ GenericInstantiation | HashCall ]

A NameSegment names a Dafny entity by giving its declared name optionally
followed by information to make the name more complete. For the simple case,
it is just an identifier.

If the identifier is for a generic entity, it is followed by a GenericInstantiation
which provides actual types for the type parameters.

To reference a prefix predicate (see Section 18.3.4) or prefix lemma (see Section
18.3.5.3), the identifier must be the name of the copredicate or colemma and it
must be followed by a HashCall.

20.41. Hash Call

HashCall = "#" [ GenericInstantiation ]
"[" Expression(allowLemma: true, allowLambda: true) "]"
"(" [ Bindings ] ")"

A HashCall is used to call the prefix for a copredicate or colemma. In the
non-generic case, just insert "#[k]" before the call argument list where k is the
number of recursion levels.

In the case where the colemma is generic, the generic type argument is given
before. Here is an example:
codatatype Stream<T> = Nil | Cons(head: int, stuff: T,

tail: Stream<T>)

function append(M: Stream, N: Stream): Stream
{
match M
case Nil => N
case Cons(t, s, M') => Cons(t, s, append(M', N))

}

function zeros<T>(s : T): Stream<T>
{
Cons(0, s, zeros(s))

}

function ones<T>(s: T): Stream<T>
{
Cons(1, s, ones(s))

}
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copredicate atmost(a: Stream, b: Stream)
{
match a
case Nil => true
case Cons(h,s,t) => b.Cons? && h <= b.head && atmost(t, b.tail)

}

colemma {:induction false} Theorem0<T>(s: T)
ensures atmost(zeros(s), ones(s))

{
// the following shows two equivalent ways to state the
// co-inductive hypothesis
if (*) {
Theorem0#<T>[_k-1](s);

} else {
Theorem0(s);

}
}

where the HashCall is "Theorem0#<T>[_k-1](s);". See Section 18.3.4 and
Section 18.3.5.3.

20.42. Suffix

Suffix =
( AugmentedDotSuffix_
| DatatypeUpdateSuffix_
| SubsequenceSuffix_
| SlicesByLengthSuffix_
| SequenceUpdateSuffix_
| SelectionSuffix_
| ArgumentListSuffix_
)

The Suffix non-terminal describes ways of deriving a new value from the en-
tity to which the suffix is appended. There are six kinds of suffixes which are
described below.

20.42.1. Augmented Dot Suffix

AugmentedDotSuffix_ = "." DotSuffix
[ GenericInstantiation | HashCall ]

An augmented dot suffix consists of a simple DotSuffix optionally followed by
either
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• a GenericInstantiation (for the case where the item selected by the
DotSuffix is generic), or

• a HashCall for the case where we want to call a prefix copredicate or
colemma. The result is the result of calling the prefix copredicate or
colemma.

20.42.2. Datatype Update Suffix

DatatypeUpdateSuffix_ =
"." "(" MemberBindingUpdate { "," MemberBindingUpdate } ")"

MemberBindingUpdate =
( ident | digits )
":=" Expression(allowLemma: true, allowLambda: true)

A datatype update suffix is used to produce a new datatype value that is the
same as an old datatype value except that the value corresponding to a given
destructor has the specified value. In a MemberBindingUpdate, the ident or
digits is the name of a destructor (i.e. formal parameter name) for one of the
constructors of the datatype. The expression to the right of the := is the new
value for that formal.

All of the destructors in a DatatypeUpdateSuffix_ must be for the same con-
structor, and if they do not cover all of the destructors for that constructor
then the datatype value being updated must have a value derived from that
same constructor.

Here is an example:
module NewSyntax {
datatype MyDataType = MyConstructor(myint:int, mybool:bool)

| MyOtherConstructor(otherbool:bool)
| MyNumericConstructor(42:int)

method test(datum:MyDataType, x:int)
returns (abc:MyDataType, def:MyDataType,

ghi:MyDataType, jkl:MyDataType)
requires datum.MyConstructor?
ensures abc == datum.(myint := x + 2)
ensures def == datum.(otherbool := !datum.mybool)
ensures ghi == datum.(myint := 2).(mybool := false)
// Resolution error: no non_destructor in MyDataType
//ensures jkl == datum.(non_destructor := 5)
ensures jkl == datum.(42 := 7)

{
abc := MyConstructor(x + 2, datum.mybool);
abc := datum.(myint := x + 2);
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def := MyOtherConstructor(!datum.mybool);
ghi := MyConstructor(2, false);
jkl := datum.(42 := 7);

assert abc.(myint := abc.myint - 2) == datum.(myint := x);
}
}

20.42.3. Subsequence Suffix

SubsequenceSuffix_ =
"[" [ Expression(allowLemma: true, allowLambda: true) ]

".." [ Expression(allowLemma: true, allowLambda: true) ]
"]"

A subsequence suffix applied to a sequence produces a new sequence whose ele-
ments are taken from a contiguous part of the original sequence. For example,
expression s[lo..hi] for sequence s, and integer-based numerics lo and hi sat-
isfying 0 <= lo <= hi <= |s|. See section [#sec-other-sequence-expressions]
for details.

20.42.4. Slices By Length Suffix

SlicesByLengthSuffix_ =
"[" Expression(allowLemma: true, allowLambda: true) ":"

[
Expression(allowLemma: true, allowLambda: true)
{ ":" Expression(allowLemma: true, allowLambda: true) }
[ ":" ]

]
"]"

Applying a SlicesByLengthSuffix_ to a sequence produces a sequence of subse-
quences of the original sequence. See section [#sec-other-sequence-expressions]
for details.

20.42.5. Sequence Update Suffix

SequenceUpdateSuffix_ =
"[" Expression(allowLemma: true, allowLambda: true)

":=" Expression(allowLemma: true, allowLambda: true)
"]"

For a sequence s and expressions i and v, the expression s[i := v] is the same
as the sequence s except that at index i it has value v.
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If the type of s is seq<T>, then v must have type T. The index i can have any
integer- or bit-vector-based type (this is one situation in which Dafny imple-
ments implicit conversion, as if an as int were appended to the index expres-
sion). The expression s[i := v] has the same type as s.

20.42.6. Selection Suffix

SelectionSuffix_ =
"[" Expression(allowLemma: true, allowLambda: true)

{ "," Expression(allowLemma: true, allowLambda: true) }
"]"

If a SelectionSuffix_ has only one expression in it, it is a zero-based index that
may be used to select a single element of a sequence or from a single-dimensional
array.

If a SelectionSuffix_ has more than one expression in it, then it is a list of
indices to index into a multi-dimensional array. The rank of the array must be
the same as the number of indices.

If the SelectionSuffix_ is used with an array or a sequence, then each index
expression can have any integer- or bit-vector-based type (this is one situation
in which Dafny implements implicit conversion, as if an as int were appended
to the index expression).

20.42.7. Argument List Suffix

ArgumentListSuffix_ = "(" [ Expressions ] ")"

An argument list suffix is a parenthesized list of expressions that are the argu-
ments to pass to a method or function that is being called. Applying such a
suffix causes the method or function to be called and the result is the result of
the call.

20.43. Expression Lists

Expressions =
Expression(allowLemma: true, allowLambda: true)
{ "," Expression(allowLemma: true, allowLambda: true) }

The Expressions non-terminal represents a list of one or more expressions
separated by commas.

20.44. Parameter Bindings
Method calls, object-allocation calls (new), function calls, and datatype con-
structors can be called with both positional arguments and named arguments.
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ActualBindings =
ActualBinding
{ "," ActualBinding }

ActualBinding =
[ NoUSIdentOrDigits ":=" ]
Expression(allowLemma: true, allowLambda: true)

Positional arguments must be given before any named arguments. Positional
arguments are passed to the formals in the corresponding position. Named ar-
guments are passed to the formal of the given name. Named arguments can be
given out of order from how the corresponding formal parameters are declared.
A formal declared with the modifier nameonly is not allowed to be passed po-
sitionally. The list of bindings for a call must provide exactly one value for
every required parameter and at most one value for each optional parameter,
and must never name non-existent formals. Any optional parameter that is not
given a value takes on the default value declared in the callee for that optional
parameter.

20.45. Formal Parameters and Default-Value Expressions
The formal parameters of a method, constructor in a class, iterator, function,
or datatype constructor can be declared with an expression denoting a default
value. This makes the parameter optional, as opposed to required. All required
parameters must be declared before any optional parameters. All nameless
parameters in a datatype constructor must be declared before any nameonly
parameters.

The default-value expression for a parameter is allowed to mention the other
parameters, including this (for instance methods and instance functions), but
not the implicit _k parameter in least and greatest predicates and lemmas. The
default value of a parameter may mention both preceding and subsequent pa-
rameters, but there may not be any dependent cycle between the parameters
and their default-value expressions.

The well-formedness of default-value expressions is checked independent of the
precondition of the enclosing declaration. For a function, the parameter default-
value expressions may only read what the function’s reads clause allows. For
a datatype constructor, parameter default-value expressions may not read any-
thing. A default-value expression may not be involved in any recursive or mu-
tually recursive calls with the enclosing declaration.

20.46. Compile-Time Constants
In certain situations in Dafny it is helpful to know what the value of a constant
is during program analysis, before verification or execution takes place. For
example, a compiler can choose an optimized representation of a newtype that
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is a subset of int if it knows the range of possible values of the subset type: if
the range is within 0 to less than 256, then an unsigned 8-bit representation can
be used.

To continue this example, suppose a new type is defined as

const MAX := 47
newtype mytype = x | 0 <= x < MAX*4

In this case, we would prefer that Dafny recognize that MAX*4 is known to be
constant with a value of 188. The kinds of expressions for which such an opti-
mization is possible are called compile-time constants. Note that the represen-
tation of mytype makes no difference semantically, but can affect how compiled
code is represented at run time. In addition, though, using a symbolic constant
(which may well be used elsewhere as well) improves the self-documentation of
the code.

In Dafny, the following expressions are compile-time constants10, recursively
(that is, the arguments of any operation must themselves be compile-time con-
stants):

• int, bit-vector, real, boolean, char and string literals
• int operations: + - * / % and unary - and comparisons < <= > >= ==

!=
• real operations: + - * and unary - and comparisons ‘< <= > >= ==

!=’
• bool operations: && || ==> <== <==> == != and unary ‘!’
• bit-vector operations: + - * / % << >> & | ^ and unary ! - and com-

parisons < <= > >= == !=
• char operations: < <= > >= == !=
• string operations: length: |...|, concatenation: +, comparisons < <= ==

!=, indexing []
• conversions between: int real char bit-vector
• newtype operations: newtype arguments, but not newtype results
• symbolic values that are declared const and have an explicit initialization

value that is a compile-time constant
• conditional (if-then-else) expressions
• parenthesized expressions

10This set of operations that are constant-folded may be enlarged in future versions of Dafny.
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21. Refinement
Refinement is the process of replacing something somewhat abstract with some-
thing somewhat more concrete. For example, in one module one might declare
a type name, with no definition, such as type T, and then in a refining module,
provide a definition. One could prove general properties about the contents of
an (abstract) module, and use that abstract module, and then later provide a
more concrete implementation without having to redo all of the proofs.

Dafny supports module refinement, where one module is created from another,
and in that process the new module may be made more concrete than the
previous. More precisely, refinement takes the following form in Dafny. One
module declares some program entities. A second module refines the first by
declaring how to augment or replace (some of) those program entities. The
first module is called the refinement parent; the second is the refining module;
the result of combining the two (the original declarations and the augmentation
directives) is the assembled module or refinement result.

Syntactically, the refinement parent is a normal module declaration. The refin-
ing module declares which module is its refinement parent with the refines
clause:

module P { // refinement parent
}
module M refines P { // refining module
}

The refinement result is created as follows.

0) The refinement result is a module within the same enclosing module as
the refining module, has the same name, and in fact replaces the refining
module in their shared scope.

1) All the declarations (including import and export declarations) of the
parent are copied into the refinement result. These declarations are not
re-resolved. That is, the assignment of declarations and types to syntactic
names is not changed. The refinement result may exist in a different
enclosing module and with a different set of imports than the refinement
parent, so that if names were reresolved, the result might be different (and
possibly not semantically valid). This is why Dafny does not re-resolve
the names in their new context.

2) All the declarations of the refining module that have different names than
the declarations in the refinement parent are also copied into the refine-
ment result. However, because the refining module is just a set of aug-
mentation directives and may refer to names copied from the refinement
parent, resolution of names and types of the declarations copied in this
step is performed in the context of the full refinement result.
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3) Where declarations in the parent and refinement module have the same
name, the second refines the first and the combination, a refined declara-
tion, is the result placed in the refinement result module, to the exclusion
of the declarations with the same name from the parent and refinement
modules.

The way the refinement result declarations are assembled depends on the kind
of declaration; the rules are described in subsections below.

So that it is clear that refinement is taking place, refining declarations have some
syntactic indicator that they are refining some parent declaration. Typically this
is the presence of a ... token.

21.1. Export set declarations
A refining export set declaration begins with the syntax
"export" Ident ellipsis

but otherwise contains the same provides, reveals and extends sections, with
the ellipsis indicating that it is a refining declaration.

The result declaration has the same name as the two input declarations and the
unions of names from each of the provides, reveals, and extends sections,
respectively.

An unnamed export set declaration from the parent is copied into the result
module with the name of the parent module. The result module has a default
export set according to the general rules for export sets, after all of the result
module’s export set declarations have been assembled.

21.2. Import declarations
Aliasing import declarations are not refined. The result module contains the
union of the import declarations from the two input modules. There must be
no names in common among them.

Abstract import declarations (declared with : instead of =, Section 4.6) are
refined. The refinement parent contains the abstract import and the refining
module contains a regular aliasing import for the same name. Dafny checks that
the refining import adheres to the abstract import.

21.3. Sub-module declarations
TODO

21.4. Const declarations
Const declarations can be refined as in the following example.
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module A {
const ToDefine: int
const ToDefineWithoutType: int
const ToGhost: int := 1

}

module B refines A {
const ToDefine: int := 2
const ToDefineWithoutType ... := 3
ghost const ToGhost: int
const NewConst: int

}

Formally, a child const declaration may refine a const declaration from a parent
module if

• the parent has no initialization,
• the child has the same type as the parent, and
• one or both of the following holds:

– the child has an initializing expression
– the child is declared ghost and the parent is not ghost.

A refining module can also introduce new const declarations that do not exist
in the refinement parent.

21.5. Method declarations
Method declarations can be refined as in the following example.
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module A {
method ToImplement(x: int) returns (r: int)
ensures r > x

method ToStrengthen(x: int) returns (r: int)

method ToDeterminize(x: int) returns (r: int)
ensures r >= x

{
var y :| y >= x;
return y;

}

method ToSuperimpose(x: int) returns (r: int)
{
var y: int := x;
if y < 0 {
return -y;

} else {
return y;

}
}

}

module B refines A {
method ToImplement(x: int) returns (r: int)
{
return x + 2;

}

method ToStrengthen...
ensures r == x*2

{
return x*2;

}

method ToDeterminize(x: int) returns (r: int)
{
return x;

}

method ToSuperimpose(x: int) returns (r: int)
{
...;
if y < 0 {
print "inverting";

} else {
print "not modifying";

}
}

}
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Formally, a child method definition may refine a parent method declaration or
definition to perform one or more of the following operations:

• provide a body missing in the parent (as in ToDefine),
• strengthen the postcondition of the parent method by adding one or more

ensures clauses (as in ToStrengthen),
• provide a more deterministic version of a non-deterministic parent body

(as in ToDeterminize), or
• superimpose the body of the parent method with additional statements

(as in ToSuperimpose).

The type signature of a child method must be the same as that of the parent
method it refines. This can be ensured by providing an explicit type signature
equivalent to that of the parent (with renaming of parameters allowed) or by
using an ellipsis (...) to indicate copying of the parent type signature. The
body of a child method must satisfy any ensures clauses from its parent in
addition to any it adds.

To introduce additional statements, the child method can include ellipses within
the body to stand in for portions of code from the parent body. Dafny then
attempts to merge the body of the child with the body of the parent by filling in
the ellipses. In the ToSuperimpose example, the explicit ... at the beginning
will expand to the variable declaration for y. In addition, there is an implicit
... before every }, allowing new statements to be introduced at the beginning
of each block. In ToSuperimpose, these implicit ellipses expand to the return
statements in the parent method.

To help with understanding of the merging process, the IDE provides hover text
that shows what each ... or } expands to.

The refinement result for ToSuperimpose will be as follows.

method ToSuperimpose(x: int) returns (r: int)
{
var y: int := x;
if y < 0 {
print "inverting";
return -y;

} else {
print "not modifying";
return y;

}
}

In general, a child method can add local variables and assignments, add some
forms of assert, convert an assume to an assert (using assert ...;), re-
place a non-deterministic operation with a more deterministic one, and insert
additional return statements. A child method cannot otherwise change the

209



control-flow structure of a method. Full details of the algorithm used to per-
form the merge operation are available in this paper. See also this comment in
the source code.

A refined method is allowed only if it does not invalidate any parent lemmas
that mention it.

A refining module can also introduce new method declarations or definitions
that do not exist in the refinement parent.

21.6. Lemma declarations
As lemmas are (ghost) methods, the description of method refinement from the
previous section also applies to lemma refinement.

A valid refinement is one that does not invalidate any proofs. A lemma from a
refinement parent must still be valid for the refinement result of any method or
lemma it mentions.

21.7. Function and predicate declarations
Function (and equivalently predicate) declarations can be refined as in the fol-
lowing example.

module A {
function F(x: int): (r: int)
ensures r > x

function G(x: int): (r: int)
ensures r > x

{ x + 1 }
}

module B refines A {
function F...
{ x + 1 }

function G...
ensures r == x + 1

}

Formally, a child function (or predicate) definition can refine a parent
function (or predicate) declaration or definition to

• provide a body missing in the parent,
• strengthen the postcondition of the parent function by adding one or more

ensures clauses.
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The relation between the type signature of the parent and child function is the
same as for methods and lemmas, as described in the previous section.

A refining module can also introduce new function declarations or definitions
that do not exist in the refinement parent.

21.8. Iterator declarations
TODO

21.9. Class and trait declarations
TODO

21.10. Type declarations
– opaque, type synonym, subset, newtype, datatype

TODO
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22. Attributes

Attribute = "{:" AttributeName [ Expressions ] "}"

Dafny allows many of its entities to be annotated with Attributes. The grammar
shows where the attribute annotations may appear.

Here is an example of an attribute from the Dafny test suite:
{:MyAttribute "hello", "hi" + "there", 57}

In general an attribute may have any name the user chooses. It may be followed
by a comma-separated list of expressions. These expressions will be resolved and
type-checked in the context where the attribute appears.

In general, any Dafny entity may have a list of attributes. Dafny does not check
that the attributes listed for an entity are appropriate for that entity (which
means that misspellings may go silently unnoticed).

22.1. Dafny Attributes
All entities that Dafny translates to Boogie have their attributes passed on to
Boogie except for the {:axiom} attribute (which conflicts with Boogie usage)
and the {:trigger} attribute which is instead converted into a Boogie quantifier
trigger. See Section 11 of (Leino 2008b).

Dafny has special processing for some attributes. For some attributes, the set-
ting is only looked for on the entity with the attribute. For others, we start at
the entity and if the attribute is not there, look up in the hierarchy (enclosing
class and enclosing modules). The attribute declaration closest to the entity
overrides those further away.

For attributes with a single boolean expression argument, the attribute with no
argument is interpreted as if it were true.

The attributes that are processed specially by Dafny are described in the follow-
ing sections.

22.1.1. assumption

This attribute can only be placed on a local ghost bool variable of a method.
Its declaration cannot have a rhs, but it is allowed to participate as the lhs
of exactly one assignment of the form: b := b && expr;. Such a variable
declaration translates in the Boogie output to a declaration followed by an
assume b command. See (Leino and Wüstholz 2015), Section 3, for example
uses of the {:assumption} attribute in Boogie.
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22.1.2. autoReq boolExpr

For a function declaration, if this attribute is set true at the nearest level, then
its requires clause is strengthened sufficiently so that it may call the functions
that it calls.

For following example
function f(x:int) : bool
requires x > 3

{
x > 7

}

// Should succeed thanks to auto_reqs
function {:autoReq} g(y:int, b:bool) : bool
{
if b then f(y + 2) else f(2*y)

}

the {:autoReq} attribute causes Dafny to deduce a requires clause for g as if
it had been declared
function g(y:int, b:bool) : bool
requires if b then y + 2 > 3 else 2 * y > 3

{
if b then f(y + 2) else f(2*y)

}

22.1.3. autocontracts

Dynamic frames (Kassios 2006; Smans et al. 2008; Smans, Jacobs, and Piessens
2009; Leino 2009) are frame expressions that can vary dynamically during pro-
gram execution. AutoContracts is an experimental feature that will fill much
of the dynamic-frames boilerplate into a class.

From the user’s perspective, what needs to be done is simply:

• mark the class with {:autocontracts}
• declare a function (or predicate) called Valid()

AutoContracts will then:

• Declare:
ghost var Repr: set<object>

• For function/predicate Valid(), insert:
reads this, Repr

• Into body of Valid(), insert (at the beginning of the body):

213



this in Repr && null !in Repr

• and also insert, for every array-valued field A declared in the class:
(A != null ==> A in Repr) &&

• and for every field F of a class type T where T has a field called Repr, also
insert:

(F != null ==> F in Repr && F.Repr <= Repr && this !in Repr)

Except, if A or F is declared with {:autocontracts false}, then the implica-
tion will not be added.

• For every constructor, add:
modifies this
ensures Valid() && fresh(Repr - {this})

• At the end of the body of the constructor, add:
Repr := {this};
if (A != null) { Repr := Repr + {A}; }
if (F != null) { Repr := Repr + {F} + F.Repr; }

• For every method, add:
requires Valid()
modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

• At the end of the body of the method, add:
if (A != null) { Repr := Repr + {A}; }
if (F != null) { Repr := Repr + {F} + F.Repr; }

22.1.4. axiom

The {:axiom} attribute may be placed on a function or method. It means that
the post-condition may be assumed to be true without proof. In that case also
the body of the function or method may be omitted.

The {:axiom} attribute only prevents Dafny from verifying that the body
matches the post-condition. Dafny still verifies the well-formedness of pre-
conditions, of post-conditions, and of the body if provided. To prevent Dafny
from running all these checks, one would use {:verify false}, which is not
recommended.
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22.1.5. compile

The {:compile} attribute takes a boolean argument. It may be applied to any
top-level declaration. If that argument is false, then that declaration will not
be compiled into .Net code.

22.1.6. decl

The {:decl} attribute may be placed on a method declaration. It inhibits the
error message that has would be given when the method has an ensures clauses
but no body. It has been used to declare Dafny interfaces in the MSR IronClad
and IronFleet projects. Instead the extern keyword should be used (but that
is soon to be replaced by the {:extern} attribute).

22.1.7. fuel

The fuel attributes is used to specify how much “fuel” a function should have,
i.e., how many times Z3 is permitted to unfold it’s definition. The new {:fuel}
annotation can be added to the function itself, it which case it will apply to all
uses of that function, or it can overridden within the scope of a module, function,
method, iterator, calc, forall, while, assert, or assume. The general format is:
{:fuel functionName,lowFuel,highFuel}

When applied as an annotation to the function itself, omit functionName. If
highFuel is omitted, it defaults to lowFuel + 1.

The default fuel setting for recursive functions is 1,2. Setting the fuel higher, say,
to 3,4, will give more unfoldings, which may make some proofs go through with
less programmer assistance (e.g., with fewer assert statements), but it may also
increase verification time, so use it with care. Setting the fuel to 0,0 is similar
to making the definition opaque, except when used with all literal arguments.

22.1.8. heapQuantifier

The {:heapQuantifier} attribute may be used on a QuantifierExpression.
When it appears in a quantifier expression, it is as if a new heap-valued quantifier
variable was added to the quantification. Consider this code that is one of the
invariants of a while loop.
invariant forall u {:heapQuantifier} :: f(u) == u + r

The quantifier is translated into the following Boogie:

(forall q$heap#8: Heap, u#5: int ::
{:heapQuantifier}
$IsGoodHeap(q$heap#8) && ($Heap == q$heap#8 || $HeapSucc($Heap, q$heap#8))

==> $Unbox(Apply1(TInt, TInt, f#0, q$heap#8, $Box(u#5))): int == u#5 + r#0);
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What this is saying is that the quantified expression, f(u) == u + r, which
may depend on the heap, is also valid for any good heap that is either the same
as the current heap, or that is derived from it by heap update operations.

22.1.9. imported

If a MethodDecl or FunctionDecl has an {:imported} attribute, then it is al-
lowed to have a empty body even though it has an ensures clause. Ordinarily a
body would be required in order to provide the proof of the ensures clause (but
the (:axiom) attribute also provides this facility, so the need for (:imported)
is not clear.) A method or function declaration may be given the (:imported)
attribute. This suppresses the error message that would be given if a method
or function with an ensures clause does not have a body.

This seems to duplicate what extern and {:decl} do and would be a good
candidate for deprecation.

22.1.10. induction

The {:induction} attribute controls the application of proof by induction to
two contexts. Given a list of variables on which induction might be applied, the
{:induction} attribute selects a sub-list of those variables (in the same order)
to which to apply induction.

Dafny issue 34 proposes to remove the restriction that the sub-list be in the
same order, and would apply induction in the order given in the {:induction}
attribute.

The two contexts are:

• A method, in which case the bound variables are all the in-parameters of
the method.

• A quantifier expression, in which case the bound variables are the bound
variables of the quantifier expression.

The form of the {:induction} attribute is one of the following:

• {:induction} – apply induction to all bound variables
• {:induction false} – suppress induction, that is, don’t apply it to any

bound variable
• {:induction L} where L is a list consisting entirely of bound variables –

apply induction to the specified bound variables
• {:induction X} where X is anything else – treat the same as {:induction},

that is, apply induction to all bound variables. For this usage convention-
ally X is true.

Here is an example of using it on a quantifier expression:
lemma Fill_J(s: seq<int>)
requires forall i :: 1 <= i < |s| ==> s[i-1] <= s[i]
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ensures forall i,j {:induction j} :: 0 <= i < j < |s| ==> s[i] <= s[j]
{
}

22.1.11. layerQuantifier

When Dafny is translating a quantified expression, if it has a {:layerQuantifier}
attribute an additional quantifier variable is added to the quantifier bound
variables. This variable as the predefined LayerType. A {:layerQuantifier}
attribute may be placed on a quantifier expression. Translation of Dafny into
Boogie defines a LayerType which has defined zero and successor constructors.

The Dafny source has the comment that “if a function is recursive, then make
the reveal lemma quantifier a layerQuantifier.” And in that case it adds the
attribute to the quantifier.

There is no explicit user of the {:layerQuantifier} attribute in the Dafny tests.
So I believe this attribute is only used internally by Dafny and not externally.

TODO: Need more complete explanation of this attribute. Dafny issue 35 tracks
further effort for this attribute.

22.1.12. nativeType

The {:nativeType} attribute may only be used on a NewtypeDecl where the
base type is an integral type. It can take one of the following forms:

• {:nativeType} - With no parameters it has no effect and the
NewtypeDecl have its default behavior which is to choose a native
type that can hold any value satisfying the constraints, if possible,
otherwise BigInteger is used.

• {:nativeType true} - Also gives default NewtypeDecl behavior, but
gives an error if base type is not integral.

• {:nativeType false} - Inhibits using a native type. BigInteger is used
for integral types and BitRational for real types.

• {:nativeType "typename"} - This form has an native integral type name
as a string literal. Acceptable values are: “byte”, “sbyte”, “ushort”,
“short”, “uint”, “int”, “ulong” and “long”. An error is reported if the
given datatype cannot hold all the values that satisfy the constraint.

22.1.13. opaque

Ordinarily the body of a function is transparent to its users but sometimes it
is useful to hide it. If a function foo or bar is given the {:opaque} attribute,
then Dafny hides the body of the function, so that it can only be seen within
its recursive clique (if any), or if the programmer specifically asks to see it via
the statement reveal foo(), bar();.
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More information about the Boogie implementation of {:opaque} here.

22.1.14. tailrecursion

This attribute is used on method declarations. It has a boolean argument.

If specified with a false value, it means the user specifically requested no tail
recursion, so none is done.

If specified with a true value, or if no argument is specified, then tail recursive
optimization will be attempted subject to the following conditions:

• It is an error if the method is a ghost method and tail recursion was
explicitly requested.

• Only direct recursion is supported, not mutually recursive methods.
• If {:tailrecursion true} was specified but the code does not allow it,

an error message is given.

22.1.15. timeLimitMultiplier

This attribute may be placed on a method or function declaration and has an
integer argument. If {:timeLimitMultiplier X} was specified a {:timelimit
Y} attributed is passed on to Boogie where Y is X times either the default veri-
fication time limit for a function or method, or times the value specified by the
Boogie timelimit command-line option.

22.1.16. trigger

Trigger attributes are used on quantifiers and comprehensions. They are trans-
lated into Boogie triggers.

22.1.17. typeQuantifier

The {:typeQuantifier} attribute must be used on a quantifier if it quantifies
over types.

22.2. Boogie Attributes
Use the Boogie “/attrHelp” option to get the list of attributes that Boogie
recognizes and their meaning. Here is the output at the time of this writing.
Dafny passes attributes that have been specified to Boogie.
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Boogie: The following attributes are supported by this implementation.

---- On top-level declarations ---------------------------------------------

{:ignore}
Ignore the declaration (after checking for duplicate names).

{:extern}
If two top-level declarations introduce the same name (for example, two
constants with the same name or two procedures with the same name), then
Boogie usually produces an error message. However, if at least one of
the declarations is declared with :extern, one of the declarations is
ignored. If both declarations are :extern, Boogie arbitrarily chooses
one of them to keep; otherwise, Boogie ignore the :extern declaration
and keeps the other.

{:checksum <string>}
Attach a checksum to be used for verification result caching.

---- On implementations and procedures -------------------------------------

{:inline N}
Inline given procedure (can be also used on implementation).
N should be a non-negative number and represents the inlining depth.
With /inline:assume call is replaced with "assume false" once inlining depth is reached.
With /inline:assert call is replaced with "assert false" once inlining depth is reached.
With /inline:spec call is left as is once inlining depth is reached.
With the above three options, methods with the attribute {:inline N} are not verified.
With /inline:none the entire attribute is ignored.

{:verify false}
Skip verification of an implementation.

{:vcs_max_cost N}
{:vcs_max_splits N}
{:vcs_max_keep_going_splits N}
Per-implementation versions of
/vcsMaxCost, /vcsMaxSplits and /vcsMaxKeepGoingSplits.

{:selective_checking true}
Turn all asserts into assumes except for the ones reachable from
assumptions marked with the attribute {:start_checking_here}.
Thus, "assume {:start_checking_here} something;" becomes an inverse
of "assume false;": the first one disables all verification before
it, and the second one disables all verification after.

{:priority N}
Assign a positive priority 'N' to an implementation to control the order
in which implementations are verified (default: N = 1).

{:id <string>}
Assign a unique ID to an implementation to be used for verification
result caching (default: "<impl. name>:0").

{:timeLimit N}
Set the time limit for a given implementation.

---- On functions ----------------------------------------------------------

{:builtin "spec"}
{:bvbuiltin "spec"}
Rewrite the function to built-in prover function symbol 'fn'.

{:inline}
{:inline true}
Expand function according to its definition before going to the prover.

{:never_pattern true}
Terms starting with this function symbol will never be
automatically selected as patterns. It does not prevent them
from being used inside the triggers, and does not affect explicit
trigger annotations. Internally it works by adding {:nopats ...}
annotations to quantifiers.

{:identity}
{:identity true}
If the function has 1 argument and the use of it has type X->X for
some X, then the abstract interpreter will treat the function as an
identity function. Note, the abstract interpreter trusts the
attribute--it does not try to verify that the function really is an
identity function.

---- On variables ----------------------------------------------------------

{:existential true}
Marks a global Boolean variable as existentially quantified. If
used in combination with option /contractInfer Boogie will check
whether there exists a Boolean assignment to the existentials
that makes all verification conditions valid. Without option
/contractInfer the attribute is ignored.

---- On assert statements --------------------------------------------------

{:subsumption n}
Overrides the /subsumption command-line setting for this assertion.

{:split_here}
Verifies code leading to this point and code leading from this point
to the next split_here as separate pieces. May help with timeouts.
May also occasionally double-report errors.

---- The end ---------------------------------------------------------------

219



However a scan of Boogie’s sources shows it checks for the following attributes.

• {:$}
• {:$renamed$}
• {:InlineAssume}
• {:PossiblyUnreachable}
• {:__dominator_enabled}
• {:__enabled}
• {:a##post##}
• {:absdomain}
• {:ah}
• {:assumption}
• {:assumption_variable_initialization}
• {:atomic}
• {:aux}
• {:both}
• {:bvbuiltin}
• {:candidate}
• {:captureState}
• {:checksum}
• {:constructor}
• {:datatype}
• {:do_not_predicate}
• {:entrypoint}
• {:existential}
• {:exitAssert}
• {:expand}
• {:extern}
• {:hidden}
• {:ignore}
• {:inline}
• {:left}
• {:linear}
• {:linear_in}
• {:linear_out}
• {:msg}
• {:name}
• {:originated_from_invariant}
• {:partition}
• {:positive}
• {:post}
• {:pre}
• {:precondition_previous_snapshot}
• {:qid}
• {:right}
• {:selective_checking}
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• {:si_fcall}
• {:si_unique_call}
• {:sourcefile}
• {:sourceline}
• {:split_here}
• {:stage_active}
• {:stage_complete}
• {:staged_houdini_tag}
• {:start_checking_here}
• {:subsumption}
• {:template}
• {:terminates}
• {:upper}
• {:verified_under}
• {:weight}
• {:yields}
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23. Advanced Topics
23.1. Type Parameter Completion
http://leino.science/papers/krml270.html

TO BE WRITTEN

23.2. Type Inference
TO BE WRITTEN

23.3. Ghost Inference
TO BE WRITTEN

23.4. Well-founded Functions and Extreme Predicates
TODO: This section needs rewriting

This section is a tutorial on well-founded functions and extreme predicates. We
place it here in preparation for Section [#sec-class-types] where function and
predicate definitions are described.

Recursive functions are a core part of computer science and mathematics.
Roughly speaking, when the definition of such a function spells out a terminat-
ing computation from given arguments, we may refer to it as a well-founded
function. For example, the common factorial and Fibonacci functions are
well-founded functions.

There are also other ways to define functions. An important case regards the
definition of a boolean function as an extreme solution (that is, a least or greatest
solution) to some equation. For computer scientists with interests in logic or
programming languages, these extreme predicates are important because they
describe the judgments that can be justified by a given set of inference rules
(see, e.g., (Camilleri and Melham 1992; Winskel 1993; Leroy and Grall 2009;
Pierce et al. 2015; Nipkow and Klein 2014)).

To benefit from machine-assisted reasoning, it is necessary not just to under-
stand extreme predicates but also to have techniques for proving theorems
about them. A foundation for this reasoning was developed by Paulin-Mohring
(Paulin-Mohring 1993) and is the basis of the constructive logic supported by
Coq (Bertot and Castéran 2004) as well as other proof assistants (Bove, Dybjer,
and Norell 2009; Swamy et al. 2011). Essentially, the idea is to represent the
knowledge that an extreme predicate holds by the proof term by which this
knowledge was derived. For a predicate defined as the least solution, such proof
terms are values of an inductive datatype (that is, finite proof trees), and for
the greatest solution, a coinductive datatype (that is, possibly infinite proof
trees). This means that one can use induction and coinduction when reasoning
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about these proof trees. Therefore, these extreme predicates are known as, re-
spectively, inductive predicates and coinductive predicates (or, co-predicates for
short). Support for extreme predicates is also available in the proof assistants
Isabelle (Paulson 1994) and HOL (Harrison 1995).

Dafny supports both well-founded functions and extreme predicates. This sec-
tion is a tutorial that describes the difference in general terms, and then de-
scribes novel syntactic support in Dafny for defining and proving lemmas with
extreme predicates. Although Dafny’s verifier has at its core a first-order SMT
solver, Dafny’s logical encoding makes it possible to reason about fixpoints in
an automated way.

The encoding for coinductive predicates in Dafny was described previously
(Leino and Moskal 2014b) and is here described in Section [#sec-co-inductive-
datatypes].

23.4.1. Function Definitions

To define a function 𝑓 ∶ 𝑋 → 𝑌 in terms of itself, one can write an equation like
~ Equation {#eq-general}

𝑓 = ℱ(𝑓)

~

where ℱ is a non-recursive function of type (𝑋 → 𝑌 ) → 𝑋 → 𝑌 . Because it
takes a function as an argument, ℱ is referred to as a functor (or functional,
but not to be confused by the category-theory notion of a functor). Throughout,
I will assume that ℱ(𝑓) by itself is well defined, for example that it does not
divide by zero. I will also assume that 𝑓 occurs only in fully applied calls in
ℱ(𝑓); eta expansion can be applied to ensure this. If 𝑓 is a boolean function,
that is, if 𝑌 is the type of booleans, then I call 𝑓 a predicate.

For example, the common Fibonacci function over the natural numbers can be
defined by the equation

fib = 𝜆𝑛 • if 𝑛 < 2 then 𝑛 else fib(𝑛 − 2) + fib(𝑛 − 1)

With the understanding that the argument 𝑛 is universally quantified, we can
write this equation equivalently as

~ Equation {#eq-fib}

fib(𝑛) = if 𝑛 < 2 then 𝑛 else fib(𝑛 − 2)

~
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The fact that the function being defined occurs on both sides of the equation
causes concern that we might not be defining the function properly, leading to a
logical inconsistency. In general, there could be many solutions to an equation
like [#eq-general] or there could be none. Let’s consider two ways to make sure
we’re defining the function uniquely.

23.4.1.1. Well-founded Functions A standard way to ensure that equation
[#eq-general] has a unique solution in 𝑓 is to make sure the recursion is well-
founded, which roughly means that the recursion terminates. This is done by
introducing any well-founded relation ≪ on the domain of 𝑓 and making sure
that the argument to each recursive call goes down in this ordering. More
precisely, if we formulate [#eq-general] as

𝑓(𝑥) = ℱ′(𝑓)

then we want to check 𝐸 ≪ 𝑥 for each call 𝑓(𝐸) in 𝑓(𝑥) = ℱ′(𝑓). When a
function definition satisfies this decrement condition, then the function is said
to be well-founded.

For example, to check the decrement condition for fib in [#eq-fib], we can pick
≪ to be the arithmetic less-than relation on natural numbers and check the
following, for any 𝑛:

2 ≤ 𝑛 ⟹ 𝑛 − 2 ≪ 𝑛 ∧ 𝑛 − 1 ≪ 𝑛

Note that we are entitled to use the antecedent 2 ≤ 𝑛 because that is the
condition under which the else branch in [#eq-fib] is evaluated.

A well-founded function is often thought of as “terminating” in the sense that
the recursive depth in evaluating 𝑓 on any given argument is finite. That is, there
are no infinite descending chains of recursive calls. However, the evaluation of
𝑓 on a given argument may fail to terminate, because its width may be infinite.
For example, let 𝑃 be some predicate defined on the ordinals and let P↓ be a
predicate on the ordinals defined by the following equation:

P_ ↓= 𝑃(𝑜) ∧ ∀𝑝 • 𝑝 ≪ 𝑜 ⟹ P_ ↓ (𝑝)

With ≪ as the usual ordering on ordinals, this equation satisfies the decrement
condition, but evaluating P_ ↓ (𝜔) would require evaluating P_ ↓ (𝑛) for every
natural number 𝑛. However, what we are concerned about here is to avoid
mathematical inconsistencies, and that is indeed a consequence of the decrement
condition.
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23.4.1.2. Example with Well-founded Functions So that we can later
see how inductive proofs are done in Dafny, let’s prove that for any 𝑛, fib(𝑛) is
even iff 𝑛 is a multiple of 3. We split our task into two cases. If 𝑛 < 2, then the
property follows directly from the definition of fib. Otherwise, note that exactly
one of the three numbers 𝑛 − 2, 𝑛 − 1, and 𝑛 is a multiple of 3. If 𝑛 is the
multiple of 3, then by invoking the induction hypothesis on 𝑛 − 2 and 𝑛 − 1, we
obtain that fib(𝑛 − 2) + fib(𝑛 − 1) is the sum of two odd numbers, which is even.
If 𝑛 − 2 or 𝑛 − 1 is a multiple of 3, then by invoking the induction hypothesis
on 𝑛 − 2 and 𝑛 − 1, we obtain that fib(𝑛 − 2) + fib(𝑛 − 1) is the sum of an
even number and an odd number, which is odd. In this proof, we invoked the
induction hypothesis on 𝑛 − 2 and on 𝑛 − 1. This is allowed, because both are
smaller than 𝑛, and hence the invocations go down in the well-founded ordering
on natural numbers.

23.4.1.3. Extreme Solutions We don’t need to exclude the possibility of
equation [#eq-general] having multiple solutions—instead, we can just be clear
about which one of them we want. Let’s explore this, after a smidgen of lattice
theory.

For any complete lattice (𝑌 , ≤) and any set 𝑋, we can by pointwise extension
define a complete lattice (𝑋 → 𝑌 , ⇒̇), where for any 𝑓, 𝑔 ∶ 𝑋 → 𝑌 ,

Equation

𝑓⇒̇𝑞 ≡ ∀𝑥 • 𝑓(𝑥) ≤ 𝑔(𝑥)

In particular, if 𝑌 is the set of booleans ordered by implication (false ≤ true),
then the set of predicates over any domain 𝑋 forms a complete lattice. Tarski’s
Theorem (Tarski 1955) tells us that any monotonic function over a complete
lattice has a least and a greatest fixpoint. In particular, this means that ℱ has
a least fixpoint and a greatest fixpoint, provided ℱ is monotonic.

Speaking about the set of solutions in 𝑓 to [#eq-general] is the same as speaking
about the set of fixpoints of functor ℱ. In particular, the least and greatest
solutions to [#eq-general] are the same as the least and greatest fixpoints of
ℱ. In casual speak, it happens that we say “fixpoint of [#eq-general]”, or more
grotesquely, “fixpoint of 𝑓” when we really mean “fixpoint of ℱ”.

In conclusion of our little excursion into lattice theory, we have that, under
the proviso of ℱ being monotonic, the set of solutions in 𝑓 to [#eq-general] is
nonempty, and among these solutions, there is in the ⇒̇ ordering a least solution
(that is, a function that returns false more often than any other) and a greatest
solution (that is, a function that returns true more often than any other).

When discussing extreme solutions, I will now restrict my attention to boolean
functions (that is, with 𝑌 being the type of booleans). Functor ℱ is monotonic if
the calls to 𝑓 in ℱ′(𝑓) are in positive positions (that is, under an even number of
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negations). Indeed, from now on, I will restrict my attention to such monotonic
functors ℱ.

Let me introduce a running example. Consider the following equation, where 𝑥
ranges over the integers:

~ Equation {#eq-EvenNat}

𝑔(𝑥) = (𝑥 = 0 ∨ 𝑔(𝑥 − 2))

~

This equation has four solutions in 𝑔. With 𝑤 ranging over the integers, they
are:

Equation

𝑔(𝑥) ≡ 𝑥 ∈ {𝑤 | 0 ≤ 𝑤 ∧ 𝑤 even}
𝑔(𝑥) ≡ 𝑥 ∈ {𝑤 | 𝑤 even}
𝑔(𝑥) ≡ 𝑥 ∈ {𝑤 | (0 ≤ 𝑤 ∧ 𝑤 even) ∨ 𝑤 odd}
𝑔(𝑥) ≡ 𝑥 ∈ {𝑤 | true}

The first of these is the least solution and the last is the greatest solution.

In the literature, the definition of an extreme predicate is often given as a set
of inference rules. To designate the least solution, a single line separating the
antecedent (on top) from conclusion (on bottom) is used:

Equation {#g-ind-rule} 𝑔(0)
𝑔(𝑥−2)

𝑔(𝑥)

Through repeated applications of such rules, one can show that the predicate
holds for a particular value. For example, the derivation, or proof tree, to the
left in Figure [#fig-proof-trees] shows that 𝑔(6) holds. (In this simple example,
the derivation is a rather degenerate proof “tree”.) The use of these inference
rules gives rise to a least solution, because proof trees are accepted only if they
are finite.

When inference rules are to designate the greatest solution, a thick line is used:

~ Equation {#g-coind-rule} 𝑔(0)
𝑔(𝑥 − 2)

𝑔(𝑥)
In this case, proof trees are allowed to be infinite. For example, the left-hand
example below shows a finite proof tree that uses the rules of [#g-ind-rule] to
establish 𝑔(6). On the right is a partial depiction of an infinite proof tree that
uses the rules of [#g-coind-rule] to establish 𝑔(1).
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𝑔(0)
𝑔(2)
𝑔(4)
𝑔(6)

⋮
𝑔(−5)
𝑔(−3)
𝑔(−1)
𝑔(1)

Note that derivations may not be unique. For example, in the case of the
greatest solution for 𝑔, there are two proof trees that establish 𝑔(0): one is the
finite proof tree that uses the left-hand rule of [#g-coind-rule] once, the other is
the infinite proof tree that keeps on using the right-hand rule of [#g-coind-rule].

23.4.2. Working with Extreme Predicates

In general, one cannot evaluate whether or not an extreme predicate holds for
some input, because doing so may take an infinite number of steps. For example,
following the recursive calls in the definition [#eq-EvenNat] to try to evaluate
𝑔(7) would never terminate. However, there are useful ways to establish that
an extreme predicate holds and there are ways to make use of one once it has
been established.

For any ℱ as in [#eq-general], I define two infinite series of well-founded func-
tions, ♭𝑓𝑘 and ♯𝑓𝑘 where 𝑘 ranges over the natural numbers:

~ Equation {#eq-least-approx}

♭𝑓𝑘(𝑥) = { false if 𝑘 = 0
ℱ(♭𝑓𝑘−1)(𝑥) if 𝑘 > 0 }

.

~ Equation {#eq-greatest-approx}

♯𝑓𝑘(𝑥) = { true if 𝑘 = 0
ℱ(♯𝑓𝑘−1)(𝑥) if 𝑘 > 0 }

.
~

These functions are called the iterates of 𝑓 , and I will also refer to them as the
prefix predicates of 𝑓 (or the prefix predicate of 𝑓 , if we think of 𝑘 as being a
parameter). Alternatively, we can define ♭𝑓𝑘 and ♯𝑓𝑘 without mentioning 𝑥: Let
⊥ denote the function that always returns false, let ⊤ denote the function
that always returns true, and let a superscript on ℱ denote exponentiation
(for example, ℱ0(𝑓) = 𝑓 and ℱ2(𝑓) = ℱ(ℱ(𝑓))). Then, [#eq-least-approx]
and [#eq-greatest-approx] can be stated equivalently as ♭𝑓𝑘 = ℱ𝑘(⊥) and ♯𝑓𝑘 =
ℱ𝑘(⊤).
For any solution 𝑓 to equation [#eq-general], we have, for any 𝑘 and ℓ such that
𝑘 ≤ ℓ:
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Equation {#eq-prefix-postfix}

♭𝑓𝑘 ⇒̇ ♭𝑓ℓ ⇒̇ 𝑓 ⇒̇ ♯𝑓ℓ ⇒̇ ♯𝑓𝑘

In other words, every ♭𝑓𝑘 is a pre-fixpoint of 𝑓 and every ♯𝑓𝑘 is a post-fixpoint of
𝑓 . Next, I define two functions, 𝑓↓ and 𝑓↑, in terms of the prefix predicates:

Equation {#eq-least-is-exists}

𝑓↓(𝑥) = ∃𝑘 • ♭𝑓𝑘(𝑥)

Equation {#eq-greatest-is-forall}

𝑓↑(𝑥) = ∀𝑘 • ♯𝑓𝑘(𝑥)

By [#eq-prefix-postfix], we also have that 𝑓↓ is a pre-fixpoint of ℱ and 𝑓↑ is a
post-fixpoint of ℱ. The marvelous thing is that, if ℱ is continuous, then 𝑓↓ and
𝑓↑ are the least and greatest fixpoints of ℱ. These equations let us do proofs
by induction when dealing with extreme predicates. I will explain in Section
[#sec-friendliness] how to check for continuity.

Let’s consider two examples, both involving function 𝑔 in [#eq-EvenNat]. As it
turns out, 𝑔’s defining functor is continuous, and therefore I will write 𝑔↓ and
𝑔↑ to denote the least and greatest solutions for 𝑔 in [#eq-EvenNat].

23.4.2.1. Example with Least Solution The main technique for estab-
lishing that 𝑔↓(𝑥) holds for some 𝑥, that is, proving something of the form
𝑄 ⟹ 𝑔↓(𝑥), is to construct a proof tree like the one for 𝑔(6) in Figure [#fig-
proof-trees]. For a proof in this direction, since we’re just applying the defining
equation, the fact that we’re using a least solution for 𝑔 never plays a role (as
long as we limit ourselves to finite derivations).

The technique for going in the other direction, proving something from an estab-
lished 𝑔↓ property, that is, showing something of the form 𝑔↓(𝑥) ⟹ 𝑅, typically
uses induction on the structure of the proof tree. When the antecedent of our
proof obligation includes a predicate term 𝑔↓(𝑥), it is sound to imagine that
we have been given a proof tree for 𝑔↓(𝑥). Such a proof tree would be a data
structure—to be more precise, a term in an inductive datatype. For this reason,
least solutions like 𝑔↓ have been given the name inductive predicate.

Let’s prove 𝑔↓(𝑥) ⟹ 0 ≤ 𝑥 ∧ 𝑥 even. We split our task into two cases,
corresponding to which of the two proof rules in [#g-ind-rule] was the last one
applied to establish 𝑔↓(𝑥). If it was the left-hand rule, then 𝑥 = 0, which makes
it easy to establish the conclusion of our proof goal. If it was the right-hand rule,
then we unfold the proof tree one level and obtain 𝑔↓(𝑥 − 2). Since the proof
tree for 𝑔↓(𝑥 − 2) is smaller than where we started, we invoke the induction
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hypothesis and obtain 0 ≤ (𝑥 − 2) ∧ (𝑥 − 2) even, from which it is easy to
establish the conclusion of our proof goal.

Here’s how we do the proof formally using [#eq-least-is-exists]. We massage the
general form of our proof goal:

| 𝑓↑(𝑥) ⟹ 𝑅 |
= | { [#eq-least-is-exists] } |

| (
𝑒𝑥𝑖𝑠𝑡𝑠𝑘 • ♭𝑓𝑘(𝑥)) ⟹ 𝑅 |
= | { distribute ⟹ over ∃ to the left } |

| ∀𝑘 • (♭𝑓𝑘(𝑥) ⟹ 𝑅) |

The last line can be proved by induction over 𝑘. So, in our case, we prove
♭𝑔_𝑘(𝑥) ⟹ 0 ≤ 𝑥 ∧ 𝑥 even for every 𝑘. If 𝑘 = 0, then ♭𝑔_𝑘(𝑥) is false, so
our goal holds trivially. If 𝑘 > 0, then ♭𝑔_𝑘(𝑥) = (𝑥 = 0 ∨ ♭𝑔_𝑘 − 1(𝑥 − 2)).
Our goal holds easily for the first disjunct (𝑥 = 0). For the other disjunct, we
apply the induction hypothesis (on the smaller 𝑘 −1 and with 𝑥−2) and obtain
0 ≤ (𝑥 − 2) ∧ (𝑥 − 2) even, from which our proof goal follows.

23.4.2.2. Example with Greatest Solution We can think of a given predi-
cate 𝑔↑(𝑥) as being represented by a proof tree—in this case a term in a coinduc-
tive datatype, since the proof may be infinite. For this reason, greatest solutions
like 𝑔↑ have been given the name coinductive predicate, or co-predicate for short.
The main technique for proving something from a given proof tree, that is, to
prove something of the form 𝑔↑(𝑥) ⟹ 𝑅, is to destruct the proof. Since this
is just unfolding the defining equation, the fact that we’re using a greatest solu-
tion for 𝑔 never plays a role (as long as we limit ourselves to a finite number of
unfoldings).

To go in the other direction, to establish a predicate defined as a greatest so-
lution, like 𝑄 ⟹ 𝑔↑(𝑥), we may need an infinite number of steps. For this
purpose, we can use induction’s dual, coinduction. Were it not for one little de-
tail, coinduction is as simple as continuations in programming: the next part of
the proof obligation is delegated to the coinduction hypothesis. The little detail
is making sure that it is the “next” part we’re passing on for the continuation,
not the same part. This detail is called productivity and corresponds to the re-
quirement in induction of making sure we’re going down a well-founded relation
when applying the induction hypothesis. There are many sources with more
information, see for example the classic account by Jacobs and Rutten (Jacobs
and Rutten 2011) or a new attempt by Kozen and Silva that aims to emphasize
the simplicity, not the mystery, of coinduction (Kozen and Silva 2012).

Let’s prove true ⟹ 𝑔↑(𝑥). The intuitive coinductive proof goes like this:
According to the right-hand rule of [#g-coind-rule], 𝑔↑(𝑥) follows if we establish
𝑔↑(𝑥 − 2), and that’s easy to do by invoking the coinduction hypothesis. The
“little detail”, productivity, is satisfied in this proof because we applied a rule
in [#g-coind-rule] before invoking the coinduction hypothesis.
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For anyone who may have felt that the intuitive proof felt too easy, here is a
formal proof using [#eq-greatest-is-forall], which relies only on induction. We
massage the general form of our proof goal:

The last line can be proved by induction over 𝑘. So, in our case, we prove

23.4.3. Other Techniques

Although in this paper I consider only well-founded functions and extreme pred-
icates, it is worth mentioning that there are additional ways of making sure that
the set of solutions to [#eq-general] is nonempty. For example, if all calls to 𝑓 in
ℱ′(𝑓) are tail-recursive calls, then (under the assumption that 𝑌 is nonempty)
the set of solutions is nonempty. To see this, consider an attempted evaluation
of 𝑓(𝑥) that fails to determine a definite result value because of an infinite chain
of calls that applies 𝑓 to each value of some subset 𝑋′ of 𝑋. Then, apparently,
the value of 𝑓 for any one of the values in 𝑋′ is not determined by the equa-
tion, but picking any particular result values for these makes for a consistent
definition. This was pointed out by Manolios and Moore (Manolios and Moore
2003). Functions can be underspecified in this way in the proof assistants ACL2
(Kaufmann, Manolios, and Moore 2000) and HOL (Krauss 2009).

23.5. Functions in Dafny
In this section, I explain with examples the support in Dafny for well-founded
functions, extreme predicates, and proofs regarding these.

23.5.1. Well-founded Functions in Dafny

Declarations of well-founded functions are unsurprising. For example, the Fi-
bonacci function is declared as follows:
function fib(n: nat): nat
{
if n < 2 then n else fib(n-2) + fib(n-1)

}

Dafny verifies that the body (given as an expression in curly braces) is well
defined. This includes decrement checks for recursive (and mutually recursive)
calls. Dafny predefines a well-founded relation on each type and extends it
to lexicographic tuples of any (fixed) length. For example, the well-founded
relation 𝑥 ≪ 𝑦 for integers is 𝑥 < 𝑦 ∧ 0 ≤ 𝑦, the one for reals is 𝑥 ≤
𝑦 − 1.0 ∧ 0.0 ≤ 𝑦 (this is the same ordering as for integers, if you read the
integer relation as 𝑥 ≤ 𝑦 − 1 ∧ 0 ≤ 𝑦), the one for inductive datatypes is
structural inclusion, and the one for coinductive datatypes is false.

Using a decreases clause, the programmer can specify the term in this prede-
fined order. When a function definition omits a decreases clause, Dafny makes
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a simple guess. This guess (which can be inspected by hovering over the func-
tion name in the Dafny IDE) is very often correct, so users are rarely bothered
to provide explicit decreases clauses.

If a function returns bool, one can drop the result type : bool and change the
keyword function to predicate.

23.5.2. Proofs in Dafny

Dafny has lemma declarations. These are really just special cases of methods:
they can have pre- and postcondition specifications and their body is a code
block. Here is the lemma we stated and proved in Section [#sec-fib-example]:
lemma FibProperty(n: nat)
ensures fib(n) % 2 == 0 <==> n % 3 == 0

{
if n < 2 {
} else {
FibProperty(n-2); FibProperty(n-1);

}
}

The postcondition of this lemma (keyword ensures) gives the proof goal. As in
any program-correctness logic (e.g., (Hoare 1969)), the postcondition must be
established on every control path through the lemma’s body. For FibProperty,
I give the proof by an if statement, hence introducing a case split. The then
branch is empty, because Dafny can prove the postcondition automatically in
this case. The else branch performs two recursive calls to the lemma. These are
the invocations of the induction hypothesis and they follow the usual program-
correctness rules, namely: the precondition must hold at the call site, the call
must terminate, and then the caller gets to assume the postcondition upon
return. The “proof glue” needed to complete the proof is done automatically by
Dafny.

Dafny features an aggregate statement using which it is possible to make (pos-
sibly infinitely) many calls at once. For example, the induction hypothesis can
be called at once on all values n' smaller than n:
forall n' | 0 <= n' < n {
FibProperty(n');

}

For our purposes, this corresponds to strong induction. More generally, the
forall statement has the form
forall k | P(k)
ensures Q(k)

{ Statements; }
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Logically, this statement corresponds to universal introduction: the body proves
that Q(k) holds for an arbitrary k such that P(k), and the conclusion of the
forall statement is then ∀𝑘 • 𝑃(𝑘) ⟹ 𝑄(𝑘). When the body of the forall
statement is a single call (or calc statement), the ensures clause is inferred
and can be omitted, like in our FibProperty example.

Lemma FibProperty is simple enough that its whole body can be replaced
by the one forall statement above. In fact, Dafny goes one step further: it
automatically inserts such a forall statement at the beginning of every lemma
(Leino 2012). Thus, FibProperty can be declared and proved simply by:
lemma FibProperty(n: nat)
ensures fib(n) % 2 == 0 <==> n % 3 == 0

{ }

Going in the other direction from universal introduction is existential elimina-
tion, also known as Skolemization. Dafny has a statement for this, too: for any
variable x and boolean expression Q, the assign such that statement x :| Q;
says to assign to x a value such that Q will hold. A proof obligation when using
this statement is to show that there exists an x such that Q holds. For example,
if the fact
𝑒𝑥𝑖𝑠𝑡𝑠𝑘• 100 ≤ fib(𝑘) < 200 is known, then the statement k :| 100 <= fib(k)
< 200; will assign to k some value (chosen arbitrarily) for which fib(k) falls
in the given range.

23.5.3. Extreme Predicates in Dafny

In this previous subsection, I explained that a predicate declaration introduces
a well-founded predicate. The declarations for introducing extreme predicates
are inductive predicate and copredicate. Here is the definition of the least
and greatest solutions of 𝑔 from above, let’s call them g and G:
inductive predicate g(x: int) { x == 0 || g(x-2) }
copredicate G(x: int) { x == 0 || G(x-2) }

When Dafny receives either of these definitions, it automatically declares the
corresponding prefix predicates. Instead of the names ♭𝑔𝑘 and ♯𝑔𝑘 that I used
above, Dafny names the prefix predicates g#[k] and G#[k], respectively, that
is, the name of the extreme predicate appended with #, and the subscript is
given as an argument in square brackets. The definition of the prefix predicate
derives from the body of the extreme predicate and follows the form in [#eq-
least-approx] and [#eq-greatest-approx]. Using a faux-syntax for illustrative
purposes, here are the prefix predicates that Dafny defines automatically from
the extreme predicates g and G:
predicate g#[_k: nat](x: int) { _k != 0 && (x == 0 || g#[_k-1](x-2)) }
predicate G#[_k: nat](x: int) { _k != 0 ==> (x == 0 || G#[_k-1](x-2)) }

The Dafny verifier is aware of the connection between extreme predicates and
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their prefix predicates, [#eq-least-is-exists] and [#eq-greatest-is-forall].

Remember that to be well defined, the defining functor of an extreme predicate
must be monotonic, and for [#eq-least-is-exists] and [#eq-greatest-is-forall] to
hold, the functor must be continuous. Dafny enforces the former of these by
checking that recursive calls of extreme predicates are in positive positions. The
continuity requirement comes down to checking that they are also in continuous
positions: that recursive calls to inductive predicates are not inside unbounded
universal quantifiers and that recursive calls to co-predicates are not inside un-
bounded existential quantifiers (Milner 1982; Leino and Moskal 2014b).

23.5.4. Proofs about Extreme Predicates

From what I have presented so far, we can do the formal proofs from Sections
[#sec-example-least-solution] and [#sec-example-greatest-solution]. Here is the
former:
lemma EvenNat(x: int)
requires g(x)
ensures 0 <= x && x % 2 == 0

{
var k: nat :| g#[k](x);
EvenNatAux(k, x);

}
lemma EvenNatAux(k: nat, x: int)
requires g#[k](x)
ensures 0 <= x && x % 2 == 0

{
if x == 0 { } else { EvenNatAux(k-1, x-2); }

}

Lemma EvenNat states the property we wish to prove. From its precondition
(keyword requires) and [#eq-least-is-exists], we know there is some k that
will make the condition in the assign-such-that statement true. Such a value
is then assigned to k and passed to the auxiliary lemma, which promises to
establish the proof goal. Given the condition g#[k](x), the definition of g# lets
us conclude k != 0 as well as the disjunction x == 0 || g#[k-1](x-2). The
then branch considers the case of the first disjunct, from which the proof goal
follows automatically. The else branch can then assume g#[k-1](x-2) and calls
the induction hypothesis with those parameters. The proof glue that shows the
proof goal for x to follow from the proof goal with x-2 is done automatically.

Because Dafny automatically inserts the statement
forall k', x' | 0 <= k' < k && g#[k'](x') {
EvenNatAux(k', x');

}

at the beginning of the body of EvenNatAux, the body can be left empty and
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Dafny completes the proof automatically.

Here is the Dafny program that gives the proof from Section [#sec-example-
greatest-solution]:
lemma Always(x: int)
ensures G(x)

{ forall k: nat { AlwaysAux(k, x); } }
lemma AlwaysAux(k: nat, x: int)
ensures G#[k](x)

{ }

While each of these proofs involves only basic proof rules, the setup feels a
bit clumsy, even with the empty body of the auxiliary lemmas. Moreover, the
proofs do not reflect the intuitive proofs I described in Section [#sec-example-
least-solution] and [#sec-example-greatest-solution]. These shortcoming are ad-
dressed in the next subsection.

23.5.5. Nicer Proofs of Extreme Predicates

The proofs we just saw follow standard forms: use Skolemization to convert the
inductive predicate into a prefix predicate for some k and then do the proof in-
ductively over k; respectively, by induction over k, prove the prefix predicate for
every k, then use universal introduction to convert to the coinductive predicate.
With the declarations inductive lemma and colemma, Dafny offers to set up
the proofs in these standard forms. What is gained is not just fewer characters
in the program text, but also a possible intuitive reading of the proofs. (Okay,
to be fair, the reading is intuitive for simpler proofs; complicated proofs may or
may not be intuitive.)

Somewhat analogous to the creation of prefix predicates from extreme predi-
cates, Dafny automatically creates a prefix lemma L# from each “extreme lemma”
L. The pre- and postconditions of a prefix lemma are copied from those of the
extreme lemma, except for the following replacements: For an inductive lemma,
Dafny looks in the precondition to find calls (in positive, continuous positions) to
inductive predicates P(x) and replaces these with P#[_k](x). For a co-lemma,
Dafny looks in the postcondition to find calls (in positive, continuous positions)
to co-predicates P (including equality among coinductive datatypes, which is a
built-in co-predicate) and replaces these with P#[_k](x). In each case, these
predicates P are the lemma’s focal predicates.

The body of the extreme lemma is moved to the prefix lemma, but with replacing
each recursive call L(x) with L#[_k-1](x) and replacing each occurrence of a
call to a focal predicate P(x) with P#[_k-1](x). The bodies of the extreme
lemmas are then replaced as shown in the previous subsection. By construction,
this new body correctly leads to the extreme lemma’s postcondition.

Let us see what effect these rewrites have on how one can write proofs. Here
are the proofs of our running example:
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inductive lemma EvenNat(x: int)
requires g(x)
ensures 0 <= x && x % 2 == 0

{ if x == 0 { } else { EvenNat(x-2); } }
colemma Always(x: int)
ensures G(x)

{ Always(x-2); }

Both of these proofs follow the intuitive proofs given in Sections [#sec-example-
least-solution] and [#sec-example-greatest-solution]. Note that in these simple
examples, the user is never bothered with either prefix predicates nor prefix
lemmas—the proofs just look like “what you’d expect”.

Since Dafny automatically inserts calls to the induction hypothesis at the be-
ginning of each lemma, the bodies of the given extreme lemmas EvenNat and
Always can be empty and Dafny still completes the proofs. Folks, it doesn’t get
any simpler than that!

23.6. Variable Initialization and Definite Assignment
TO BE WRITTEN – rules for default initialization; resulting rules for construc-
tors; definite assignment rules

23.7. Well-founded Orders
The well-founded order relations for a variety of built-in types in Dafny are
given in the following table:

type of X and x x strictly below X

bool X && !x
int x < X && 0 <= X
real x <= X - 1.0 && 0.0 <= X
set<T> x is a proper subset of X
multiset<T> x is a proper multiset-subset of X
seq<T> x is a consecutive proper sub-sequence of X
map<K, V> x.Keys is a proper subset of X.Keys
inductive datatypes x is structurally included in X
reference types x == null && X != null
co-inductive datatypes false
type parameter false
arrow types false

Also, there are a few relations between the rows in the table above. For example,
a datatype value x sitting inside a set that sits inside another datatype value
X is considered to be strictly below x. Here’s an illustration of that order, in a
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program that verifies:
datatype D = D(s: set<D>)

method TestD(dd: D) {
var d := dd;
while d != D({})
decreases d

{
var x :| x in d.s;
d := x;

}
}

TODO: Write this section; revise the above
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24. Dafny User’s Guide
Most of this document describes the Dafny programming language. This section
describes the dafny tool, a combined verifier and compiler that implements the
Dafny language.

The development of the dafny language and tool is a GitHub project at https:
//github.com/dafny-lang/dafny. The project is open source, with collaborators
from various organizations and additional contributors welcome. The software
itself is licensed under the MIT license.

24.1. Introduction
The dafny tool implements the following capabilities:

• checking that the input files represent a valid Dafny program (i.e., syntax,
grammar and type checking);

• verifying that the program meets its specifications, by translating the
program to verification conditions and checking those with Boogie and
an SMT solver, typically Z3;

• compiling the program to a target language, such as C#, Java, Javascript,
Go (and others in development);

• running the executable produced by the compiler.

Using various command-line flags, the tool can perform various combinations of
the last three actions (the first action is always performed).

24.2. Dafny Programs and Files
A Dafny program is a set of modules. Modules can refer to other modules, such
as through import declarations or refines clauses. A Dafny program consists
of all the modules needed so that all module references are resolved.

Dafny files (.dfy) in the operating system each hold some number of top-level
declarations. Thus a full program may be distributed among multiple files. To
apply the dafny tool to a Dafny program, the dafny tool must be given all
the files making up a complete program (or, possibly, more than one program
at a time). This can be effected either by listing all of the files by name on
the command-line or by using include directives within a file to stipulate what
other files contain modules that the given file needs. Thus the complete set
of modules are all the modules in all the files listed on the command-line or
referenced, recursively, by include directives within those files. It does not
matter if files are repeated either as includes or on the command-line.11

11File names are considered equal if they have the same absolute path, compared as case-
sensitive strings (regardless of whether the underlying file-system is case sensitive). Use of
symbolic links may make the same file have a different absolute path; this will generally cause
duplicate declaration errors.
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Note however that although the complete set of files, command-line plus in-
cluded files, make up the program, by default, only those files listed on the
command-line are verified. To do a complete verification, each file must be
verified; it may well happen that a verification failure in one file (which is not
on the command-line and thus not checked) may hide a verification failure in
a file that is being checked. Thus it is important to eventually check all files,
preferably in an order in which the files without dependencies are checked first,
then those that depend on them, etc., until all files are checked.

24.3. Installing Dafny
The instructions for installing dafny and the required dependencies and environ-
ment are described on the Dafny wiki: https://github.com/dafny-lang/dafny
/wiki/INSTALL. They are not repeated here to avoid replicating information
that easily becomes inconsistent and out of date.

As of this writing, users can install pre-built Dafny binaries or build directly
from the source files maintained in the github project.

Current and past Dafny binary releases can be found at https://github.com/d
afny-lang/dafny/releases for each supported platform. Each release is a .zip file
with a name combining the release name and the platform. Current platforms
are Windows 10, Ubuntu 16ff, and MacOS 10.14ff.

The principal dependency of the dafny tool is that it uses dotnet, which is
available and must be installed on Linux and Mac platforms to use dafny.

24.4. Dafny Code Style
There are code style conventions for Dafny code, recorded here. Most signifi-
cantly, code is written without tabs and with a 2 space indentation.

24.5. IDEs for Dafny
Dafny source files are text files and can of course be edited with any text editor.
However, some tools provide syntax-aware features:

• There is a Dafny mode for Emacs.

• VSCode, a cross-platform editor for many programming languages has an
extension for dafny, installed from within VSCode. VSCode is available
here. The extension provides syntax highlighting, in-line parser, type and
verification errors, and code navigation.

• An old Visual Studio plugin is no longer supported

Information about installing IDE extensions for Dafny is found on the Dafny
INSTALL page in the wiki.
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24.6. The Dafny Server
TO BE WRITTEN

24.7. Using Dafny From the Command Line
dafny is a conventional command-line tool, operating just like other command-
line tools in Windows and Unix-like systems.

• The format of a command-line is determined by the shell program that is
executing the command-line (.e.g. bash, the windows shell, COMMAND,
etc.). The command-line typically consists of file names and options, in
any order, separated by spaces.

• Files are designated by absolute paths or paths relative to the current
working directory. A command-line argument not matching a known op-
tion is considered a filepath.

• Files containing dafny code must have a .dfy suffix.
• There must be at least one .dfy file.
• The command-line may contain other kinds of files appropriate to the

language that the dafny files are being compiled to.

The command Dafny.exe /? gives the current set of options supported by the
tool. The most commonly used options are described in Section 24.10.

• Options may begin with either a / (as is typical on Windows) or a - (as
is typical on Linux)

• If an option is repeated (e.g., with a different argument), then the later
instance on the command-line supersedes the earlier instance.

• If an option takes an argument, the option name is followed by a : and
then by the argument value, with no intervening white space; if the argu-
ment itself contains white space, the argument must be enclosed in quotes.

• Escape characters are determined by the shell executing the command-
line.

The dafny tool performs several tasks:

• Checking the form of the text in a .dfy file. This step is always performed,
unless the tool is simply asked for help information or version number.

• Running the verification engine to check all implicit and explicit specifica-
tions. This step is performed by default, but can be skipped by using the
-noVerify or -dafnyVerify:0 option

• Compiling the dafny program to a target language. This step is performed
by default if the verification is successful but can be skipped or always
executed by using variations of the -compile option.

• Whether the source code of the compiled target is written out is controlled
by -spillTargetCode

• The particular target language used is chosen by -compileTarget
• Whether or not the dafny tool attempts to run the compiled code is con-

trolled by -compile
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The dafny tool terminates with these exit codes:

• 0 – success
• 1 – invalid command-line arguments
• 2 – parse or types errors
• 3 – compilation errors
• 4 – verification errors

Errors in earlier phases of processing typically hide later errors. For example, if
a program has parsing errors, verification or compilation will not be attempted.
The option -countVerificationErrors:0 forces the tool to always end with a
0 exit code.

24.8. Verification
There are a great many options that control various aspects of verifying dafny
programs. Here we mention only a few:

• Control of output: -dprint, -rprint, -stats, -compileVerbose
• Whether to print warnings: -proverWarnings
• Control of time: -timeLimit
• Control of the prover used: -prover

TO BE WRITTEN - advice on use of verifier, debugging verification problems

24.9. Compilation
The dafny tool can compile a Dafny program to one of several target languages.
Details and idiosyncrasies of each of these are described in the following subsec-
tions. In general note the following:

• The compiled code originating from dafny can be compiled with other
source and binary code, but only the dafny-originated code is verified.

• Output file names can be set using -out.
• Code generated by Dafny relies requires a Dafny-specific runtime

library. By default the runtime is included in the generated code
for most languages (use -useRuntimeLib to omit it). For Java and
C++ the runtime must be linked to separately, except when running
the generated code using Dafny’s -compile:3 or -compile:4. All
runtime libraries are part of the Binary (./DafnyRuntime.*) and Source
(./Source/DafnyRuntime/DafnyRuntime.*) releases.

• Names in Dafny are written out as names in the target language. In some
cases this can result in naming conflicts. Thus if a Dafny program is
intended to be compiled to a target language X, you should avoid using
Dafny identifiers that are not legal identifiers in X or that conflict with
reserved words in X.
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24.9.1. Main method

To generate a stand-alone executable from a Dafny program, the Dafny program
must use a specific method as the executable entry point. That method is
determined as follows:

• If the /Main option is specified on the command-line with an argument of
“-”, then no entry point is used at all

• If the /Main option is specified on the command-line and its argument is
not an empty string, then its argument is interpreted as the fully-qualified
name of a method to be used as the entry point. If there is no matching
method, an error message is issued.

• Otherwise, the program is searched for a method with the attribute
{:main}. If exactly one is found, that method is used as the entry point;
if more than one method has the {:main} attribute, an error message is
issued.

• Otherwise, the program is searched for a method with the name Main. If
more than one is found an error message is issued.

Any abstract modules are not searched for candidate entry points, but otherwise
the entry point may be in any module or type. In addition, an entry-point
candidate must satisfy the following conditions:

• The method takes no parameters or type parameters
• The method is not a ghost method
• The method has no requires or modifies clauses, unless it is marked

{:main}
• If the method is an instance (that is, non-static) method and the enclosing

type is a class, then that class must not declare any constructor. In this
case, the runtime system will allocate an object of the enclosing class and
will invoke the entry-point method on it.

• If the method is an instance (that is, non-static) method and the enclosing
type is not a class, then the enclosing type must, when instantiated with
auto-initializing type parameters, be an auto-initialing type. In this case,
the runtime system will invoke the entry-point method on a value of the
enclosing type.

Note, however, that the following are allowed:

• The method is allowed to have ensures clauses
• The method is allowed to have decreases clauses, including a decreases

*. (If Main() has a decreases *, then its execution may go on forever,
but in the absence of a decreases * on Main(), Dafny will have verified
that the entire execution will eventually terminate.)

If no legal candidate entry point is identified, dafny will still produce executable
output files, but they will need to be linked with some other code in the target
language that provides a main entry point.
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24.9.2. extern declarations

TO BE WRITTEN

24.9.3. C#

TO BE WRITTEN

24.9.4. Java

The Dafny-to-Java compiler writes out the translated files of a file A.dfy to
a directory A-java. The -out option can be used to choose a different output
directory. The file A.dfy is translated to A.java, which is placed in the output
directory along with helper files. If more than one .dfy file is listed on the
command-line, then the output directory name is taken from the first file, and
.java files are written for each of the .dfy files.

TO BE WRITTEN

24.9.5. Javascript

TO BE WRITTEN

24.9.6. Go

TO BE WRITTEN

24.9.7. C++

The C++ backend was written assuming that it would primarily support writing
C/C++ style code in Dafny, which leads to some limitations in the current
implementation.

• We do not support BigIntegers, so do not use int, or raw instances of
arr.Length, or sequence length, etc. in executable code. You can however,
use arr.Length as uint64 if you can prove your array is an appropriate
size. The compiler will report inappropriate integer use.

• We do not support more advanced Dafny features like traits or co-inductive
types.

• Very limited support for higher order functions even for array
init. Use extern definitions like newArrayFill (see [extern.dfy]
(https://github.com/dafny-lang/dafny/blob/master/Test/c++/extern.dfy))
or similar. See also the example in [functions.dfy] (https://github.com/dafny-
lang/dafny/blob/master/Test/c++/functions.dfy).

• The current backend also assumes the use of C++17 in order to cleanly
and performantly implement datatypes.
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24.10. Dafny Command Line Options
There are many command-line options to the dafny tool. The most current
documentation of the options is within the tool itself, using the /? option. Here
we give an expanded description of the most important options.

Remember that options can be stated with either a leading / or a leading -.

24.10.1. Help and version information

• -? or -help : prints out the current list of command-line options and
terminates

• -version : prints the version of the executable being invoked and termi-
nates

24.10.2. Controlling errors and exit codes

• -countVerificationErrors:<n> - if 0 then always exit with a 0 exit code;
if 1 (the default) then use the usual exit code

TO BE WRITTEN

24.10.3. Controlling output

• -dprint:<file> - print the Dafny program after parsing (use - for ‘ to
print to the console)

• -rprint:<file> - print the Dafny program after type resolution (use -
for to print to the console)

TO BE WRITTEN

24.10.4. Controlling aspects of the tool being run

• -deprecation:<n> - controls warnings about deprecated features

– 0 - no warnings
– 1 (default) - issue warnings
– 2 - issue warnings and advise about alternate syntax

• -warnShadowing - emits a warning if the name of a declared variable
caused another variable to be shadowed

TO BE WRITTEN

24.10.5. Controlling verification

• -verifyAllModules - verify modules that come from include directives

By default, Dafny only verifies files explicitly listed on the command line: if
a.dfy includes b.dfy, a call to Dafny a.dfy will detect and report verification
errors from a.dfy but not from b.dfy’s.

243



With this flag, Dafny will instead verify everything: all input modules and all
their transitive dependencies. This way Dafny a.dfy will verify a.dfy and all
files that it includes (here b.dfy), as well all files that these files include, etc.

Running Dafny with /verifyAllModules on the file containing your main result
is a good way to ensure that all its dependencies verify.

24.10.6. Controlling boogie

TO BE WRITTEN

24.10.7. Controlling the prover

TO BE WRITTEN

24.10.8. Controlling compilation

• -compile:<n> - controls whether compilation happens

– 0 - do not compile the program
– 1 (default) - upon successful verification, compile the program to the

target language
– 2 - always compile, regardless of verification success
– 3 - if verification is successful, compile the program (like option 1),

and then if there is a Main method, attempt to run the program
– 4 - always compile (like option 2), and then if there is a Main method,

attempt to run the program

• -compileTarget:<s> - sets the target programming language for the com-
piler

– cs - C#
– go - Go
– js - Javascript
– java - Java
– py - Python
– cpp - C++

• -spillTargetCode:<n> - controls whether to write out compiled code
in the target language (instead of just holding it in internal temporary
memory)

– 0 (default) - do not write out code
– 1 - write it out to the target language, if it is being compiled
– 2 - write the compiled program if it passes verification, regardless of

the -compile setting
– 3 - write the compiled program regardless of verification success and

the -compile setting

• -out:<file> - TODO
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• -compileVerbose:<n> - whether to write out compilation information

– 0 - do not print any information (silent mode)
– 1 (default) - print information such as the files being created by the

compiler

TO BE WRITTEN

24.10.9. Options intended for debugging

• -dprelude:<file> - choose an alternate prelude file
• -pmtrace - print pattern-match compiler debugging information
• -titrace - print type inference debugging information

TO BE WRITTEN
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Sample math B: 𝑎 → 𝑏 or

𝑎 → 𝜋

or ( a �) or [ a →�]

Colors
integer literal: 10
hex literal: 0xDEAD
real literal: 1.1
boolean literal: true false
char literal: 'c'
string literal: "abc"
verbatim string: @"abc"
ident: ijk
type: int
generic type: map<int,T>
operator: <=
punctuation: { }
keyword: while
spec: requires
comment: // comment
attribute {: name }
error: $

Syntax color tests:
integer: 0 00 20 01 0_1
float: .0 1.0 1. 0_1.1_0
bad: 0_
hex: 0x10_abcdefABCDEF
string: "string \n \t \r \0" "a\"b" "'" "\'" ""
string: "!@#$%^&*()_-+={}[]|:;\\<>,.?/~`"
string: "\u1234 "
string: " " : "\0\n\r\t\'\"\\"
notstring: "abcde
notstring: " \u123 " : "x \Z z" : "x \u x"
vstring: @"" @"a" @"""" @"'\" @"\u"
vstring: @"xx""y y""zz "
vstring: @" " @" "
vstring: @"x
x"
bad: @ !
char: 'a' '\n' '\'' '"' '\"' ' ' '\\'
char: '\0' '\r' '\t' '\u1234'
badchar: $ `
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ids: '\u123' '\Z' '\u' '\u2222Z'
ids: '\u123ZZZ' '\u2222Z'
ids: 'a : a' : 'ab' : 'a'b' : 'a''b'
ids: a_b _ab ab? _0
id-label: a@label
literal: true false null
op: - ! ~ x -!~x
op: a + b - c * d / e % f a+b-c*d/e%f
op: <= >= < > == != b&&c || ==> <==> <==
# 25. !=# !! in !in
op: !in� !iné
not op: !inx
punc: . , :: | :| := ( ) [ ] { }
types: int real string char bool nat ORDINAL
types: object object?
types: bv1 bv10 bv0
types: array array2 array20 array10
types: array? array2? array20? array10?
ids: array1 array0 array02 bv02 bv_1
ids: intx natx int0 int_ int? bv1_ bv1x array2x
types: seq<int> set < bool >
types: map<bool,bool> imap < bool , bool >
types: seq<Node> seq< Node >
types: seq<set< real> >
types: map<set<int>,seq<bool>>
types: G<A,int> G<G<A>,G<bool>>
types: seq map imap set iset multiset
ids: seqx mapx
no arg: seq < > seq < , > seq <bool , , bool > seq<bool , >
keywords: if while assert assume
spec: requires reads modifies
attribute: {: MyAttribute "asd", 34 }
attribute: {: MyAttribute }
comment: // comment
comment: /* comment */ after
comment: // comment /* asd */ dfg
comment: /* comment /* embedded */ tail */ after
comment: /* comment // embedded */ after
comment: /* comment

/* inner comment
*/
outer comment
*/ after
more after
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